
Algorithms for Data Processing
Lecture IX: Solving Intractable Problems

Alessandro Artale

Free University of Bozen-BolzanoFaculty of Computer Sciencehttp://www.inf.unibz.it/˜artale
artale@inf.unibz.it

2019/20 – First SemesterMSc in Computational Data Science — UNIBZ
Some material (text, figures) displayed in these slides is courtesy of:Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

A. Artale Algorithms for Data Processing

Vertex CoverCoping with NP-completeness

Q. Suppose I need to solve an NP-hard problem. What should I do?

 
A. Sacrifice one of three desired features.

i. Solve arbitrary instances of the problem.

ii. Solve problem to optimality.

iii. Solve problem in polynomial time.

 
Coping strategies.

i. Design algorithms for special cases of the problem.

ii. Design approximation algorithms or heuristics.

iii. Design algorithms that may take exponential time.

 2

using greedy,
dynamic programming,
divide-and-conquer, and
network flow algorithms!

A. Artale Algorithms for Data Processing

Vertex Cover
Definition. Given a graph G = (V ,E) and an integer k , is there a subset of k (or fewer)vertices such that each edge is incident to at least one vertex in the subset?
Like many NP-complete problems, Vertex Cover comes with two parameters: n, the nodesin the graph, and k , the size of the vertex cover.
• There are nk different subsets of V of size k ;
• Each takes time O(kn) to check whether it is a vertex cover;
• Thus, in the worst case, the total running time is O(knk+1).

I if n = 1, 000 and k = 10, even on a PC computing a million of instructions per second weneed 1024 seconds...which is larger than the age of the UNIVERSE!!!!

• A much better algorithm can be developed, with a running time bound of O(2kkn).

I if n = 1, 000 and k = 10, we need few seconds!!!

A. Artale Algorithms for Data Processing

Vertex Cover
Definition. Given a graph G = (V ,E) and an integer k , is there a subset of k (or fewer)vertices such that each edge is incident to at least one vertex in the subset?
Like many NP-complete problems, Vertex Cover comes with two parameters: n, the nodesin the graph, and k , the size of the vertex cover.
• There are nk different subsets of V of size k ;
• Each takes time O(kn) to check whether it is a vertex cover;
• Thus, in the worst case, the total running time is O(knk+1).

I if n = 1, 000 and k = 10, even on a PC computing a million of instructions per second weneed 1024 seconds...which is larger than the age of the UNIVERSE!!!!
• A much better algorithm can be developed, with a running time bound of O(2kkn).

I if n = 1, 000 and k = 10, we need few seconds!!!
A. Artale Algorithms for Data Processing

Vertex Cover/2
Prop.1. If G = (V ,E) has n nodes and a vertex cover of size k , then G has at most k(n− 1)edges.
Prop.2. Let e = (u, v) be any edge of G . The graph G has a vertex cover of size at most kif and only if at least one of the graphs G \ {u} and G \ {v} has a vertex cover of size atmost k − 1.

A. Artale Algorithms for Data Processing

Vertex Cover – Exact Algorithm
VERTEX-COVER(G,k)
if G contains no edges then

return T = ∅; /* the empty set is a vertex cover */

if G contains > k |V | edges then
halt G does not have a k-node vertex cover ; /* this check costs O(kn) */

elselet e = (u, v) be an edge of G ;
if T=VERTEX-COVER(G \ {u}, k − 1) then

return T ∪ {u}
if T=VERTEX-COVER(G \ {v}, k − 1) then

return T ∪ {v}

A. Artale Algorithms for Data Processing

Vertex Cover – Algorithm Running Time
• The algorithm produces two recursive calls splitting the problem in two sub-problemseach with n − 1 nodes and integer k − 1.
• In each recursive call we spend O(kn) time.
• We thus have the following recurrence (for some constant c):

T (n, 1) ≤ cn,
T (n, k) ≤ 2T (n − 1, k − 1) + ckn.

By induction we can show that (see also that the depth of the recursion calls is k):
T (n, k) ≤ c2kkn

A. Artale Algorithms for Data Processing

Independent Set on TreesIndependent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of

nodes such that no two are adjacent.

 
Fact. A tree has at least one node that is a leaf (degree = 1).

 
 
 
 
Key observation. If node v is a leaf, there exists 
a max-cardinality independent set containing v.
Pf. [exchange argument]

・Consider a max-cardinality independent set S.

・If v ∈ S, we’re done.

・Otherwise, let (u, v) denote the lone edge incident to v.
- if u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum
- if u ∈ S and v ∉ S, then S ∪ { v } − { u } is independent ▪

 4

u

v

A. Artale Algorithms for Data Processing

Independent Set on Trees – AlgorithmIndependent set on trees: greedy algorithm

Theorem. The greedy algorithm finds a max-cardinality independent  
set in forests (and hence trees).

 
Pf. Correctness follows from the previous key observation. ▪
 
 
 
 
 
 
 
 
 
 
 
Remark. Can implement in O(n) time by maintaining nodes of degree 1.

 5

INDEPENDENT-SET-IN-A-FOREST(F)

S ← ∅.

WHILE (F has at least 1 edge)

Let v be a leaf node and let (u, v) be the lone edge incident to v.

S ← S ∪ { v }.

F ← F – { u, v }.

RETURN S ∪ { nodes remaining in F }.

delete both u and v (including all incident edges)

A. Artale Algorithms for Data Processing

Independent Set on Trees – Algorithm
How might the greedy algorithm fail if the graph is not a tree/forest?

A. Might get stuck.

B. Might take exponential time.

C. Might produce a suboptimal independent set.

D. Any of the above.

(resulting) graph may not have a leaf node

if algorithm can always find a leaf node, then it finds
a max-cardinality independent set in O(m + n) time

Intractability III: quiz 1

 6A. Artale Algorithms for Data Processing

Weighted independent set on trees. Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.

 
Greedy algorithm can fail spectacularly.

Weighted independent set on trees

 7

u

v

weight = huge

A. Artale Algorithms for Data Processing

Weighted Independent Set on Trees – Algorithm
There seems to be no easy way to resolve this problem locally, without considering therest of the graph, however:
• For the subtree consisting of a node u and its adjacent leaves, we really have onlytwo reasonable solutions to consider:1 Including u, or2 Including all its adjacent leaves.
• Based on the above idea we build a polynomial algorithm using dynamicprogramming

I Record few different solutions, going through a sequence of subproblems, and decideonly at the end which of these possibilities is the best overall solution.

A. Artale Algorithms for Data Processing

Weighted Independent Set on Trees – Dynamic Programming
Start at the leaves and gradually work our way up the tree till we reach the root.
• For a node u, we solve the subproblem associated with the subtree Tu after we havesolved the subproblems for all its children.
• The algorithm considers two cases: Either we include the node u in S or we do not.1 If we include u, then we cannot include any of its children;2 If we do not include u, then we have the freedom to include or omit its children.

