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Problems and Algorithms – Decision Problems

The Complexity Theory considers so called Decision Problems.

Decision Problem.
• Input encoded as a finite binary string s ;
• Decision Problem X : Is conceived as a set of strings on which the answer to the

decision problem X is “yes”;
• Algorithm A for a decision problem X receives an input string s , and

A(s) =
{

yes if s ∈ X
no if s 6∈ X

Definition. P = set of decision problems for which there exists a poly-time algorithm.
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Towards NP — Efficient Verification

• The issue here is the contrast between finding a solution Vs. checking a proposed
solution.

• Consider for example 3-SAT:
I We do not know a polynomial-time algorithm to find solutions; but
I Checking a proposed solution can be easily done in polynomial time (just plug 0/1 and

check if it is a solution).
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Towards NP — Efficient Verification/2

Formalize the idea that a solution to a problem can be checked efficiently.
• Checking Algorithm for a problem X : Checks whether t is a solution for a given input

s of problem X ;
• t is called the certificate or witness that contains the evidence that s is a “yes”

instance of X .

Definition. An algorithm C (s, t) is an efficient certifier for a problem X if:
• C (s, t) runs in polynomial time, and
• For every string s , we have s ∈ X if there exists a string t (the certificate) such that
|t| ≤ p(|s|) (p() polynomial function), and C (s, t) = yes.
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Towards NP — Efficient Verification/3

Definition. An algorithm C (s, t) is an efficient certifier for a problem X if:
• C (s, t) runs in polynomial time, and
• For every string s , we have s ∈ X if there exists a string t (the certificate) such that
|t| ≤ p(|s|) (p() polynomial function), and C (s, t) = yes.

An efficient certifier C (s, t):
• It is not deciding whether an input s belongs to X , but
• It is efficiently evaluating whether a given t is a certificate for s to belong to X .
• It can be used as an exponential brute force algorithm.
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The NP Class of Problems

Definition. NP = set of decision problems for which there exists an efficient certifier.

Note: NP stands for Nondeterministic Polynomial time.

We can observe immediately that:

Theorem. P ⊆ NP.
Proof. Let A be a polynomial time algorithm that solves X . Then, choose t = ε and
C (s, t) ≡ A(s).
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Certifiers and certificates:  satisfiability

SAT.  Given a CNF formula Φ, does it have a satisfying truth assignment? 

3-SAT.  SAT where each clause contains exactly 3 literals. 

 
Certificate.  An assignment of truth values to the Boolean variables. 

 
Certifier.  Check that each clause in Φ has at least one true literal. 

 
 
 
 
 
 
 
 
 
Conclusions.  SAT ∈ NP, 3-SAT ∈ NP.

 7

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )instance s

certificate t x1 = true,  x2 = true,  x3 = false,  x4 = false
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P ⊆ NP ⊆ ExpTime

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.

ExpTime. Decision problems for which there exists an exponential-time algorithm.

Theorem. P ⊆ NP.

Theorem. NP ⊆ ExpTime.
Proof. Consider any problem X ∈ NP.
• By definition, there exists a poly-time certifier C (s, t) for X , where |t| ≤ p(|s|) for

some polynomial p();
• To solve instance s , run C (s, t) on all strings t with |t| ≤ p(|s|) (exponentially many).
• Return yes iff C (s, t) returns yes for at least one of these potential certificates.
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P Vs. NP

Facts.
1 P ⊆ NP ⊆ ExpTime;
2 P 6= ExpTime, then:

either P 6= NP, or NP 6= ExpTime, or both.
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The main question:  P vs. NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]  
Is the decision problem as easy as the certification problem? 

 
 
 
 
 
 
 
 
 
 
If yes…  Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR,  … 

If no…  No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, … 

 
Consensus opinion.   Probably no.

