Algorithms for Data Processing
Lecture IX: Solving Intractable Problems

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/"artale

artale@inf.unibz.it

2019/20 — First Semester
MSc in Computational Data Science — UNIBZ

Some material (text, figures) displayed in these slides is courtesy of:
Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

A. Artale Algorithms for Data Processing

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.
i. Solve arbitrary instances of the problem.
ii. Solve problem to optimality.
iii. Solve problem in polynomial time.

Coping strategies.

i. Design algorithms for special cases of the problem. using greedy,
. dynamic programming,
ii. Design approximation algorithms or heuristics. e P ——;

iii. Design algorithms that may take exponential time. Eeleilionaoins:

HOW TO

A. Artale Algorithms for Data Processing

2

Vertex Cover

Definition. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer)
vertices such that each edge is incident to at least one vertex in the subset?

Like many NP-complete problems, Vertex Cover comes with two parameters: n, the nodes
in the graph, and k, the size of the vertex cover.

e There are n* different subsets of V of size k;

e Each takes time O(kn) to check whether it is a vertex cover;

e Thus, in the worst case, the total running time is O(knk+1).

» if n=1,000 and k = 10, even on a PC computing a million of instructions per second we
need 10°* seconds...which is larger than the age of the UNIVERSE!!!!

A. Artale Algorithms for Data Processing

Vertex Cover

Definition. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer)
vertices such that each edge is incident to at least one vertex in the subset?

Like many NP-complete problems, Vertex Cover comes with two parameters: n, the nodes
in the graph, and k, the size of the vertex cover.

e There are n* different subsets of V of size k;

e Each takes time O(kn) to check whether it is a vertex cover;
e Thus, in the worst case, the total running time is O(knk+1).

» if n=1,000 and k = 10, even on a PC computing a million of instructions per second we
need 10°* seconds..which is larger than the age of the UNIVERSE!!!!

e A much better algorithm can be developed, with a running time bound of O(2¥kn).
» if n=1,000 and k = 10, we need few seconds!!!

A. Artale Algorithms for Data Processing

Vertex Cover/2

Prop.1. If G = (V, E) has n nodes and a vertex cover of size k, then G has at most k(n—1)
edges.

Prop.2. Let e = (u, v) be any edge of G. The graph G has a vertex cover of size at most k
if and only if at least one of the graphs G \ {u} and G\ {v} has a vertex cover of size at
most k — 1.

Algorithms for Data Processing

Vertex Cover — Exact Algorithm

VERTEX-COVER(G, k)
if G contains no edges then

L return T = {; /* the empty set is a vertex cover */
if G contains > k|V| edges then

L halt G does not have a k-node vertex cover ; /* this check costs O(kn) */
else

let e = (u, v) be an edge of G;

if T=VERTEX-COVER(G \ {u}, k — 1) then
| return T U {u}

if T=VERTEX-COVER(G \ {v}, k — 1) then
| return T U {v}

A. Artale Algorithms for Data Processing

Vertex Cover — Algorithm Running Time

e The algorithm produces two recursive calls splitting the problem in two sub-problems
each with n — 1 nodes and integer k — 1.

e In each recursive call we spend O(kn) time.

e We thus have the following recurrence (for some constant c):

T(n 1) < cn,
T(n k)<2T(n—1,k—1)+ ckn.

By induction we can show that (see also that the depth of the recursion calls is k):

T(n, k) < c2¥kn

A. Artale

Algorithms for Data Processing

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of
nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

Key observation. If node v is a leaf, there exists
a max-cardinality independent set containing v.
Pf. [exchange argument]
* Consider a max-cardinality independent set S.
« If vES, we're done.
* Otherwise, let (u,v) denote the lone edge incident to v.
- ifuégSandvés, then SU {v}is independent = S not maximum
- ifueSandvégs, then SU {v}-{u} is independent =

A. Artale Algorithms for Data Processing

Independent set on trees: greedy algorithm

Theorem. The greedy algorithm finds a max-cardinality independent
set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. =

INDEPENDENT-SET-IN-A-FOREST(F)

S <.

WHILE (F has at least 1 edge)
Let v be a leaf node and let (u, v) be the lone edge incident to v.
S<SU{v}
F<F —{u,v}. <«— delete both uand v (including all incident edges)

RETURN S U { nodes remaining in F }.