A. Artale Algorithms for Data Processing

 r

u

 x w v

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.

 
Dynamic-programming solution. Root tree at some node, say r.

・OPTin (u) = max-weight IS in subtree rooted at u, containing u.

・OPTout (u) = max-weight IS in subtree rooted at u, not containing u.

・Goal: max { OPTin (r), OPTout (r) }.

 
 
Bellman equation.

 8

€

OPTin (u) = wu + OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

children(u) = { v, w, x }

€

OPTin (u) = wu + OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

overlapping
subproblems

A. Artale Algorithms for Data Processing

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set 
in a tree in O(n) time.

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at any node r.

S ← ∅.

FOREACH (node u of T in postorder/topological order)

IF (u is a leaf node)

Min[u] = wu.

Mout[u] = 0.

ELSE

Min[u] = wu + Σv ∈ children(u) Mout[v].

Mout[u] = Σv ∈ children(u) max { Min[v], Mout[v] }.

RETURN max { Min[r], Mout[r] }.

 10

ensures a node is processed
after all of its descendants

can also find independent set itself
(not just value)

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT – Brute Force
Brute force. Given a 3-SAT instance with n variables and m clauses, the brute-forcealgorithm takes O(m2n) time.Proof.
• There are 2n possible truth assignments to the n variables.
• For each clause, we check whether one of the 3 literals is true, requiring in total 3msteps.

We can build better SAT algorithms!!!
• We show an Algorithm that determines whether there’s a satisfying assignment inless time than it would take to enumerate all possible settings of the variables!

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT – Brute Force
Brute force. Given a 3-SAT instance with n variables and m clauses, the brute-forcealgorithm takes O(m2n) time.Proof.
• There are 2n possible truth assignments to the n variables.
• For each clause, we check whether one of the 3 literals is true, requiring in total 3msteps.

We can build better SAT algorithms!!!
• We show an Algorithm that determines whether there’s a satisfying assignment inless time than it would take to enumerate all possible settings of the variables!

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT
We denote by Φ|x=TRUE a formula obtained from Φ by applying the following rules:
• All clauses containing x are removed;
• If a clause contains the literal ¬x together with another literal, then ¬x is removedform the clause;
• If a clause consist only of ¬x then Φ|x=TRUE ≡ FALSE.

We denote by Φ|x=FALSE a formula obtained from Φ by applying the following rules:
• All clauses containing ¬x are removed;
• If a clause contains the literal x together with another literal, then x is removed formthe clause;
• If a clause consist only of x then Φ|x=FALSE ≡ FALSE.

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT
We denote by Φ|x=TRUE a formula obtained from Φ by applying the following rules:
• All clauses containing x are removed;
• If a clause contains the literal ¬x together with another literal, then ¬x is removedform the clause;
• If a clause consist only of ¬x then Φ|x=TRUE ≡ FALSE.

We denote by Φ|x=FALSE a formula obtained from Φ by applying the following rules:
• All clauses containing ¬x are removed;
• If a clause contains the literal x together with another literal, then x is removed formthe clause;
• If a clause consist only of x then Φ|x=FALSE ≡ FALSE.

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SATExact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula Φ is either empty or the conjunction
of a clause (ℓ1 ∨ ℓ2 ∨ ℓ3) and a 3-SAT formula Φʹ with one fewer clause.

Notation. Φ | x = true is the simplification of Φ by setting x to true.
Ex.

・Φ = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (w ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z).

・Φʹ = (x ∨ ¬y ∨ z) ∧ (w ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z).

・(Φʹ | x = true) = (w ∨ y ∨ ¬z) ∧ (y ∨ z).

Φ = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ Φʹ

= (ℓ1 ∧ Φʹ) ∨ (ℓ2 ∧ Φʹ) ∨ (ℓ3 ∧ Φʹ)

= (Φʹ | ℓ1 = true) ∨ (Φʹ | ℓ2 = true) ∨ (Φʹ | ℓ3 = true)

 49

each clause has ≤ 3 literals

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SATA recursive algorithm (divide and conquer). A 3-SAT formula Φ is either empty or thedisjunction of a clause (`1 ∨ `2 ∨ `3) and a 3-SAT formula Φ′ with one fewer clause.

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula Φ is either empty or the disjunction

of a clause (ℓ1 ∨ ℓ2 ∨ ℓ3) and a 3-SAT formula Φʹ with one fewer clause.

Theorem. The brute-force 3-SAT algorithm takes O(poly(n) 3n) time.

Pf. T(n) ≤ 3T(n – 1) + poly(n). ▪ 

3-SAT (Φ)
__

IF Φ is empty RETURN true.

/* Divide and Conquer */
IF 3-SAT (Φ | ℓ1 = true) RETURN true.
IF 3-SAT (Φ | ℓ2 = true) RETURN true.
IF 3-SAT (Φ | ℓ3 = true) RETURN true.

RETURN false.

50

Since the depth of the recursion calls is n, then:
• T (n) ≤ 3T (n − 1) + 3m, the recursive 3-SAT algorithm above takes O(m3n) time, but...

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable

assignment containing clause (ℓ1 ∨ ℓ2 ∨ ℓ3) must fall into one of 3 classes:

・ℓ1 is true.

・ℓ1 is false; ℓ2 is true.

・ℓ1 is false; ℓ2 is false; ℓ3 is true.

 51

3-SAT (Φ)
__

IF Φ is empty RETURN true.

/* Divide and Conquer */
IF 3-SAT(Φ | ℓ1 = true) RETURN true.
IF 3-SAT(Φ | ℓ1 = false, ℓ2 = true) RETURN true.
IF 3-SAT(Φ | ℓ1 = false, ℓ2 = false, ℓ3 = true) RETURN true.

RETURN false.

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

Theorem. The Divide and Conquer algorithm takes O(m1.84n) time.

Pf. T(n) ≤ T(n – 1) + T(n – 2) + T(n – 3) + O(m). ▪

 52

largest root of r3 = r2 + r + 1

3-SAT (Φ)
__

IF Φ is empty RETURN true.

/* Divide and Conquer */
IF 3-SAT(Φ | ℓ1 = true) RETURN true.
IF 3-SAT(Φ | ℓ1 = false, ℓ2 = true) RETURN true.
IF 3-SAT(Φ | ℓ1 = false, ℓ2 = false, ℓ3 = true) RETURN true.

RETURN false.

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

ar
X

iv
:1

00
8.

40
67

v1
 [

cs
.D

S]
 2

4
A

ug
 2

01
0

A Full Derandomization of Schöning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science
Department of Computer Science

ETH Zürich, 8092 Zürich, Switzerland
{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schöning [7] presents a simple randomized algorithm for k-SAT with running time
O(an

kpoly(n)) for ak = 2(k − 1)/k. We give a deterministic version of this algorithm
running in time O((ak + ϵ)npoly(n)), where ϵ > 0 can be made arbitrarily small.