EXP NP

P

If  P ≠ NPIf  P = NP

EXP

P = NP
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Possible outcomes

P ≠ NP

 18

“ I conjecture that there is no good algorithm for the traveling salesman

   problem. My reasons are the same as for any mathematical conjecture:  

(i) It is a legitimate mathematical possibility and (ii) I do not know.”  

            —   Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the

   answer to any of these questions. If I had to bet now, I would bet that

   P is not equal to NP. I estimate the half-life of this problem at 25–50

  more years, but I wouldn’t bet on it being solved before 2100. ”

            —   Bob Tarjan (2002)
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Possible outcomes

P = NP

 20

“  I think that in this respect I am on the loony fringe of the mathematical

    community: I think (not too strongly!) that P=NP and this will be

    proved within twenty years. Some years ago, Charles Read and I

    worked on it quite bit, and we even had a celebratory dinner in a

    good restaurant before we found an absolutely fatal mistake. ”  

      —   Béla Bollobás (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just

   that we came late to this theory, and haven’t yet developed any

   techniques for proving computations to be hard.  Eventually, it will

   just be a footnote in the books. ”      —   John Conway
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Millennium prize

Millennium prize.  $1 million for resolution of P ≠ NP problem. 
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Some writers for the Simpsons and Futurama. 

・J. Steward Burns.  M.S. in mathematics (Berkeley ’93). 

・David X. Cohen.  M.S. in computer science (Berkeley ’92). 

・Al Jean.  B.S. in mathematics. (Harvard ’81). 

・Ken Keeler.  Ph.D. in applied mathematics (Harvard ’90). 

・Jeff Westbrook.  Ph.D. in computer science (Princeton ’89).

NP-completeness and pop culture

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox
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NP-complete Problems

Fundamental Question: What are the hardest problems in NP?

Definition. A problem X is said NP-complete if:
1 X ∈ NP, and
2 For any Y ∈ NP, Y ≤P X .

Thus, X is as hard as any other NP problem!
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Establishing NP-completeness

Remark.  Once we establish first “natural” NP-complete problem,  
others fall like dominoes. 

 
Recipe.  To prove that Y ∈ NP-complete: 

・Step 1.  Show that Y ∈ NP. 

・Step 2.  Choose an NP-complete problem X. 

・Step 3.  Prove that X ≤ P Y.  

 
 
Proposition.  If X ∈ NP-complete, Y ∈ NP, and X ≤ P Y, then Y ∈ NP-complete. 

Pf.  Consider any problem W ∈ NP.  Then, both W ≤ P X  and  X ≤ P Y. 

・By transitivity, W ≤ P Y.  

・Hence Y ∈ NP-complete.  ▪ by definition of 
NP-complete

 30

by assumption
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NP-complete Problems/2

Theorem. Let X ∈ NP-compIete problems. Then, X is solvable in poIynomial time if and
only if P = NP.
(⇐) If P = NP, then X ∈ P because X ∈ NP.
(⇒) Let X be solvable in poIynomial time. Since X is NP-complete, then
• For any Y ∈ NP, Y ≤P X , and thus Y is solvable in poIynomial time, thus
• NP ⊆ P, and since we already proved that P ⊆ NP, we finally obtain
• P = NP.

A. Artale Algorithms for Data Processing



The “first” NP-complete problem

Theorem. [Cook 1971, Levin 1973]  SAT ∈ NP-complete.
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The Complexity of Theorem-Proving Procedures 

Stephen A. Cook 

University of Toronto 

Summary 

It is shown that any recognition 
problem solved by a polynomial time- 
bounded nondeterministic Turing 
machine can be "reduced" to the pro- 
blem of determining whether a given 
propositional formula is a tautology. 
Here "reduced" means, roughly speak- 
ing, that the first problem can be 
solved deterministically in polyno- 
mial time provided an oracle is 
available for solving the second. 
From this notion of reducible, 
polynomial degrees of difficulty are 
defined, and it is shown that the 
problem of determining tautologyhood 
has the same polynomial degree as the 
problem of determining whether the 
first of two given graphs is iso- 
morphic to a subgraph of the second. 
Other examples are discussed. A 
method of measuring the complexity of 
proof procedures for the predicate 
calculus is introduced and discussed. 