Remark. Can implement in O(n) time by maintaining nodes of degree 1.

A. Artale Algorithms for Data Processing

Intractability Ill: quiz 1 e

How might the greedy algorithm fail if the graph is not a tree/forest?

Might get stuck.
Might take exponential time.

Might produce a suboptimal independent set.

S N ® »

Any of the above.

A. Artale Algorithms for Data Processing

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes =, cw,.

Greedy algorithm can fail spectacularly.

D)

Cu <«—— weight = huge

®

A. Artale

Algorithms for Data Processing

Weighted Independent Set on Trees — Algorithm

There seems to be no easy way to resolve this problem locally, without considering the
rest of the graph, however:

e For the subtree consisting of a node v and its adjacent leaves, we really have only
two reasonable solutions to consider:

@ Including u, or
@ Including all its adjacent leaves.

e Based on the above idea we build a polynomial algorithm using dynamic
programming

» Record few different solutions, going through a sequence of subproblems, and decide
only at the end which of these possibilities is the best overall solution.

A. Artale Algorithms for Data Processing

Weighted Independent Set on Trees — Dynamic Programming

Start at the leaves and gradually work our way up the tree till we reach the root.

e For a node u, we solve the subproblem associated with the subtree T, after we have

solved the subproblems for all its children.
e The algorithm considers two cases: Either we include the node v in S or we do not.

@ If we include u, then we cannot include any of its children;
® If we do not include u, then we have the freedom to include or omit its children.

A. Artale Algorithms for Data Processing

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes =, cw,.

Dynamic-programming solution. Root tree at some node, say r.
« OPT,,(u) = max-weight IS in subtree rooted at u, containing u.
« OPT,,(u) = max-weight IS in subtree rooted at u, not containing u.
+ Goal: max { OPT, (r), OPT,,(r) }.

overlapping
subproblems
Bellman equation.

OPT,(u) = w,+ 3 OPT,(v

u
v € children(u)

OPT,,,(u)

3 max {OPT, (v), OPT,,, (W)}

v € children(u)

children(u) = {v,w, x }

A. Artale Algorithms for Data Processing

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set

in a tree in O(n) time. \ can also find independent set itself
(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at any node r.

S a.
FOREACH (node u of T in postorder/topological order)
IF (u is a leaf node) \
ensures a node is processed
Min[u] = wu. after all of its descendants
Moulu] =0.
ELSE

Min[u] =wu + 2y € chitdrentu) Mo Vv].
Mout[u] S ZvEchiIdra:)n(u) max { Min[V], Mout[v] }
RETURN max { Milr], Moulr] }.

10

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT — Brute Force

Brute force. Given a 3-SAT instance with n variables and m clauses, the brute-force
algorithm takes O(m2") time.
Proof.

e There are 2" possible truth assignments to the n variables.

e For each clause, we check whether one of the 3 literals is true, requiring in total 3m
steps.

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT — Brute Force

Brute force. Given a 3-SAT instance with n variables and m clauses, the brute-force
algorithm takes O(m2") time.
Proof.

e There are 2" possible truth assignments to the n variables.

e For each clause, we check whether one of the 3 literals is true, requiring in total 3m
steps.

We can build better SAT algorithms!!!

e We show an Algorithm that determines whether there’s a satisfying assignment in
less time than it would take to enumerate all possible settings of the variables!

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT
We denote by ®|,_7zur a formula obtained from & by applying the following rules:
e All clauses containing x are removed;

e |f a clause contains the literal -x together with another literal, then -x is removed
form the clause;

e If a clause consist only of -x then ®|x_7ryr = FALSE.

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT

We denote by ®|,_7zyr a formula obtained from & by applying the following rules:
e All clauses containing x are removed;

e |f a clause contains the literal -x together with another literal, then -x is removed
form the clause;

e If a clause consist only of -x then ®|x_7ryr = FALSE.

We denote by ®|,_ra; s a formula obtained from ® by applying the following rules:
e All clauses containing —x are removed;

e |f a clause contains the literal x together with another literal, then x is removed form

the clause;

e If a clause consist only of x then ®|y_ra;s¢ = FALSE.

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula ® is either empty or the conjunction
of a clause (£; v £2 v £3) and a 3-SAT formula @ with one fewer clause.