1 Introduction

In 1999, Uwe Schöning [7] gave an extremely simple randomized algorithm for k-SAT.
Ten years on, the fastest algorithms for k-SAT are only slightly faster than his, and far
more complicated. His algorithm works as follows: Let F be a (≤ k)-CNF formula over
n variables. Start with a random truth assignment. If this does not satisfy F , pick an
arbitrary unsatisfied clause C. From C, pick a literal uniformly at random, and change
the truth value of its underlying variable, thus satisfying C. Repeat this reassignment
step O(n) times. If F is satisfiable, this finds a satisfying assignment with probability at
least (

k

2(k − 1)

)n

.

By repetition, this gives a randomized O∗(1.334n) algorithm for 3-SAT, an O∗(1.5n) for
4-SAT, and so on (we use O∗ to suppress polynomial factors in n). Shortly after Schöning
published his algorithm, Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou,
Raghavan and Schöning [2] (henceforth Dantsin et al. for the sake of brevity) came up
with a deterministic algorithm that can be seen as an attempt to derandomize Schöning’s
algorithm. We say attempt because its running time is O∗((2k/(k + 1))n), which is ex-
ponentially slower than Schöning’s. For example, this gives an O∗(1.5n) algorithm for
3-SAT and O∗(1.6n) for 4-SAT. Subsequent papers have improved upon this running
time, mainly focusing on 3-SAT: Dantsin et al. already improve the running time for
3-SAT to O(1.481n), Brueggemann and Kern [1] to O(1.473n), Scheder [6] to O(1.465n),
and Kutzkov and Scheder [4] to O∗(1.439n). All improvements suffer from two drawbacks:
First, they fall short of achieving the running time of Schöning’s randomized algorithm,
and second, they are all fairly complicated. In this paper, we give a rather simple deter-
ministic algorithm with a running time that comes arbitrarily close to Schöning’s, thus
completely derandomizing his algorithm. We also show how to derandomize Schöning’s
algorithm for constraint satisfaction problems, which are a generalization of SAT, allowing
more than two truth values.

1

Theorem. There exists a O(1.33334 n) deterministic algorithm for 3-SAT.

 

 53

A. Artale Algorithms for Data Processing

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.

・Splitting rule: assign truth value to literal; solve both possibilities.

・Unit propagation: clause contains only a single unassigned literal.

・Pure literal elimination: if literal appears only negated or unnegated.

 54

A Machine Program for
Theorem-Provingt

Mart in Davis, G e o r g e Logemann, and
Donald Loveland

Institute of Mathematical Sciences, New York University

The programming of a proof procedure is discussed in
connection with trial runs and possible improvements.

In [1] is set forth an algorithm for proving theorems of
quantification theory which is an improvement in certain
respects over previously available algorithms such as that
of [2]. The present paper deals with the programming of
the algorithm of [1] for the New York University, In-
stitute of Mathematical Sciences' IBM 704 computer,
with some modifications in the algorithm suggested by
this work, with the results obtained using the completed
algorithm. Familiarity with [1] is assumed throughout.

Changes in the Algorithm and Programming
Techniques Used

The algorithm of [1] consists of two interlocking parts.
The first part, called the QFl-Generator, generates (from
the formula whose proof is being at tempted) a growing
propositional calculus formula in conjunctive normal form,
the "quantifier-free lines." The second part, the Processor,
tests, at regular stages in its "growth," the consistency of
this propositional calculus formula. An inconsistent set
of quantifier-free lines constitutes a proof of the original
formula.

The algorithm of [1] used in testing for consistency
proceeded by successive elimination of atomic formulas,
first eliminating one-literal clauses (one-literM clause rule),
and then atomic formulas all of whose occurrences were
positive or all of whose occurrences were negative (affirma-
tive-negative rule). Finally, the remaining atomic formulas
were to have been eliminated by the rule:

III . Rule for Eliminating Atomic Formulas. Let the
given formula F be put into the form

(A V p) & (B V ?~) & R

where A, B, and R are free of p. (This can be done
simply by grouping together the clauses containing p and
"factoring out" occurrences of p to obtain A, grouping
the clauses containing # and "factoring out" # to obtain
B, and grouping the remaining clauses to obtain R.) Then
F is inconsistent if and only if (A V B) & R is inconsistent.

After programming the algorithm using this form of
Rule I I I , it was decided to replace it by the following rule:

t The research reported in this document has been sponsored
by the Mathematical Sciences Directorate, Air Force Office of
Scientific Research, under Contract No. AF 49(638)-777.

III*. Splitting Rule. Let the given formula F be put in
the form

(A V p) & (B V / 5) & R

where A, B, and R are free of p. Then F is inconsistent if
and only if A & R and B & R are both inconsistent.

JUSTIFICATION OF RULE III*. For 1 p = 0, F = A & R ;
f o r p = 1, F = B &R.

The forms of Rule I I I are interchangeable; Mthough
theoretically they are equivalent, in actual applications
each has certain desirable features. We used Rule I I I* be-
cause of the fact that Rule I I I can easily increase the
mlmber and the lengths of the clauses in the expression
rather quickly after several applications. This is prohibi-
tive in a computer if ones fast access storage is limited.
Also, it was observed that after performing Rule III ,
many duplicated and thus redundant clauses were present,.
Some success was obtained by causing the machine to sys-
tematically eliminate the redundancy; but the problem of
total length increasing rapidly still remained when more
complicated problems were at tempted. Also use of Rule
I I I can seldom yield new one-literM clauses, whereas use
of Rule I I I* often will.

In programming Rule III*, we used auxiliary tape
storage. The rest of the testing for consistency is carried
out using only fast access storage. When the "Splitting
Rule" is used one of the two formulas resulting is placed
on tape. Tape memory records are organized in tbe cafe-
terial stack-of-plates scheme: the last record written is
the first to be read.

In the program written for the IBN[704, the matrix and
conjunction of quantifier-free lines are coded into cross-
referenced associated (or linked) memory tables by the
QFL-Generator and then analyzed by the Processor. In
particular, the QFL-Generator is programmed to read in
the matrix M in suitably coded Polish (i.e., "parenthesis-
free") form. The conversion to a quantifier-free matrix in
conjunctive normal form requires, of course, a certain
amount of pencil work on the formula, which could have
been done by the computer. In doing this, we departed
from [1], by not using prenex normal form. The steps are:

(1) Write all truth-functional connectives in terms of
~ , 6, V.

(2) Move all ~-~'s inward successively (using de Morgan
laws) until they either are cancelled (with another ,-,~) or
acting on an atomic formula.

(3) Now, replace existential quantifiers by function
symbols (cf. [1], p. 205), drop universal quantifiers, and
place in conjunctive normal form. A simple one-to-one
assembler was written to perform the final translation of
the matrix M into octal numbers.

