INTRACTABILITY I

» exponential algorithms: TSP



Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G=(V,E), does there exist a
cycle I" that visits every node exactly once?

yes
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Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle I" that visits every node exactly once?
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no
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Trails, Paths, and Circuits

The subject of graph theory began in the year 1736 when
the great mathematician Leonhard Euler published a paper
giving the solution to the following puzzle:

The town of Konigsberg in Prussia (now Kaliningrad in
Russia) was built at a point where two branches of the
Pregel River came together.

It consisted of an island and some land along the river
banks.
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Trails, Paths, and Circuits

These were connected by seven bridges as shown in
Figure 10.2.1.

Pregel River

The Seven Bridges of Kdnigsberg
Figure 10.2.1
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Trails, Paths, and Circuits

The question is this: Is it possible for a person to take a
walk around town, starting and ending at the same location
and crossing each of the seven bridges exactly once?

To solve this puzzle, Euler translated it into a graph theory
problem. He noticed that all points of a given land mass
can be identified with each other since a person can travel
from any one point to any other point of the same land
mass without crossing a bridge.
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Trails, Paths, and Circuits

Thus for the purpose of solving the puzzle, the map of
Konigsberg can be identified with the graph shown in
Figure 10.2.2, in which the vertices A, B, C, and D
represent land masses and the seven edges represent the
seven bridges.

A

D

Graph Version of Kdnigsberg Map
Figure 10.2.2
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Trails, Paths, and Circuits

In terms of this graph, the question becomes the following:

Is it possible to find a route through the graph that starts
and ends at some vertex, one of A, B, C, or D, and
traverses each edge exactly once?

Equivalently:
Is it possible to trace this graph, starting and ending at

the same point, without ever lifting your pencil from the
paper?
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Hamiltonian Circuits

In 1859 the Irish mathematician Sir William Rowan Hamilton
introduced a puzzle in the shape of a dodecahedron (a solid
figure with 12 identical pentagonal faces.)

»

Dodecahedron
Figure 10.2.6
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.
Hamiltonian Circuits

Each vertex was labeled with the name of a city—London,
Paris, Hong Kong, New York, and so on.

The problem Hamilton posed was to start at one city and
tour the world by visiting each other city exactly once and
returning to the starting city.

One way to solve the puzzle is to imagine the surface of the
dodecahedron stretched out and laid flat in the plane, as
follows:
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.
Hamiltonian Circuits

The circuit denoted with black lines is one solution. Note
that although every city is visited, many edges are omitted
from the circuit. (More difficult versions of the puzzle
required that certain cities be visited in a certain order.)

The following definition is made in honor of Hamilton.

Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every
vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent vertices
and distinct edges in which every vertex of G appears exactly once, except for the
first and the last, which are the same.




.
Hamiltonian Circuits

There is, however, a simple technique that can be used In
many cases to show that a graph does not have a
Hamiltonian circuit.

This follows from the following considerations:

Suppose a graph G with at least two vertices has a
Hamiltonian circuit C given concretely as

C: vpejvier -« - v,—1€,0,.

Since C is a simple circuit, all the e;are distinct and all the

v; are distinct except that v, = v,,. Let H be the subgraph of
G that is formed using the vertices and edges of C.
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.
Hamiltonian Circuits

An example of such an H is shown below.

H is indicated by the black lines.

Note that H has the same number of edges as it has
vertices since all its n edges are distinct and so are its n

vertices vy, Vy, . . ., V,.

Also, by definition of Hamiltonian circuit, every vertex of G
is a vertex of H, and H is connected since any two of its
vertices lie on a circuit. In addition, every vertex of H has

degree 2. 80



.
Hamiltonian Circuits

The reason for this is that there are exactly two edges

incident on any vertex. These are e; and e;,, for any vertex

v; except v, = v,,, and they are e, and e,, for v, (= v,).

These observations have established the truth of the

following proposition in all cases where G has at least two

vertices.

Proposition 10.2.6

If a graph G has a Hamiltonian circuit, then G has a subgraph H with the following
properties:

l.

H contains every vertex of G.

. H 1s connected.

2
3.
4

H has the same number of edges as vertices.