S
|

Riv v) A D

LiADP) v (L2A D) v (L3A D)

(D' 1 bi=true) v (D1 L =true) v (P' 1483 = true)

Notation. @ | x=rtrue is the simplification of ® by setting x to true.

Ex.
c D =(xvyvag) A(xvayvz Awvyv-g) A(CxVvyvz).
s P = (xvayvz AwWvyv-z) A(Cxvyvz).
* (@' Ilx=true) = (wWvyv-zg) A(yVv2).

each clause has < 3 literals

A. Artale Algorithms for Data Processing

Exact Algorithms for 3-SAT

A recursive algorithm (divide and conquer). A 3-SAT formula ® is either empty or the
disjunction of a clause (¢1 V £ V #3) and a 3-SAT formula ®” with one fewer clause.

3-SAT (D)

IF @ is empty RETURN true.

/* Divide and Conquer */

IF 3-SAT (® | £1= true) RETURN true.
IF 3-SAT (P | £2= true) RETURN true.
IF 3-SAT (® | £3= true) RETURN true.

RETURN false.

Since the depth of the recursion calls is n, then:

e T(n) <3T(n—1)+ 3m, the recursive 3-SAT algorithm above takes O(m3") time, but...

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (£; v £ v £3) must fall into one of 3 classes:
* Liis frue.
* Liis false; L2is true.
* Liis false; 02is false; €3S true.

3-SAT (D)

IF @ is empty RETURN true.

/* Divide and Conquer */

IF 3-SAT(® | &1 = true) RETURN true.

IF 3-SAT(D | £1= false, £2 = true) RETURN true.

IF 3-SAT(D | £1= false, L> = false, £3= true) RETURN true.
RETURN false.

51

A. Artale Algorithms for Data Processing

Exact algorithms for 3-satisfiability

Theorem. The Divide and Conquer algorithm takes O(ml1.84") time.
Pf. T(n) < T(n—1)+ T(n-2) + T(n - 3) + O(m). =

largest root of 3 =72+ r+ 1

3-SAT (D)

IF @ is empty RETURN true.

/* Divide and Conquer */

IF 3-SAT(® | £1= true) RETURN true.

IF 3-SAT(® | L= false, L2= true) RETURN true.

IF 3-SAT(D | £1= false, L>= false, £3= true) RETURN true.
RETURN false.

52

A. Artale Algorithms for Data Processing

tale

Exact algorithms for 3-satisfiability

Theorem. There exists a 0(1.33334") deterministic algorithm for 3-SAT.

A Full Derandomization of Schéning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science
Department of Computer Science
ETH Ziirich, 8092 Ziirich, Switzerland
{robin.moser, dominik.scheder}@int.ethz.ch

August 25, 2010

Abstract

Schéning [7] presents a simple randomized algorithm for k-SAT with running time
Ofagpoly(n)) for ax = 2(k — 1)/k. We give a deterministic version of this algorithm
running in time O((ax + €)"poly(n)), where ¢ > 0 can be made arbitrarily small

ithms for Data Process:

53

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.
Splitting rule: assign truth value to literal; solve both possibilities.
Unit propagation: clause contains only a single unassigned literal.
+ Pure literal elimination: if literal appears only negated or unnegated.

A Computing Procedure for Quantification Theory* .
o A Machine Program for
Masroy Davis, A

R Pucoi ntit,Horord Dision, Bk Windar i, G Theorem-Proving®

s
By Porsis Martin Davis, George Logemann, and

Princeton University, Princeton, New Jersey Donald Loveland

‘The bope that mathematical methods employed in the investigation of formal
logic would lead to purely computationsl methods for obtainin
thearems goes back to Leibniz and has been revived by Peano around the turn
o the century and by Hibrts shoo i the 1020 ibers, notng i ol of
classical mathematics could be formalized within quantification theory, decl
ihatthe proble of ding an algorithn for determining whether o 20 gwm

Institute of Mathematical Sciences, New York University

The programming of o proof procedure is discussed in
connection with trial runs and possible improvements.