I t will be recalled that the generation of quantifier-free
lines is accomplished by successive substitutions of "con-
stants" for the variables in the matrLx M. In the program

As in [1], I stands for "truth", and 0 for "falsehood".

394 Communications of the ACM

A Computing Procedure for Quantification Theory*
~RTIiN D~_v~s

Rensselaer Polytechnic Institute, Hartford Division, East Windsor Hill, Conn.

AND

HILARY PUTNAM'

Princeton University, Princeton, New Jersey

The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn
of the century and by Hilbert's school in the 1920%. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or not a given
formula of quantification theory is valid was the central problem of mathe-
matical logic. And indeed, at one time it seemed as if investigations of this "de-
cision" problem were on the verge of success. However, it was shown by Church
and by Turing that such an algorithm can not exist. This result led to consider-
able pessimism regarding the possibility of using modern digital computers in
deciding significant mathematical questions. However, recently there has been
a revival of interest in the whole question. Specifically, it has been realized that
while no decision procedure exists for quantification theory there are many proof
procedures available--that is, uniform procedures which will ultimately locate
a proof for any formulai of quantification theory which is valid but which will
usually involve seeking "forever" in the Case of a formula which is not valid--
and that some of these proof procedures could well turn out to be feasible for
use with modern computing machinery.

Hao Wang [9] and P. C. Gilmore [3] have each produced wor]dng programs
which employ proof procedures in quantification theory. Gilmore's program
employs a form of a basic theorem of mathematical logic due to Herbrand, and
Wang's makes use of a formulation of quantification theory related to those
studied by Gentzen. However, both programs encounter decisive difficulties
with any but the simplest formulas of quantification theory, in connection with
methods of doing propositional calculus. Wang's program, because of its use of
Gentzen-like methods, involves exponentiation on the total number of truth-
functional connectives, whereas Gilmore's program, using normal forms, in-
volves exponentiation on the number of clauses present. Both methods are su-
perior in many cases to truth table methods which involve exponentiation on the

* Received September, 1959. This research was supported by the United States Air
Force through the Air Force Office of Scientific Research of the Air Research and Develop-
ment Command, under Contract No. AF 49(638)-527. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

201

A. Artale Algorithms for Data Processing

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.

・Solves real-world SAT instances with ~ 10K variable.  
Developed at Princeton by undergrads.

 55

Chaff: Engineering an Efficient SAT Solver
Matthew W. Moskewicz
Department of EECS
UC Berkeley
moskewcz@alumni.princeton.edu

Conor F. Madigan
Department of EECS
MIT
cmadigan@mit.edu

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering
Princeton University
{yingzhao, lintaoz, sharad}@ee.princeton.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the
development of several SAT packages, both proprietary and in
the public domain (e.g. GRASP, SATO) which find significant
use in both research and industry. Most existing complete solvers
are variants of the Davis-Putnam (DP) search algorithm. In this
paper we describe the development of a new complete solver,
Chaff, which achieves significant performance gains through
careful engineering of all aspects of the search – especially a
particularly efficient implementation of Boolean constraint
propagation (BCP) and a novel low overhead decision strategy.
Chaff has been able to obtain one to two orders of magnitude
performance improvement on difficult SAT benchmarks in
comparison with other solvers (DP or otherwise), including
GRASP and SATO.
Categories and Subject Descriptors
J6 [Computer-Aided Engineering]: Computer-Aided Design.

General Terms
Algorithms, Verification.

Keywords
Boolean satisfiability, design verification.

1. Introduction
The Boolean Satisfiability (SAT) problem consists of

determining a satisfying variable assignment, V, for a Boolean
function, f, or determining that no such V exists. SAT is one of
the central NP-complete problems. In addition, SAT lies at the
core of many practical application domains including EDA (e.g.
automatic test generation [10] and logic synthesis [6]) and AI
(e.g. automatic theorem proving). As a result, the subject of
practical SAT solvers has received considerable research
attention, and numerous solver algorithms have been proposed
and implemented.

 Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a
result, complete SAT solvers (including ours) are based almost
exclusively on the DP search algorithm.

1.1 Problem Specification
Most solvers operate on problems for which f is specified in

conjunctive normal form (CNF). This form consists of the
logical AND of one or more clauses, which consist of the logical
OR of one or more literals. The literal comprises the
fundamental logical unit in the problem, being merely an
instance of a variable or its complement. (In this paper,
complement is represented by ¬.) All Boolean functions can be
described in the CNF format. The advantage of CNF is that in
this form, for f to be satisfied (sat), each individual clause must
be sat.

1.2 Basic Davis-Putnam Backtrack Search
We start with a quick review of the basic Davis-Putnam

backtrack search. This is described in the following pseudo-code
fragment:

while (true) {
 if (!decide()) // if no unassigned vars
 return(satisifiable);
 while (!bcp()) {
 if (!resolveConflict())

return(not satisfiable);
 }
}

bool resolveConflict() {
 d = most recent decision not ‘tried both
ways’;

 if (d == NULL) // no such d was found
 return false;

 flip the value of d;
 mark d as tried both ways;
 undo any invalidated implications;
 return true;
}

The operation of decide() is to select a variable that is
not currently assigned, and give it a value. This variable
assignment is referred to as a decision. As each new decision is
made, a record of that decision is pushed onto the decision stack.

A. Artale Algorithms for Data Processing

Approximation algorithms

ρ-approximation algorithm.

・Runs in polynomial time.

・Applies to arbitrary instances of the problem.

・Guaranteed to find a solution within ratio ρ of true optimum.

 
Ex. Given a graph G, can find a vertex cover that uses ≤ 2 OPT(G) vertices 
in O(m + n) time.

 
Challenge. Need to prove a solution’s value is close to optimum value,  
without even knowing what optimum value is!

 29

A. Artale Algorithms for Data Processing

Degrees of Approximability
Assuming P 6= NP, there is a difference between the NP-complete problems regardinghow hard they are to approximate:

1 For some problems you can find a polynomial algorithm with approximation quotient
1 + ε, for every ε > 0.Ex.: The Knapsack Problem.

2 Other problems can be approximated within a constant > 1 but not arbitrarily closeto 1.Ex.: Vertex Cover
3 The are problems that cannot be approximated within any constant.Ex. Set Cover

A. Artale Algorithms for Data Processing

Minimal Vertex CoverDefinition. Given a graph G = (V ,E) find a minimal S ⊆ V which is a vertex cover.
Note. For each edge (u, v) ∈ E , either u ∈ S or v ∈ S .

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a  
subset of k (or fewer) vertices such that each edge is incident to 
at least one vertex in the subset?

 
Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

 14

vertex cover of size 4

independent set of size 6

A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm
Vertex cover: greedy algorithm

VERTEX-COVER. Given a graph G = (V, E), find a min-size vertex cover.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running time. Can be implemented in O(m + n) time.

 31

GREEDY-VERTEX-COVER(G)
__

S ← ∅.

E ʹ ← E.