. Every vertex of H has degree 2.
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3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT <, DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance G of
DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff ® is satisfiable.

Construction overview. Let n denote the number of variables in ®.
We will construct a graph G that has 2" Hamilton cycles, with each cycle
corresponding to one of the 2" possible truth assignments.
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3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance @ with n variables x; and k clauses.
* Construct G to have 2" Hamilton cycles.
« Intuition: traverse path i from left to right < set variable x; = true.

| ¥

X1

i
0
Q
Q0

X3
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Intractability: quiz 5 I/

Which is truth assignment corresponding to Hamilton cycle below?

A. x,=true,x,=true,x;= true C. x,=false,x,=false, x;= true

B. x,=true,x,=true,x;=false D. x,=false,x,=false,x,=false
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3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and & clauses.
« For each clause: add a node and 2 edges per literal.

node for clause j node for clause k

connect in this way
if x; appears in clause C; \

R

connect in this way
/ if x; appears in clause Ci

K IR AR A T

Xi = true >

< xi = false

42



3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance @ with n variables x; and k clauses.
« For each clause: add a node and 2 edges per literal.

(Cl —=x1V To \/333) clause node 1 clause node 2 (C’Q = 1 V X9 V x_g)

X1

X2

X3

43




3-satisfiability reduces to directed Hamilton cycle

Lemma. o is satisfiable iff G has a Hamilton cycle.

Pf. =
* Suppose 3-SAT instance ® has satisfying assignment x*.

* Then, define Hamilton cycle I" in G as follows:
- if xi=1true, traverse row i from left to right
- if x% = false, traverse row i from right to left
- for each clause C;, there will be at least one row i in which we are
going in “correct” direction to splice clause node C;into cycle
(and we splice in C; exactly once) =

44



3-satisfiability reduces to directed Hamilton cycle

Lemma. o is satisfiable iff G has a Hamilton cycle.

Pf. <

* Suppose G has a Hamilton cycle T.

* If I enters clause node C;, it must depart on mate edge.
- nodes immediately before and after C;are connected by an edge e€ E
- removing C; from cycle, and replacing it with edge e yields Hamilton

cycle on G-{C;}

* Continuing in this way, we are left with a Hamilton cycle I'" in

G-{C;{,Cy,..., C\}.

.« St x’= true if I' traverses row i left-to-right; otherwise, set x*jzfalse.

* Since the original path visited all clauses at least one of the path was
traversed in “correct” direction realative to a clause, and thus each clause

is satisfied. =
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Pokemon Go

Given the locations of n Pokémon, find shortest tour to collect them
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Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D? \

can view as a complete graph

ey

13,509 cities in the United States
http:/ /www.math.uwaterloo.ca/tsp
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Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

11,849 holes to drill in a programmed logic array
http:/ /www.math.uwaterloo.ca/tsp
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Example 9 — A Traveling Salesman Problem

Imagine that the drawing below is a map showing four cities
and the distances in kilometers between them.

Suppose that a salesman must travel to each city exactly
once, starting and ending in city A. Which route from city to
city will minimize the total distance that must be traveled?

B 30

A 40 D
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/
Example 9 — Solution

This problem can be solved by writing all possible
Hamiltonian circuits starting and ending at A and calculating
the total distance traveled for each.

Route Total Distance (In Kilometers)
ABCDA 30430+ 25+40 =125
ABDCA 30+ 35425+50 =140
ACBDA 50+30+35+4+40 =155

ACDBA 140 [ABDC A backwards]
ADBCA 155 [AC BD A backwards]
ADCBA 125 [ABC D A backwards]

Thus either route ABCDA or ADCBA gives a minimum total

distance of 125 kilometers.
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.
Hamiltonian Circuits

The general traveling salesman problem involves finding a
Hamiltonian circuit to minimize the total distance traveled
for an arbitrary graph with n vertices in which each edge is
marked with a distance.

One way to solve the general problem is to write down all
Hamiltonian circuits starting and ending at a particular

vertex, compute the total distance for each, and pick one
for which this total is minimal.
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.
Hamiltonian Circuits

However, even for medium-sized values of n this method is
impractical!