Tn (1] is set forth an algorithm for proving theorems of
quantification theory which is an improvement in certain
respects over previously available algorithms such as that

“The present paper deals with the programming of

regarding
deciding significant mathematical questions. However, recently there has been of 1)
& revival of interest in the whole question. Specifically, it has been realized that) with ¢ C
Wil 5o deciion procedure exists for quanifcation theory there e many proof the algorithm of (1} for the New York University, In-

procedures available—that is, uniform procedures which will utimately locate stitute of Mathematical Sciences’ IBM 704 compu

2 proot for any formula; of quantiication theary which is valid but which will ‘th some modifontions i1 the. deorth computer,
4 prof for sny formul of auantieation thory which i vld bt whick will with some modifications in the algorithm suggesicd by
0k e o it pro sl el ot b e o this work, with the results obtained using the completed

use with modern computine algorithm, Familiarity with [1] is assumed throughout.

54

A. Artale Algorithms for Data Process

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.
» Solves real-world SAT instances with ~ 10K variable.
Developed at Princeton by undergrads.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz
Department of EECS

Conor F. Madigan
Department of EECS

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering

UC Berkeley mIT Princeton University
princeton.edu i it.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu
ABSTRACT Many publicly available SAT solvers (.. GRASP [8].

Boolean Satisfiability is probably the most studied of
combinatorial optimization/scarch problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem " instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Atificial Intelligence (AD). This study has culminated in the

POSIT [5], SATO [13], rel_sat [2]. WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
teed to be complete (i.e. they are not guaranteed to find a
ng assignment if one exists or prove unsatisfiability); as a

Data Proces:

55

Approximation algorithms

p-approximation algorithm.
* Runs in polynomial time.
+ Applies to arbitrary instances of the problem.
« Guaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 OPT(G) vertices
in O(m + n) time.

Challenge. Need to prove a solution’s value is close to optimum value,
without even knowing what optimum value is!

s shmoye

Approvimaon At
5 NP reomass

The DESIGN of
APPROXIMATION
ALGORITHMS

Approximation
Algorithms

A. Artale

Algorithms for Data Processing

Degrees of Approximability

Assuming P # NP, there is a difference between the NP-complete problems regarding
how hard they are to approximate:
@ For some problems you can find a polynomial algorithm with approximation quotient
1+ ¢, for every € > 0.
Ex.: The Knapsack Problem.
® Other problems can be approximated within a constant > 1 but not arbitrarily close
to 1.
Ex.: Vertex Cover

® The are problems that cannot be approximated within any constant.
Ex. Set Cover

A. Artale Algorithms for Data Processing

Minimal Vertex Cover

Definition. Given a graph G = (V, E) find a minimal S C V' which is a vertex cover.

Note. For each edge (u,v) € E, eitherue Sorv e S.

. independent set of size 6

O vertex cover of size 4

e 6 (O o o
O—@ O—0O—0O

A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm

GREEDY-VERTEX-COVER(G)

S <.
E' < E.
WHILE (E' #) e e o sk e
Let (u,v) € E’ be an arbitrary edge.
M <— MU {(u,v)}. <«—— Misamatching
S < SU{u} U {v}.
Delete from E' all edges incident to either u or v.
RETURN S.

Running time. Can be implemented in O(m + n) time.

A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm/2

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm computes a vertex
cover S such that |S| < 2|S%|.
Proof.

e S is a vertex cover: Delete an edge only after it is already covered.

e M is a matching (set of edges without common vertices): When (u, v) is added to M
all edges incident to either v or v are deleted.

e [M| < |S*|: S* is a vertex cover and edges in M do not share vertices.
o |S| =2|M| < 2|5%.

A. Artale Algorithms for Data Processing

Minimal Vertex Cover: Greedy Algorithm/2

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm computes a vertex
cover S such that |S| < 2|S%|.
Proof.

e S is a vertex cover: Delete an edge only after it is already covered.

e M is a matching (set of edges without common vertices): When (u, v) is added to M
all edges incident to either v or v are deleted.

e [M| < |S*|: S* is a vertex cover and edges in M do not share vertices.

o |S| =2|M| <L 2|57

Corollary. Let M* be a maximum matching, then, the greedy algorithm computes a
matching M such that |[M| > 0.5|M*|.
Proof. |[M| = 0.5|S| > 0.5|5*|, since |S*| > |M*

, then, |M| > 0.5|M*|.

A. Artale Algorithms for Data Processing

A. Artale

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation for
VERTEX-COVER for any p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Trit Dinur* Samuel Safra®

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

Open research problem. Close the gap.
Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

ithms for Data Processing

KKnapsack Problem

Knapsack problem.
e Given n objects and a knapsack with weight limit W;
e Each object x; has value v; > 0 and weigh w; > 0;

e Coal: fill the knapsack up to the weight limit so as to maximize the total value.