Throughout this paper, a set of 
strings means a set of strings on 
some fixed, large, finite alphabet Z. 
This alphabet is large enough to in- 
clude symbols for all sets described 
here. All Turing machines are deter- 
ministic recognition devices, unless 
the contrary is explicitly stated. 

i. Tautologies and Polynomial Re- 
Reducibility. 

Let us fix a formalism for 
the propositional calculus in 
which formulas are written as 
strings on I. Since we will re- 
quire infinitely many proposition 
symbols (atoms), each such symbol 
will consist of a member of Z 
followed by a number in binary 
notation to distinguish that 
symbol. Thus a formula of length 
n can only have about n/logn 
distinct function and predicate 
symbols. The logical connectives 
are & (and), v (or), and ~(not). 

The set of tautologies 
(denoted by {tautologies}) is a 

certain recursive set of strings on 
this alphabet, and we are interested 
in the problem of finding a good 
lower bound on its possible recog- 
nition times. We provide no such 
lower bound here, but theorem 1 will 
give evidence that {tautologies} is 
a difficult set to recognize, since 
many apparently difficult problems 
can be reduced to determining tau- 
tologyhood. By reduced we mean, 
roughly speaking, that if tauto- 
logyhood could be decided instantly 
(by an "oracle") then these problems 
could be decided in polynomial time. 
In order to make this notion precise, 
we introduce query machines, which 
are like Turing machines with oracles 
in [I]. 

A query machine is a multitape 
Turing machine with a distinguished 
tape called the query tape, and 
three distinguished states called 
the query state, yes state, and n._o_ 
state, respectively. If M is a 
query machine and T is a set of 
strings, then a T-computation of M 
is a computation of M in which 
initially M is in the initial 
state and has an input string w on 
its input tape, and each time M 
assumes the query state there is a 
string u on the query tape, and 
the next state M assumes is the 
yes state if uET and the no state 
if u~T. We think of an "oracle", 
which knows T, placing M in the 
yes state or no state. 

Definition 

A set S of strings is P-redu- 
cible (P for polynomial) to a set 
T of strings iff there is some 
query machine M and a polynomial 
Q(n) such that for each input string 
w, the T-computation of M with in- 
put w halts within Q(Iwl) steps 
(lwl is the length of w~ and ends 
in an accepting state iff wcS. 

It is not hard to see that 
P-reducibility is a transitive re- 
lation. Thus the relation E on 
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Circuit Satisfiability Problem
Definition. A Circuit C is a labeled, directed acyclic graph where:
• Nodes with no incoming edges (later called inputs) are labeled either with one of the

constants 0 or 1, or with the name of a distinct variable;
• Internal nodes are labeled with one of the Boolean operators ∧,∨, ¬;
• There is a single node with no outgoing edges, representing the output (the result

that is computed by the circuit.)

466 Chapter 8 NP and Computation!l Intractability

for this consistent failure is that these problems simply cannot be solved in

polynomial time.

8.4 NP-Complete Problems
In the absence of progress on the ~P = ~T question, people have turned to a
related but more approachable question: What are the hardest problems in
N~p~. Polynomial-time reducibility gives us a way of addressing this question

and gaining insight into the structure of NT.
Arguably the most natural way to define a "hardest" problem X is via the

following two properties: (i) X E N~P; and (ii) for all Y E 3~T, Y _<p X. In other
words, we require that every problem in 3~T can be reduced to X. We will cail
such an X an NP-complete problem.

The following fact helps to further reinforce our use of the term hardest.

(8.12) Suppose X is an NP-compIete problem. Then X is solvable in poIyno-
L//’mial time if and only if :P = NT.               . .............