WHILE (E ʹ ≠ ∅)
Let (u, v) ∈ E ʹ be an arbitrary edge.
M ← M ∪ {(u, v)}.
S ← S ∪ {u} ∪ {v}.
Delete from E ʹ all edges incident to either u or v.

RETURN S.

every vertex cover must take
at least one of these; we take both

M is a matching

Running time. Can be implemented in O(m + n) time.
A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm/2
Theorem. Let S∗ be a minimum vertex cover. Then, greedy algorithm computes a vertexcover S such that |S | ≤ 2|S∗|.Proof.
• S is a vertex cover: Delete an edge only after it is already covered.
• M is a matching (set of edges without common vertices): When (u, v) is added to Mall edges incident to either u or v are deleted.
• |M| ≤ |S∗|: S∗ is a vertex cover and edges in M do not share vertices.
• |S | = 2|M| ≤ 2|S∗|.

Corollary. Let M∗ be a maximum matching, then, the greedy algorithm computes amatching M such that |M| ≥ 0.5|M∗|.Proof. |M| = 0.5|S | ≥ 0.5|S∗|, since |S∗| ≥ |M∗|, then, |M| ≥ 0.5|M∗|.

A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm/2
Theorem. Let S∗ be a minimum vertex cover. Then, greedy algorithm computes a vertexcover S such that |S | ≤ 2|S∗|.Proof.
• S is a vertex cover: Delete an edge only after it is already covered.
• M is a matching (set of edges without common vertices): When (u, v) is added to Mall edges incident to either u or v are deleted.
• |M| ≤ |S∗|: S∗ is a vertex cover and edges in M do not share vertices.
• |S | = 2|M| ≤ 2|S∗|.

Corollary. Let M∗ be a maximum matching, then, the greedy algorithm computes amatching M such that |M| ≥ 0.5|M∗|.Proof. |M| = 0.5|S | ≥ 0.5|S∗|, since |S∗| ≥ |M∗|, then, |M| ≥ 0.5|M∗|.
A. Artale Algorithms for Data Processing

Vertex cover inapproximability

Theorem. [Dinur–Safra 2004] If P ≠ NP, then no ρ-approximation for  
VERTEX-COVER for any ρ < 1.3606.

 
 
 
 
 
 
 
 
 
 
 
 
Open research problem. Close the gap.

Conjecture. no ρ-approximation for VERTEX-COVER for any ρ < 2.

 34

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur∗ Samuel Safra†

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

1 Introduction

The basic purpose of Computational Complexity Theory is to classify computational problems
according to the amount of resources required to solve them. In particular, the most basic task
is to classify computational problems to those that are efficiently solvable and those that are
not. The complexity class P consists of all problems that can be solved in polynomial-time. It
is considered, for this rough classification, as the class of efficiently-solvable problems. While
many computational problems are known to be in P, many others, are neither known to be in
P, nor proven to be outside P. Indeed many such problems are known to be in the class NP,
namely the class of all problems whose solutions can be verified in polynomial-time. When it
comes to proving that a problem is outside a certain complexity class, current techniques are
radically inadequate. The most fundamental open question of Complexity Theory, namely, the
P vs. NP question, may be a particular instance of this shortcoming.

While the P vs NP question is wide open, one may still classify computational problems into
those in P and those that are NP-hard [Coo71, Lev73, Kar72]. A computational problem L
is NP-hard if its complexity epitomizes the hardness of NP. That is, any NP problem can be
efficiently reduced to L. Thus, the existence of a polynomial-time solution for L implies P=NP.
Consequently, showing P̸=NP would immediately rule out an efficient algorithm for any NP-
hard problem. Therefore, unless one intends to show NP=P, one should avoid trying to come
up with an efficient algorithm for an NP-hard problem.

Let us turn our attention to a particular type of computational problems, namely, optimization
problems — where one looks for an optimal among all plausible solutions. Some optimization
problems are known to be NP-hard, for example, finding a largest size independent set in a
graph [Coo71, Kar72], or finding an assignment satisfying the maximum number of clauses in a
given 3CNF formula (MAX3SAT) [Kar72].

∗ The Miller Institute, UC Berkeley. Email: iritd@cs.berkeley.edu.
† School of Mathematics and School of Computer Science, Tel Aviv University and The Miller Institute, UC

Berkeley. Research supported in part by the Fund for Basic Research administered by the Israel Academy of
Sciences, and a Binational US-Israeli BSF grant. Email: safra@math.tau.ac.il.

1

A. Artale Algorithms for Data Processing

Knapsack Problem
Knapsack problem.
• Given n objects and a knapsack with weight limit W ;
• Each object xi has value vi > 0 and weigh wi > 0;
• Goal: fill the knapsack up to the weight limit so as to maximize the total value.

Ex. {1, 2, 5} has value $35 (and weight 10).Ex. {3, 4} has value $40 (and weight 11).

Knapsack problem

Goal. Pack knapsack so as to maximize total value.

独There are n items: item i provides value vi > 0 and weighs wi > 0.

独Knapsack has weight capacity of W.

Assumption. All input values are integral.

 
Ex. { 1, 2, 5 } has value $35 (and weight 10).

Ex. { 3, 4 } has value $40 (and weight 11).

 31

i vi wi

1 $1 1 kg

2 $6 2 kg

3 $18 5 kg

4 $22 6 kg

5 $28 7 kg

knapsack instance
(weight limit W = 11)

$28 7 kg

$22 6 kg

$6 2 kg

$1 1 kg

$18 5 kg

11 kg

Creative Commons Attribution-Share Alike 2.5
by Dake

A. Artale Algorithms for Data Processing

Knapsack Problem/2
Definition. Let X = {x1, . . . , xn} be a set where each object xi has value vi > 0 and weight
wi > 0, while the knaspack has weight limit W . Find a subset S ⊆ X such that:
•
∑
xi∈S

wi ≤W , and
•
∑
xi∈S

vi is maximal.

A. Artale Algorithms for Data Processing

Knapsack Problem – The Decisional Version
Definition as a decision problem. Let X = {x1, . . . , xn} be a set where each object xi hasvalue vi > 0 and weigh wi > 0, while the knaspack has weight limit W . Fixed an integer
V , is there a subset S ⊆ X such that:
•
∑
xi∈S

wi ≤W , and
•
∑
xi∈S

vi ≥ V ?

Theorem. Knapsack is an NP-complete problem.

A. Artale Algorithms for Data Processing

Knapsack Problem – The Decisional Version
Definition as a decision problem. Let X = {x1, . . . , xn} be a set where each object xi hasvalue vi > 0 and weigh wi > 0, while the knaspack has weight limit W . Fixed an integer
V , is there a subset S ⊆ X such that:
•
∑
xi∈S

wi ≤W , and
•
∑
xi∈S

vi ≥ V ?
Theorem. Knapsack is an NP-complete problem.
A. Artale Algorithms for Data Processing

Dynamic Programming
Main Characterisation.
• The basic idea is drawn from the intuition behind divide and conquer and isessentially the opposite of the greedy strategy;
• Dynamic Programming explores the space of all possible solutions by decomposinginto a series of subproblems, and
• The solution to the original problem can be obtained easily once we know thesolutions to all subproblems.