’ i Vi wi
F~ Q’m 1 $1 1kg
Ex. {1,2,5} has value $35 (and weight 10). - % j ;68 ii:
Ex. {3,4} has value $40 (and weight 11). < ‘) 4 s2 6ke
— Q‘ﬂ 5 $28 7kg

m@ knapsack instance
T SO (weight limit W = 11)

A. Artale Algorithms for Data Processing

IKKnapsack Problem/2

Definition. Let X = {x1,...,X,} be a set where each object x; has value v; > 0 and weight
w; > 0, while the knaspack has weight limit W. Find a subset S C X such that:

° Z w; < W, and

X;€S

° E v; is maximal.
X, €S

A. Artale Algorithms for Data Processing

IKKnapsack Problem — The Decisional Version

Definition as a decision problem. Let X = {x1,..., Xy} be a set where each object x; has
value v; > 0 and weigh w; > 0, while the knaspack has weight limit W. Fixed an integer
V, is there a subset S C X such that:

° E w; < W, and

X €S

A. Artale Algorithms for Data Processing

IKKnapsack Problem — The Decisional Version

Definition as a decision problem. Let X = {x1,..., Xy} be a set where each object x; has
value v; > 0 and weigh w; > 0, while the knaspack has weight limit W. Fixed an integer
V, is there a subset S C X such that:

° Z w; < W, and

X €S

Theorem. Knapsack is an NP-complete problem.

A. Artale Algorithms for Data Processing

Dynamic Programming

Main Characterisation.

e The basic idea is drawn from the intuition behind divide and conquer and is
essentially the opposite of the greedy strategy;

e Dynamic Programming explores the space of all possible solutions by decomposing
into a series of subproblems, and

e The solution to the original problem can be obtained easily once we know the
solutions to all subproblems.

A. Artale Algorithms for Data Processing

KKhapsack as a Scheduling Problem

The Knapsack problem is occurring in many scheduling problems.

Scheduling Problem.
e We have a single machine that can process n jobs;
e The machine is free for the period between time 0 and time W, for some number W;
e Job / requires time w; to be processed.

e CGoal: Choose a job scheduling so as to keep the machine as busy as possible up to
the “cut-off” W.

Knapsack Vs. Scheduling. The scheduling problem is a Knapsack where v; = w; and it is
also known as the Subset Sum Problem.

A. Artale Algorithms for Data Processing

Subset Sum Problem — Dynamic Programming

OPT(i,w): denotes the value of the optimal solution using a subset of the items {1,...,/}
with maximum allowed weight w, that is:
e 0<w< W, and
e SC{1,...,i} such that Z wj < w, then
JjeSs

e OPT(i,w) = méax(Z w).

JES

A. Artale Algorithms for Data Processing

Subset Sum Problem — Dynamic Programming

OPT(i,w): denotes the value of the optimal solution using a subset of the items {1,...,/}
with maximum allowed weight w, that is:
e 0<w< W, and
e SC{1,...,i} such that Z wj < w, then
JjeSs

e OPT(i,w) = méax(Z w).

JES

OPT(n,W) is the quantity we are looking for!

A. Artale Algorithms for Data Processing

Subset Sum Problem — Bellman Equation

Let O denote an optimum solution for the problem, we then have 3 cases:
@ If w, > W, then OPT(n, W) = OPT(n — 1, W), otherwise
@ If n ¢ O, then, OPT(n, W) = OPT(n — 1, W);
® If n€ O, then, OPT(n, W) = wy + OPT(n — 1, W — wy).

A. Artale Algorithms for Data Processing

Subset Sum Problem — Bellman Equation

Let O denote an optimum solution for the problem, we then have 3 cases:
@ If w, > W, then OPT(n, W) = OPT(n — 1, W), otherwise
@ If n ¢ O, then, OPT(n, W) = OPT(n — 1, W);
® If n€ O, then, OPT(n, W) = wy + OPT(n — 1, W — wy).

Extending the above argument to the subproblems {1,...,/} we have the following
recurrence (Bellman equation):

If w; > w, then, OPT(i,w) = OPT(i — 1,w). Otherwise,
OPT(i,w) = max {OPT(i — 1,w), w; + OPT(i — 1,w — w;) }. (1)

A. Artale Algorithms for Data Processing

Subset Sum Problem — Dynamic Programming Algorithm

Algorithm that builds up a table of all OPT(i,w) values, i=1,...,nand 0 <w < W,
while computing each of them at most once.