Proof. Clearly, if T = 3~T, then X can be solved in polynomial time since it
belongs to NT. Conversely, suppose that X can be solved in polynomial time.
If Y is any other problem in NT, then Y _<vX, and so by (8.1), it follows that
Y can be solved in polynomial time. Hence NT _ T; combined with (8.!0),
we have the desired conclusion, m

A crucia! consequence of (8.12) is the following: If there is any problem in
N~P that cannot be solved in polynomiai time, then no NP-complete problem

can be solved in polynomiai time.

Circuit Satisfiability: A First NP-Complete Problem

Our definition of NP-completeness has some very nice properties. But before
we get too carried away in thinking about this notion, we should stop to notice
something: it is not at all obvious that NP-complete problems should even
exist. Why couldn’t,there exist two incomparable problems X’ and X’, so that
there is no X ~ NT with the property that X’ !v X and X" _<p X? Why couldn’t
there exist an infinite sequence of problems X1, X2, X3 .... in N~P, each strictly
harder than the previous one~. To prove a problem is NP-complete, one must
show how it could encode any problem in N~P. This is a much trickier matter
than what we encountered in Sections 8.1 and 8.2, where we sought to encode

specific~ individual problems in terms of others.

8.4 NP-Complete Problems

In 1971, Cook and Levin independently showed how to do this for very
natural problems in 3gT. Maybe the most natural problem choice for a first
NP-complete problem is the following Circuit Satisfiability Problem.

To specify this problem, we need to make precise what we mean by a
circuit. Consider the standard Boolean operators that we used to define the
Satisfiability Problem: ^ (AND), V (oa), and -, (NOT). Our definition of a circuit
is designed to represent a physical circuit built out of gates that implement
these operators. Thus we define a circuit K to be a labeled, directed acyclic
graph such as the one shown in the example of Figure 8.4.

o The soarces in K (the nodes with no incoming edges) are labeled either
with one of the constants 0 or 1, or with the name of a distinct variable.
The nodes of the latter type will be referred to as the inputs to the circuit.

o Every other node is labeled with one of the Boolean operators ^, v, or
--,; nodes labeled with ^ or v wil! have two incoming edges, and nodes
labeled with -, will have one incoming edge.

* There is a single node with no outgoing edges, and it will represent the
output: the result that is computed by the circuit.

A circuit computes a function of its inputs in the following natural way. We
imagine the edges as "wires" that carry the 0/1 value at the node they emanate
from. Each node v other than the sources will take the values on its incoming
edge(s) and apply the Boolean operator that labels it. The result of this ^, v,
or -, operation will be passed along the edge(s) leaving v. The overall value
computed by the circuit will be the value computed at the output node.

For example, consider the circuit in Figure 8.4. The leftmost two sources
are preassigned the values 1 and 0, and the next three sources constitute the

Output:

Inputs:

1 0

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth
values, and one output.

467
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Circuit Satisfiability: The First NP-Complete Problem

Theorem. [Cook 1971, Levin 1973] Circuit Satisfiability is NP-complete.
[Proof Sketch]
• Show that given an arbitrary problem X ∈ NP, then X ≤P Circuit Satisfiability.
• Main Idea: Show that any algorithm that takes a fixed number n of bits as input and

produces a yes/no answer can be represented by a circuit.
• This circuit should output 1 on precisely the inputs for which the algorithm outputs

yes.
• If the algorithm takes p(n) steps, then the circuit has polynomial size.
• We are not showing this construction but we see how it can be used in the proof.
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Circuit Satisfiability: The First NP-Complete Problem/2
Theorem. [Cook 1971, Levin 1973] Circuit Satisfiability is NP-complete.
[Proof Sketch/2]
• Since X ∈ NP it has an efficient certifier, thus
• To determine whether s ∈ X, for some input s of size n, we need to answer the

following question:
Is there a certificate t of length p(n) so that C (s, t) = yes?