For a complete graph with 30 vertices, there would be
(291)/2 = 4.42 x 10°° Hamiltonian circuits starting and ending

at a particular vertex to check.

Even if each circuit could be found and its total distance
computed in just one nanosecond, it would require
approximately 1.4 x 10’4 years to finish the computation.
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TSP books, apps, and movies

The Traveling
Salesman Problem

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

Carrier = 12:33 PM
< Home Bounds

usab32.txt

Moats: 85882.6 (Gap 1.464%)
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Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle that visits every node exactly once?

Theorem. HAMILTON-CYCLE <, TSP.

Pf.
« Given an instance G = (V, E) of HAMILTON-CYCLE, create n = | V| cities

with distance function

* TSP instance has tour of length < » iff G has a Hamilton cycle. =
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Intractability 1ll: quiz 4

What is complexity of TSP? Choose the best answer.

A. O
B. O%(1657")
C. 0@
D. O'(n)

T

O* hides poly(n) terms
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Exponential algorithm for TSP: dynamic programming

J. Soc. INpusT, APPL. MATH.
Vol. 10, No. 1, March, 1962
Printed in U.S.A.

A DYNAMIC PROGRAMMING APPROACH TO
SEQUENCING PROBLEMS*

MICHAEL HELDt anp RICHARD M. KARPt
INTRODUCTION

Many interesting and important optimization problems require the
determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
a scheduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of recursion schemes
of the type associated with dynamic programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the operations to be performed. The dynamic
programming formulations are given in §1, together with a discussion of
various extensions such as the inclusion of precedence constraints. In each
case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,
each having the same structure as the original one. This procedure of suc-
cessive approximations is developed in detail in §2 with specific reference
to the traveling-salesman problem, and §3 summarizes computational ex-
perience with an IBM 7090 program using the procedure.

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n? 2% time.

HAMILTON-CYCLE is a special case

Dynamic Programming Treatment of the

Travelling Salesman Problem*

RicHarp BELLMAN

RAND Corporation, Santa Monica, California

Introduction

The well-known travelling salesman problem is the following: “A salesman is
required to visit once and only once each of n different cities starting from a base
city, and returning to this city. What path minimizes the total distance travelled
by the salesman?”

The problem has been treated by a number of different people using a variety
of techniques; ef. Dantzig, Fulkerson, Johnson [1], where a combination of
ingenuity and linear programming is used, and Miller, Tucker and Zemlin [2],
whose experiments using an all-integer program of Gomory did not produce
results in cases with ten cities although some success was achieved in cases of
simply four cities. The purpose of this note is to show that this problem can
easily be formulated in dynamic programming terms [3], and resolved computa-
tionally for up to 17 cities. For larger numbers, the method presented below,
combined with various simple manipulations, may be used to obtain quick
approximate solutions. Results of this nature were independently obtained by
M. Held and R. M. Karp, who are in the process of publishing some extensions
and computational results.
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Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n? 2% time.

Pf. [dynamic programming] pick node s arbitrarily
* Subproblems: c(s,v,X) = cost of cheapest path between s and v #s
that visits every node in X exactly once (and uses only nodes in X).

* Goal: mi‘l;l c(s,v,V) + c(v, s)
vE

* There are <n 2" subproblems and they satisfy the recurrence:

y

c(s,v) if | X| =2
(50X =0 min e(s,u X\ {o}) +e(uyv) if [X| > 2.
\uEX\{s,v}

* The values c(s, v, X) can be computed in increasing
order of the cardinality of X. =
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22-city TSP instance takes 1,000 years

The Washington Post

bblem,” where a salesperson has to v

 fake
0O Il . 10

¥,000 years to compute the r

2°2 = 4,194,304

22! =1,124,000,727,777,607,680,000 ~ 10!
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Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby—Chvatal-Cook]
 Linear programming + branch-and-bound + polyhedral combinatorics.
« Greedy heuristics, including Lin—Kernighan.
* MST, Delaunay triangulations, fractional b-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

N

largest instance has 85,900 cities!

..... AT&T = 12:42 PM ="

The Traveling
Salesman Problem
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David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook
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Thank You!

ale Algorithms for Data Processi