SUBSET-SUM(n, W, wy, ..., wy)
Array OPT[0..n, 0..W];
forw=0,1,... W do
L OPT[O, w] = 0; /* set to 0 the first raw of the table */
fori=1,...,ndo
forw=0,...,W do
if w; > w then OPT[/, w] = OPT[/ — 1, w|;
else
| OPT[i, w] = max{OPT[i — 1, w|, w; + OPT[i — 1, w — w;]}

return OPT[n, W]

A. Artale Algorithms for Data Processing

Subset Sum — Running Example

Knapsack size W = 6, items wy = 2, w; = 2, w3 = 3

3 3

2 2

1 @jojoj2]2]2]2]2

0 0j|ojo|olo ojojofo|o|o|ofoO
123456 0123456
Initial values Filling in values fori = 1

3 ®|olof2]3]|4(5]5

@jojo|2]2]a|4a]|4 2(0(o0f2[2]4(44

1jofof2]2]2|2]2 tjojof2]2f2]2/2

ojojofofojolo|o o|ojojojojojo]o
01 23456 01 23456

Filling in values fori = 2 Filling in values fori = 3

A. Artale Algorithms for Data Processing

Subset Sum Problem: Running Time

Running Time. The Dynamic Programming algorithm solves the Subset Sum problem with
n items and weight limit W in O(nW) time and O(nW) space.

e It computes each of the values OPT[/, w] in O(1) time using the previous values;

e Since there are nW values, the total running time is O(n\W).

A. Artale Algorithms for Data Processing

Subset Sum Problem: Running Time

Running Time. The Dynamic Programming algorithm solves the Subset Sum problem with
n items and weight limit W in O(nW) time and O(nW) space.

e It computes each of the values OPT[/, w] in O(1) time using the previous values;

e Since there are nW values, the total running time is O(n\W).

The DP Algorithm is linear in n, BUT Exponential in the bit representation of W!!!

e Pseudo-polynom Algorithm. It runs in time polynomial in the magnitude of the input
numbers, but not polynomial in the size of their representation.

Algorithms for Data Processing

Subset Sum: Find the Solution

e After computing the matrix for optimal values, we can trace back to find a solution;
e We use the following condition:
i is selected by OPT[/, w] iff OPT[/, w] > OPT[/ — 1, w]
e Let O be the optimal solution. We call the following recursive procedure with:
I=n, w= W, O =/, while the matrix OPT is already computed.

FIND-SOLUTION(/, w)

if (=0 then stop;

if OPT[/, w] > OPT[/ — 1, w] then
0O=0u{i}

L FIND-SOLUTION(i — 1, w — w;)

else
| FIND-SOLUTION(i — 1, w)

A. Artale

Algorithms for Data Processing

IKKnapsack Problem/2

Definition. Let X = {x1,...,X,} be a set where each object x; has value v; > 0 and weigh
w; > 0, while the knaspack has weight limit W. Find a subset S C X such that:

° Z w; < W, and

X;€S

° E v; is maximal.
X, €S

A. Artale Algorithms for Data Processing

Knapsack Problem — Dynamic Programming

OPT(i,w): denotes the value of the optimal solution using a subset of the items {1,...,/}
with maximum allowed weight w, that maximizes the total value, that is:
e 0<w< W, and
e SC{1,...,i} such that Z wj < w, then
JES

e OPT(i,w) = méax(Z vj).

JES

A. Artale Algorithms for Data Processing

Knapsack Problem — Dynamic Programming

OPT(i,w): denotes the value of the optimal solution using a subset of the items {1,...,/}
with maximum allowed weight w, that maximizes the total value, that is:
e 0<w< W, and
e SC{1,...,i} such that Z wj < w, then
JES

e OPT(i,w) = méax(Z vj).

JES

OPT(n,W) is the quantity we are looking for!

A. Artale Algorithms for Data Processing

Knapsack Problem — Dynamic Programming/2

Let O denote an optimum solution for the problem, then
o If w, > W, then OPT(n, W) = OPT(n — 1, W), otherwise
e If n ¢ O, then, OPT(n, W) = OPT(n — 1, W);
e If n € O, then, OPT(n, W) = v, + OPT(n — 1, W — wy).