• We view C (s, t) as an algorithm on n + p(n) bits: the input s and the certificate t , and
• Convert it to a polynomial-size circuit C with n + p(n) sources.
• The first n sources will be hard-coded with the values of the bits in s , and
• The p(n) sources will be labeled with variables representing the bits of t; these latter

sources will be the inputs to C .
• s ∈ X if and only if the circuit C is satisfiable.
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More hard computational problems

Garey and Johnson.  Computers and Intractability. 

・Appendix includes over 300 NP-complete problems. 

・Most cited reference in computer science literature.

 37A. Artale Algorithms for Data Processing



More hard computational problems

Aerospace engineering.  Optimal mesh partitioning for finite elements. 

Biology.  Phylogeny reconstruction. 

Chemical engineering.  Heat exchanger network synthesis. 

Chemistry.  Protein folding. 

Civil engineering.  Equilibrium of urban traffic flow. 

Economics.  Computation of arbitrage in financial markets with friction. 

Electrical engineering.  VLSI layout.  

Environmental engineering.  Optimal placement of contaminant sensors. 

Financial engineering.  Minimum risk portfolio of given return. 

Game theory.  Nash equilibrium that maximizes social welfare. 

Mathematics.  Given integer a1, …, an, compute 

Mechanical engineering.  Structure of turbulence in sheared flows. 

Medicine.  Reconstructing 3d shape from biplane angiocardiogram. 

Operations research.  Traveling salesperson problem. 

Physics.  Partition function of 3d Ising model. 

Politics.  Shapley–Shubik voting power. 

Recreation.  Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube. 

Statistics.  Optimal experimental design.
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You NP-complete me
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Graph k-Coloring
While 2-Coloring (Bipartite Graphs) is a P-Time problem, checking whether a graph is
3-colorable is a hard problem.

Graph k-colorability. Given a graph G and an integer k assign a color to each node of G
so that if (u, v ) is an edge, then u and v are assigned different colors from the k available
colors.

Applications. Graph colorability is a problem that arises naturally whenever one is trying
to allocate resources in the presence of conflicts.
• e.g., assign one of k transmitting wavelengths to each of n devices; but if two devices

are sufficiently close to each other, then they need to be assigned different
wavelengths to prevent interference.
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Graph k-Coloring/2
• Fact 1. There is not fixed constant k so that every graph is k-colorable.

I For example, take a set of n nodes and join each pair of them by an edge, the resulting
graph needs n colors.

• Fact 2. No simple efficient algorithm for the 3-Coloring Problem exists.
I The following graph is not 3-colorable but does not have a cicle of 4 nodes mutually

connected.

486 Chapter 8 NP and Computational Intractability

Suppose, for example, that we have a collection of n processes on a
system that can run multiple jobs concurrently, but certain pairs of jobs
cannot be scheduled at the same time because they both need a particular
resource. Over the next k time steps of the system, we’d like to schedule
each process to run in at least one of them. Is this possible~. If we construct
a graph G on the set of processes, joining two by an edge if they have a
conflict, then a k-coloring of G represents a conflict-free schedule of the
processes: all nodes colored j can be scheduled in step j, and there will
never be contention for any of the resources.
Another well-known application arises in the design of compilers. Sup-
pose we are compiling a program and are trying to assign each variable
to one of k registers. If two variables are in use at a common point in
time, then they cannot be assigned to the same register. (Otherwise one
would end up overwriting the other.) Thus we can build a graph G on
the set of variables, ioining two by an edge if they are both in use at the
same time. Now a k-coloring of G corresponds to a safe way of allocating
variables to registers: All nodes colored j can be assigned to register j,

since no two of them are in use at the same time.
o A third application arises in wavelength assignment for wireless commu-

nication devices: We’d like to assign one of k transmitting wavelengths
to each of n devices; but if two devices are sufficiently close to each
other, then they need to be assigned different wavelengths to prevent
interference. To deal with this, we build a graph G on the set of devices,
ioining two nodes if they’re close enough to interfere with each other;
a k-coloring of t~s graph is now an assignment of wavelengths so that
any nodes assigned the same wavelength are far enough apart that in-
terference won’t be a problem. (Interestingly, this is an application of
graph coloring where the "colors" being assigned to nodes are positions
on the electromagnetic spectrum--in other words, under a slightly liberal
interpretation, they’re actually colors.)