A. Artale Algorithms for Data Processing

Knapsack as a Scheduling Problem
The Knapsack problem is occurring in many scheduling problems.
Scheduling Problem.
• We have a single machine that can process n jobs;
• The machine is free for the period between time 0 and time W , for some number W ;
• Job i requires time wi to be processed.
• Goal: Choose a job scheduling so as to keep the machine as busy as possible up tothe “cut-off” W .

Knapsack Vs. Scheduling. The scheduling problem is a Knapsack where vi = wi and it isalso known as the Subset Sum Problem.
A. Artale Algorithms for Data Processing

Subset Sum Problem – Dynamic Programming
OPT(i,w): denotes the value of the optimal solution using a subset of the items {1, . . . , i}with maximum allowed weight w , that is:
• 0 ≤ w ≤W , and
• S ⊆ {1, . . . , i} such that ∑

j∈S

wj ≤ w , then
• OPT(i, w) = max

S

(∑
j∈S

wj
).

OPT(n,W) is the quantity we are looking for!

A. Artale Algorithms for Data Processing

Subset Sum Problem – Dynamic Programming
OPT(i,w): denotes the value of the optimal solution using a subset of the items {1, . . . , i}with maximum allowed weight w , that is:
• 0 ≤ w ≤W , and
• S ⊆ {1, . . . , i} such that ∑

j∈S

wj ≤ w , then
• OPT(i, w) = max

S

(∑
j∈S

wj
).

OPT(n,W) is the quantity we are looking for!
A. Artale Algorithms for Data Processing

Subset Sum Problem – Bellman Equation
Let O denote an optimum solution for the problem, we then have 3 cases:

1 If wn > W , then OPT(n, W) = OPT(n− 1, W), otherwise
2 If n 6∈ O, then, OPT(n, W) = OPT(n− 1, W);
3 If n ∈ O, then, OPT(n, W) = wn + OPT(n− 1, W− wn).

Extending the above argument to the subproblems {1, . . . , i} we have the followingrecurrence (Bellman equation):
If wi > w , then, OPT(i, w) = OPT(i− 1, w). Otherwise,

OPT(i, w) = max
{
OPT(i− 1, w),wi + OPT(i− 1, w− wi)}. (1)

A. Artale Algorithms for Data Processing

Subset Sum Problem – Bellman Equation
Let O denote an optimum solution for the problem, we then have 3 cases:

1 If wn > W , then OPT(n, W) = OPT(n− 1, W), otherwise
2 If n 6∈ O, then, OPT(n, W) = OPT(n− 1, W);
3 If n ∈ O, then, OPT(n, W) = wn + OPT(n− 1, W− wn).

Extending the above argument to the subproblems {1, . . . , i} we have the followingrecurrence (Bellman equation):
If wi > w , then, OPT(i, w) = OPT(i− 1, w). Otherwise,

OPT(i, w) = max
{
OPT(i− 1, w),wi + OPT(i− 1, w− wi)}. (1)

A. Artale Algorithms for Data Processing

Subset Sum Problem – Dynamic Programming AlgorithmAlgorithm that builds up a table of all OPT(i,w) values, i = 1, . . . , n and 0 ≤ w ≤W ,while computing each of them at most once.
SUBSET-SUM(n,W ,w1, . . . ,wn)
Array OPT[0..n, 0..W];
for w = 0, 1, . . .W do

OPT[0,w] = 0; /* set to 0 the first raw of the table */

for i = 1, . . . , n do
for w = 0, . . . ,W do

if wi > w then OPT[i ,w] = OPT[i − 1,w];
else

OPT[i ,w] = max{OPT[i − 1,w],wi + OPT[i − 1,w − wi]}
return OPT[n,W]
A. Artale Algorithms for Data Processing

Subset Sum – Running Example270 Chapter 6 Dynamic Programming

2

1

0

0

0

0
I

0

0 ,.....--

0

0

0

0
0
0
0 0 o 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.11 The two-dimensional table of OPT values. The leftmost column and bottom
row is always 0. The entry for OPT(i, w) is computed from the two other entries
OPT(i -- I, w) and OPT(i -- 1, w -- wi), as indicated by the arrows.

Using (6.8) one can immediately prove by induction that the returned
n and

available weight W.

~ Analyzing the Algorithm
Recall the tabular picture we considered in Figure 6.5, associated with
weighted interval scheduling, where we also showed the way in which the ar-
ray M for that algorithm was iteratively filled in. For the algorithm we’ve
iust designed, we can use a similar representation, but we need a two-
dimensional table, reflecting the two-dimensional array of subproblems that,
is being built up. Figure 6.11 shows the building up of subproblems in this
case: the value M[i, w] is computed from the two other values M[i - 1, w] and

M[i - 1, u? -- wi].
As an example of this algorithm executing, consider an instance with

weight limit W = 6, and n = 3 items of sizes w1 = w2 = 2 and w3 = 3. We find
that the optimal value OPT(3, 6) = 5 (which we get by using the third item and
one of the first two items). Figure 6.12 illustrates the way the algorithm fills
in the two-dimensional table of OPT values row by row.

Next we w/l! worry about the running time of this algorithm. As before .in
the case of weighted interval scheduling, we are building up a table of solutions
M, and we compute each of the values M[i, w] in O(1) time using the previous
values. Thus the running time is proportional to the number of entries in the
table.

6.4 Subset Sums and Knapsacks: Adding a Variable

3

2

1

0

Knapsack size W - 6, items w1 = 2, w2 = 2, w3 = 3

0 0 0 0 0 0 0

3

2

0 0 2 2 2 2 2
0 0 0 0 o 0

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Initial values Filling in values for i = 1

0 0 2 2 4 4 4
0 0 2 2 2 2 2
0 0 0 0 0 o 0

1
0

0 1 2 3 4 5 6

Filling in values for i = 2

0 0 2 3 4 5 5

0 o 2 2 4 4 4

0 0 2 2 2 2 2
0 0 0 0 0 0 0

0 1 2 3 4 5 6

Filling in values for i = 3

Figure 6.12 The iterations of the algorithm on a sample instance of the Subset Sum
Problem.

(6.9) The Subset-Sum(n, W) Algorithm correctly computes the optimal
value of the problem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for
the Weighted Interval Scheduling Problem. Indeed, its running time is not
a polynomial function of n; rather, it is a polynomial function of n and W,
the largest integer involved in defining the problem. We cal! such algorithms
pseudo-polynomial. Pseudo-polynomial algorithms can be reasonably efficient
when the numbers {uai} involved in the input are reasonably small; however,
they become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array
M by a procedure similar to those we developed in the previous sections.