Extending the above argument to the subproblems {1,...,/} we have the following
recurrence (Bellman equation):

If w; > w, then, OPT(i,w) = OPT(i — 1,w). Otherwise,
OPT(i,w) = max (OPT(i — 1,w), vj + OPT(i — 1,w — w3)). (2)

A. Artale Algorithms for Data Processing

Knapsack Problem — Dynamic Programming — The Algorithm

Algorithm that builds up a table of all OPT(i,w) values, i=1,...,nand 0 <w < W,
while computing each of them at most once.

Knapsack(n, W, wy, ..., wp, vi,..., V)
Array OPT[0..n,0..W];
forw=0,1,... W do
| OPT[0, w] =0
fori=1,...,ndo
forw=0,..., Wdo
if w; > w then OPT[/, w] = OPT[i — 1, w|;
else
| OPT[/, w] = max{OPT[i — 1, w], v; + OPT[i — 1, w — w;]}

return OPT[n, W]

A. Artale Algorithms for Data Processing

Knapsack Problem — Dynamic Programming — The Algorithm

Algorithm that builds up a table of all OPT(i,w) values, i=1,...,nand 0 <w < W,
while computing each of them at most once.

Knapsack(n, W, wy, ..., wp, vi,..., V)
Array OPT[0..n,0..W];
forw=0,1,... W do
| OPT[0, w] =0
fori=1,...,ndo
forw=0,..., Wdo
if w; > w then OPT[/, w] = OPT[i — 1, w|;
else
| OPT[/, w] = max{OPT[i — 1, w], v; + OPT[i — 1, w — w;]}

return OPT[n, W]
Running Time: O(nW).

A. Artale Algorithms for Data Processing

Notes on the Complexity of Knapsack

Remarks.
e The DP algorithm has complexity O(nW);
e The complexity depends bhoth on the size of the input set, n, and on the weight W;

o If W & O(n), for some constant ¢, then Knapsack can be solved by DP in polynomial
time, O(n°*1);

o If W € O(2"), then Knapsack is solved by DP in exponential time, O(n2")

A. Artale

Algorithms for Data Processing

Notes on the Complexity of Knapsack

Remarks.
e The DP algorithm has complexity O(nW);

e The complexity depends bhoth on the size of the input set, n, and on the weight W;

o If W & O(n), for some constant ¢, then Knapsack can be solved by DP in polynomial
time, O(n°*1);

o If W € O(2"), then Knapsack is solved by DP in exponential time, O(n2")

There is no hope to solve Knaspack in polynomial time for all possible input instances,
unless P = NP.

Theorem. The Knaspack problem is NP-complete.

A. Artale

Algorithms for Data Processing

Pseudo-Polynomial Algorithms

Definition. An algorithm A is pseudo-polynomial if the time complexity is polynomial in
the size of the input, n, and the magnitude of M, the greatest number in the input, but not
in its representation.

e For example, the DP algorithms solving SUBSET-SUM and KNAPSACK are
pseudo-polynomial algorithms.

A. Artale Algorithms for Data Processing

Pseudo-Polynomial Algorithms

Definition. An algorithm A is pseudo-polynomial if the time complexity is polynomial in
the size of the input, n, and the magnitude of M, the greatest number in the input, but not

in its representation.
e For example, the DP algorithms solving SUBSET-SUM and KNAPSACK are
pseudo-polynomial algorithms.

Theorem. Unless P = NP, there are strongly NP-Complete problems, i.e., NP-Complete
problems which cannot be solved by pseudo-polynomial algorithms.

Algorithms for Data Processing

A. Artale

Knapsack problem: dynamic programming I

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value > v using a subset of items 1,..., 1.

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 that achieves value > v.

Case 2. OPT selects item i.
* Consumes weight w;, need to achieve value = v—-v,.
* OPT selects best of 1, ...,i—1 that achieves value = v-v,.