The Computational Complexity of Graph Coloring
What is the complexity of k-Coloring~- First of all, the case k = 2 is a problem
we’ve already seen in Chapter 3. Recall, there, that we considered the problem
of determining whether a graph G is bipartite, and we showed that this is
equivalent to the following question: Can one color the nodes of G red and
blue so that every edge has one red end and one blue end~.

But this latter question is precisely the Graph Coloring Problem in the case
when there are k = 2 colors (i.e., red and blue) available. Thus we have argued

that

8.7 Graph Coloring

(8.21) A graph G is 2-colorable if and only if it is bipartite.

This means we can use the algorithm from Section 3.4 to decide whether
an input graph G is 2-co!orable in O(m + n) time, where n is the number of
nodes of G and m is the number of edges.

As soon as we move up to k = 3 colors, things become much harder. No
simple efficient algorithm for the 3-Coloring Problem suggests itself, as it did
for 2-Coloring, and it is also a very difficult problem to reason about. For
example, one migtit initially suspect that any graph that is not 3-colorable will
contain a "proof" in the form of four nodes that are all mutually .adjacent
(and hence would need four different colors)--but this is not true. The graph
in Figure 8.10, for instance, is not 3-colorable for a somewhat more subtle
(though still explainable) reason, and it is possible to draw much more
complicated graphs that are not 3-colorable for reasons that seem very hard to
state succinctly.

In fact, the case of three colors is already a very hard problem, as we show
now.

Proving 3-Coloring Is NP-Complete

(8’22) 3’Coloring is NP-complete: .....

Proof. It is easy to see why the problem is in ~. Given G and k, one certificate
that the answer is yes is simply a k-coloring: .One can verify in polynomial time
that at most k colors are used, and that no pair of nodes joined by an edge
receive the same color.

Like the other problems in this section, 3-Coloring is a problem that is hard
to relate at a superficial level to other NP-complete problems we’ve seen. So
once again, we’re going to reach all the way back to 3-SAT. Given an arbitrary
instance of 3-SAT, with variables x1 .....xn and clauses C1 .....Ck, we wi~
solve it using a black box for 3-Coloring.

The beginning of the reduction is quite intuitive. Perhaps the main power
of 3-Coloring for encoding Boolean expressions lies in the fact that we can
associate graph nodes with particular terms, and by joining them with edges
we ensure that they get different colors; this can be used. to set one true and
the other false. So with this in mind, we define nodes ui and ~ corresponding
to each variable xi and its negation ~. We also define three "special nodes"
T, F, and B, which we refer to as True, False, and Base.

To begin, we join each pair of nodes vi, ~ to each other by an edge, and
we join both these nodes to Base. (This forms a triangle on vi, ~, and Base,
for each i.) We also join True, False, and Base into a triangle. The simple graph
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Figure 8.10 A graph that is
not 3-colorable.
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3-Coloring is NP-complete
Theorem. Graph 3-coloring in an NP-complete problem.

Graph 3-coloring is in NP. Certificate: a k-coloring of the graph. We can check in
polynomial time whether k ≤ 3 and that every edge in the graph has endpoints with
different colors.

Show that 3-SAT ≤P 3-COLORING.
Instance Construction. We first construct the following graph G (here is the case with 3
variables):
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False

Figure 8,11 The beginning of the reduction for 3-Coloring.