(6.10) Given a table M of the optimal values of thesubproblems, the optimal
set S can be found in O(n) time.

Extension: The Knapsack Problem
The Knapsack Problem is a bit more complex than the scheduling problem we
discussed earlier. Consider a situation in which each item i has a normegative
weight wi as before, and also a distinct value vi. Our goal is now to find a

271

A. Artale Algorithms for Data Processing

Subset Sum Problem: Running Time
Running Time. The Dynamic Programming algorithm solves the Subset Sum problem with
n items and weight limit W in O(nW) time and O(nW) space.
• It computes each of the values OPT[i ,w] in O(1) time using the previous values;
• Since there are nW values, the total running time is O(nW).

The DP Algorithm is linear in n, BUT Exponential in the bit representation of W!!!
• Pseudo-polynom Algorithm. It runs in time polynomial in the magnitude of the inputnumbers, but not polynomial in the size of their representation.

A. Artale Algorithms for Data Processing

Subset Sum Problem: Running Time
Running Time. The Dynamic Programming algorithm solves the Subset Sum problem with
n items and weight limit W in O(nW) time and O(nW) space.
• It computes each of the values OPT[i ,w] in O(1) time using the previous values;
• Since there are nW values, the total running time is O(nW).

The DP Algorithm is linear in n, BUT Exponential in the bit representation of W!!!
• Pseudo-polynom Algorithm. It runs in time polynomial in the magnitude of the inputnumbers, but not polynomial in the size of their representation.

A. Artale Algorithms for Data Processing

Subset Sum: Find the Solution
• After computing the matrix for optimal values, we can trace back to find a solution;
• We use the following condition:

i is selected by OPT[i ,w] iff OPT[i ,w] > OPT[i − 1,w]
• Let O be the optimal solution. We call the following recursive procedure with:

i = n, w = W , O = ∅, while the matrix OPT is already computed.
FIND-SOLUTION(i ,w)
if i=0 then stop;
if OPT[i ,w] > OPT[i − 1,w] then
O = O ∪ {i};
FIND-SOLUTION(i − 1,w − wi)

else
FIND-SOLUTION(i − 1,w)

A. Artale Algorithms for Data Processing

Knapsack Problem/2
Definition. Let X = {x1, . . . , xn} be a set where each object xi has value vi > 0 and weigh
wi > 0, while the knaspack has weight limit W . Find a subset S ⊆ X such that:
•
∑
xi∈S

wi ≤W , and
•
∑
xi∈S

vi is maximal.

A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming
OPT(i,w): denotes the value of the optimal solution using a subset of the items {1, . . . , i}with maximum allowed weight w , that maximizes the total value, that is:
• 0 ≤ w ≤W , and
• S ⊆ {1, . . . , i} such that ∑

j∈S

wj ≤ w , then
• OPT(i, w) = max

S

(∑
j∈S

vj
).

OPT(n,W) is the quantity we are looking for!

A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming
OPT(i,w): denotes the value of the optimal solution using a subset of the items {1, . . . , i}with maximum allowed weight w , that maximizes the total value, that is:
• 0 ≤ w ≤W , and
• S ⊆ {1, . . . , i} such that ∑

j∈S

wj ≤ w , then
• OPT(i, w) = max

S

(∑
j∈S

vj
).

OPT(n,W) is the quantity we are looking for!
A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming/2
Let O denote an optimum solution for the problem, then
• If wn > W , then OPT(n, W) = OPT(n− 1, W), otherwise
• If n 6∈ O, then, OPT(n, W) = OPT(n− 1, W);
• If n ∈ O, then, OPT(n, W) = vn + OPT(n− 1, W− wn).

Extending the above argument to the subproblems {1, . . . , i} we have the followingrecurrence (Bellman equation):
If wi > w , then, OPT(i, w) = OPT(i− 1, w). Otherwise,

OPT(i, w) = max
(
OPT(i− 1, w), vi + OPT(i− 1, w− wi)). (2)

A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming – The AlgorithmAlgorithm that builds up a table of all OPT(i,w) values, i = 1, . . . , n and 0 ≤ w ≤W ,while computing each of them at most once.
Knapsack(n,W ,w1, . . . ,wn, v1, . . . , vn)
Array OPT[0..n, 0..W];
for w = 0, 1, . . .W do

OPT[0,w] = 0

for i = 1, . . . , n do
for w = 0, . . . ,W do

if wi > w then OPT[i ,w] = OPT[i − 1,w];
else

OPT[i ,w] = max{OPT[i − 1,w], vi + OPT[i − 1,w − wi]}
return OPT[n,W]

Running Time: O(nW).

A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming – The AlgorithmAlgorithm that builds up a table of all OPT(i,w) values, i = 1, . . . , n and 0 ≤ w ≤W ,while computing each of them at most once.
Knapsack(n,W ,w1, . . . ,wn, v1, . . . , vn)
Array OPT[0..n, 0..W];
for w = 0, 1, . . .W do

OPT[0,w] = 0

for i = 1, . . . , n do
for w = 0, . . . ,W do

if wi > w then OPT[i ,w] = OPT[i − 1,w];
else

OPT[i ,w] = max{OPT[i − 1,w], vi + OPT[i − 1,w − wi]}
return OPT[n,W]Running Time: O(nW).
A. Artale Algorithms for Data Processing

Notes on the Complexity of Knapsack
Remarks.
• The DP algorithm has complexity O(nW);
• The complexity depends both on the size of the input set, n, and on the weight W ;
• If W ∈ O(nc), for some constant c , then Knapsack can be solved by DP in polynomialtime, O(nc+1);
• If W ∈ O(2n), then Knapsack is solved by DP in exponential time, O(n2n)

There is no hope to solve Knaspack in polynomial time for all possible input instances,unless P = NP.Theorem. The Knaspack problem is NP-complete.

A. Artale Algorithms for Data Processing

Notes on the Complexity of Knapsack
Remarks.
• The DP algorithm has complexity O(nW);
• The complexity depends both on the size of the input set, n, and on the weight W ;
• If W ∈ O(nc), for some constant c , then Knapsack can be solved by DP in polynomialtime, O(nc+1);
• If W ∈ O(2n), then Knapsack is solved by DP in exponential time, O(n2n)

There is no hope to solve Knaspack in polynomial time for all possible input instances,unless P = NP.Theorem. The Knaspack problem is NP-complete.
A. Artale Algorithms for Data Processing

Pseudo-Polynomial Algorithms
Definition. An algorithm A is pseudo-polynomial if the time complexity is polynomial inthe size of the input, n, and the magnitude of M , the greatest number in the input, but notin its representation.
• For example, the DP algorithms solving SUBSET-SUM and KNAPSACK arepseudo-polynomial algorithms.

Theorem. Unless P = NP, there are strongly NP-Complete problems, i.e., NP-Completeproblems which cannot be solved by pseudo-polynomial algorithms.