0 ifv <0
OPT(i,v) = { c© ifi=0and v>0
min {OPT (i — 1,v), w; + OPT(i —1,v —v;)} otherwise

Algorithms for Data Processing

Knapsack Problem — Dynamic Programming Il

Algorithm that builds up a table of all OPT(i,v) values, i=1,...,nand 0 < v < V, with
Knapsack-DP-II(n, V,wi,..., Wy, v1,..., Vp)

Array OPT[0..n,0..V];
fori=0,1,...ndo

L OPT[/, 0] = 0; /* set to O the first column of the table */
fori=1,...,ndo
forv=1...,%_,vdo
if v> ZJ’-;%VJ then OPT[/, v| = w; + OPT[i — 1, v — v;};
else

| OPT[/, v] = min{OPT[/ — 1, v], w; + OPT[i — 1, max{0, v — v;}]}

return The max V such that OPT[n, V] < W

A. Artale Algorithms for Data Processing

A. Artale

Knapsack problem: dynamic programming I

Theorem. Dynamic programming algorithm Il computes the optimal value
iN O(n2 vmax) time, where vmax is the maximum of any value.
Pf.

* The optimal value V* < 71 vmax.

* There is one subproblem for each item and for each value v < V*.

* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

Algorithms for Data Processing

A. Artale

Knapsack problem: poly-time approximation scheme

Intuition for approximation algorithm.
* Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
+ Return optimal items in rounded instance.

COEEET CIETET
1 1 1 1

934221 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7
original instance (W = 11) rounded instance (W = 11)

Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem

e The Knapsack problem is an NP-complete problem for which it is possible to design a
polynomial-time algorithm providing a very strong approximation.

e We show that there exists an algorithm that takes as input an extra parameter ¢, the
desired precision, such that:

> It will find a subset S whose total weight does not exceed W, and

v

Value E v; at most a (1 + €) factor below the maximum possible;
i€S
Running in polynomial time for a fixed choice of € > 0;

However, the dependence on e will not be polynomial, indeed the running time will be
3

O(?);

For smaller and smaller values of €, the running time gets larger and larger.

v

v

\ 4

A. Artale Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem/2

Ingredients.

e We use the variation of the presented DP algorithm that runs in time O(n?Vinax),
where Vi = max; v; to design a polynomial-time approximation algorithm.

e 0 < e <1, precision (we assume that e~ is integer);

€ * Vmax .
e b= ———, scaling factor;

2n
o V= [%] - b; rounded values (v; < Vv; < v; + b);
A~ Vi Vi
o U = 5 = [E] scaled values.

Property/1. The Knapsack Problem with rounded values V; or with scaled values V; has
the same set of optimum solutions.

A. Artale

Algorithms for Data Processing

Arbitrarily Good Approximations: The Knapsack Problem/2

Approximated Algorithm.

Knapsack-Approx(n, W, wy, ..., Wy, v1,..., Vn, €)
€ Vmax
b= ——
2n

. A Vi . A
Solve the Knapsack problem with values v; = [E-I and in O(n?Umax);

return the set Sy of items found.

A. Artale

Algorithms for Data Processing

Knapsack-Approx — Analysis

3
n
Property/2. Knapsack-Approx runs in O(—) i.e.,, in polynomial time for any fixed e > 0.
€
Y Vmax - 2N 2n n3
Proof. Vpmax = [max] = [max] = —. Thus, O(nz\“/max) = O(—)
b € Vmax € €

A. Artale Algorithms for Data Processing

Knapsack-Approx — Analysis/2
Property/3. If Sy is a solution found by the Knapsack-Approx algorithm and S* is any

other possible solution then, (1 + ¢€) Z v > Z Vi.
i€ Sy ieS*
Proof. By Property/1 Si is also an optimal solution with values V;, then:

E Vi < E V;, and since v; < V; < v; + b, then:

ieS* 1€Sx
D Vi) Vi<) V<) (itb<nbt) v (3)

ieS* ieS* iESx €Sy iESx
Note that
® Vmax = Vmax When €7 is an integer, and
e by assumption, each item alone fits in the knapsack (i.e., w; < W, for all /).
= 2n-b
§ Vi 2 Vmax = Vmax = ——— (4)

h €
€Sy

A. Artale Algorithms for Data Processing

Knapsack-Approx — Analysis/3

Proof continued.
Form (3) and (4), it follows:

Zv,EZW—nbE#—nb:nb(%—l) (5)

€Sy €Sy

and thus, when e < 1:

From (3) and (6), we finally get:

Zv,<nb+Zv,<eZv,+Zv,—1+eZv,-. (7)

ieS* €Sy €Sy i€Sx i€Sy

A. Artale Algorithms for Data Processing

Thank You!

ale Algorithms for Data Processi