A. Artale Algorithms for Data Processing

Pseudo-Polynomial Algorithms
Definition. An algorithm A is pseudo-polynomial if the time complexity is polynomial inthe size of the input, n, and the magnitude of M , the greatest number in the input, but notin its representation.
• For example, the DP algorithms solving SUBSET-SUM and KNAPSACK arepseudo-polynomial algorithms.

Theorem. Unless P = NP, there are strongly NP-Complete problems, i.e., NP-Completeproblems which cannot be solved by pseudo-polynomial algorithms.

A. Artale Algorithms for Data Processing

Knapsack problem: dynamic programming II

Def. OPT(i, v) = min weight of a knapsack for which we can obtain a solution

of value ≥ v using a subset of items 1,..., i.
 
Note. Optimal value is the largest value v such that OPT(n, v) ≤ W.

 
Case 1. OPT does not select item i.

・OPT selects best of 1, …, i – 1 that achieves value ≥ v.
 
Case 2. OPT selects item i.

・Consumes weight wi, need to achieve value ≥ v – vi.
・OPT selects best of 1, …, i – 1 that achieves value ≥ v – vi.

 39

OPT (i, v) =

�
��
��

0 B7 v � 0

� B7 i = 0 �M/ v > 0

min {OPT (i � 1, v), wi + OPT (i � 1, v � vi)} Qi?2`rBb2

A. Artale Algorithms for Data Processing

Knapsack Problem – Dynamic Programming IIAlgorithm that builds up a table of all OPT(i,v) values, i = 1, . . . , n and 0 ≤ v ≤ V , with
V = Σn

i=1vi .
Knapsack-DP-II(n,V ,w1, . . . ,wn, v1, . . . , vn)
Array OPT[0..n, 0..V];
for i = 0, 1, . . . n do

OPT[i , 0] = 0; /* set to 0 the first column of the table */

for i = 1, . . . , n do
for v = 1, . . . ,Σi

j=1vj do
if v > Σi−1

j=1vj then OPT[i , v] = wi + OPT[i − 1, v − vi];
else

OPT[i , v] = min{OPT[i − 1, v],wi + OPT[i − 1,max{0, v − vi}]}
return The max V such that OPT[n,V] ≤W

A. Artale Algorithms for Data Processing

Knapsack problem: dynamic programming II

Theorem. Dynamic programming algorithm II computes the optimal value

in O(n2 vmax) time, where vmax is the maximum of any value.

Pf.

・The optimal value V* ≤ n vmax.

・There is one subproblem for each item and for each value v ≤ V*.

・It takes O(1) time per subproblem. ▪
 
Remark 1. Not polynomial in input size!

Remark 2. Polynomial time if values are small integers.

 40
A. Artale Algorithms for Data Processing

Knapsack problem: poly-time approximation scheme

Intuition for approximation algorithm.

・Round all values up to lie in smaller range.

・Run dynamic programming algorithm II on rounded/scaled instance.

・Return optimal items in rounded instance.

 41

original instance (W = 11)

item value weight

1 934221 1

2 5956342 2

3 17810013 5

4 21217800 6

5 27343199 7

rounded instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

A. Artale Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem
• The Knapsack problem is an NP-complete problem for which it is possible to design apolynomial-time algorithm providing a very strong approximation.
• We show that there exists an algorithm that takes as input an extra parameter ε, thedesired precision, such that:

I It will find a subset S whose total weight does not exceed W , and
I Value ∑

i∈S

vi at most a (1 + ε) factor below the maximum possible;
I Running in polynomial time for a fixed choice of ε > 0;
I However, the dependence on ε will not be polynomial, indeed the running time will be

O
(n3

ε
);

I For smaller and smaller values of ε, the running time gets larger and larger.
A. Artale Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem/2
Ingredients.
• We use the variation of the presented DP algorithm that runs in time O(n2vmax),where vmax = maxi vi to design a polynomial-time approximation algorithm.
• 0 ≤ ε ≤ 1, precision (we assume that ε−1 is integer);
• b = ε · vmax

2n
, scaling factor;

• vi = ⌈vi

b

⌉
· b; rounded values (vi ≤ vi ≤ vi + b);

• v̂i = vi

b
= ⌈vi

b

⌉; scaled values.
Property/1. The Knapsack Problem with rounded values vi or with scaled values v̂i hasthe same set of optimum solutions.
A. Artale Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem/2
Approximated Algorithm.
Knapsack-Approx(n,W ,w1, . . . ,wn, v1, . . . , vn, ε)
b = ε · vmax

2n
;Solve the Knapsack problem with values v̂i = ⌈vi

b

⌉ and in O(n2v̂max);
return the set Sx of items found.

A. Artale Algorithms for Data Processing

Knapsack-Approx – Analysis

Property/2. Knapsack-Approx runs in O
(n3

ε
), i.e., in polynomial time for any fixed ε > 0.

Proof. v̂max = ⌈vmax

b

⌉ = ⌈vmax · 2n
ε · vmax

⌉ = 2n
ε . Thus, O(n2v̂max) = O

(n3

ε
).

A. Artale Algorithms for Data Processing

Knapsack-Approx – Analysis/2Property/3. If Sx is a solution found by the Knapsack-Approx algorithm and S∗ is anyother possible solution then, (1 + ε)∑
i∈Sx

vi ≥
∑
i∈S∗

vi .
Proof. By Property/1 Sx is also an optimal solution with values vi , then:∑
i∈S∗

vi ≤
∑
i∈Sx

vi , and since vi ≤ vi ≤ vi + b, then:∑
i∈S∗

vi ≤
∑
i∈S∗

vi ≤
∑
i∈Sx

vi ≤
∑
i∈Sx

(vi + b) ≤ nb + ∑
i∈Sx

vi (3)
Note that
• vmax = vmax when ε− is an integer, and
• by assumption, each item alone fits in the knapsack (i.e., wi ≤W , for all i).∑

i∈Sx

vi ≥ vmax = vmax = 2n · b
ε (4)

A. Artale Algorithms for Data Processing

Knapsack-Approx – Analysis/3Proof continued.Form (3) and (4), it follows:∑
i∈Sx

vi ≥
∑
i∈Sx

vi − nb ≥ 2n · b
ε − nb = nb

(2
ε − 1

) (5)
and thus, when ε ≤ 1:

nb ≤
∑

i∈Sx
vi(2

ε − 1
) ≤ ∑i∈Sx

vi(1
ε) = ε

∑
i∈Sx

vi (6)
From (3) and (6), we finally get:∑

i∈S∗
vi ≤ nb + ∑

i∈Sx

vi ≤ ε
∑
i∈Sx

vi + ∑
i∈Sx

vi = (1 + ε)∑
i∈Sx

vi . (7)
A. Artale Algorithms for Data Processing

Thank You!

A. Artale Algorithms for Data Processing