G we have defined thus far is pictured in Figure 8.11, and it already has some

useful properties.
o In any B-coloring of G, the nodes vi and ~ must get different co, lots, and

"
o In any 3-coloring of G, the nodes True, False, and Base must get all three

colors in some permutation. Thus we can refer to the three colors as the
True color, the False color, and the Base color, based on which of these
three nodes gets which color. In particular, this means that for each i,
one of ui or u~ gets the True color, and the other gets the False color. For
the remainder of the construction, we will consider the variable xi to" T only if the node vi gets
be set to I in the given instance of ~-SK if and
assigned the True color.

So in summary, we now have a graph G in which any 3-coloring implicitly
determines a truth assignment for the variables in the 3-SAT instance. We
now need to grow G so that only satisfying assignments can be extended to
3-colorings of the full graph. How should we do this~.

As in other 3-SAT reductions, let’s consider a clause like xl v x~ v x3._ In
the language of 3-colorings of G, it says, "At least one of the nodes vl, vz, or
v3 should get the True color." So what we need is a little subgraph that we can
plug into G, so that any 3-co!oring that extends into this subgraph must have
the property of assigning the True color to at least one of u~, ~, or u~. Ittakes
some experimentation to find such a subgraph, but one that works is depicted
in Figure 8.12.

8.7 Graph Coloring

~The top node can only be
colored if one of u1, V2, or u31
does not get the False color.

Figure 8.12 Attaching a subgraph to represent the clause x1 v ~2.v x3.

This six-node subgraph "attaches" to the rest of G at five existing nodesi
True, False, and those corresponding to the three terms in the clause that we’re
trying to represent (in this case, ~1, ~, and ~.) Now suppose that in some 3-
coloring of G all three of ~1, W22, and u~ are assigned the False color. Then the
lowest two shaded nodes in the subgraph must receive the Base color, the three
shaded nodes above them must receive, respectWely, the False, Base, and True
colors, and hence there’s no color that can be assigned to the topmost shaded
node. In other words, a 3-coloring in which none of ~, W22, or vB is assigned
the True color cannot be extended to a 3-coloring of this subgraph.2

Finally, and conversely, some hand-checking of cases shows that as long
as one of ~, W22, or ~3 is assigned the True color, the ful! subgraph can be
3-colored.

So from this, we can complete the construction: We start with the graph G
defined above, and for each clause in the 3-SAT instance, we attach a six-node
subgraph as shown in Figure 8.12. Let us call the resulting graph G’.

2 This argument actually gives considerable insight into how one comes up with this subgraph in

the first place. The goal is to have a node like the topmost one that cann6t receive any color. So we
start by "plugging in" three nodes corresponding to the terms, all colored False, at the bottom. For
each one, we then work upward, pairing it off with a node of a known color to force the node above
to have the third color. Proceeding in this way, we can arrive at a node that is forced to have any
color we want. So we force each of the three different colors, starting from each of the three different
terms, and then we plug all three of these differently colored nodes into our topmost node, arriving
at the impossibility.
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3-Coloring is NP-complete/2

• Extend G so that there is a satisfying assignments if and only if the full graph is
3-colorable.

• To each set of 3 nodes in a Clause we a attach a 6-node graph. For example, consider
the clause C = x1 ∨ x2 ∨ x3488

Chapter 8 NP and Computational Intractability
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3-Coloring is NP-complete/3

• (⇐, Soundness) Suppose G is 3-colorable.
• Each node vi is assigned either the True or the False color (see first graph);
• We set the assignment to xi accordingly.
• As we said above, there must be in every clause at least one variable set to True for

otherwise G is not 3-colorable (a contradiction).
• (⇒, Completeness) Let 3-SAT be satisfiable, then the resulting graph is 3-colorable.
• Can be showed by a case analysis and by setting to the True color the variable

assigned to 1.
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P or NP-complete

There are Problems in NP which are not known to be in P nor in the class of
NP-complete problems.

Theorem [Ladner 1975] Unless P = NP, there exist problems in NP that are in neither
P nor NP-complete.

NP-intermediate. GRAPH-ISOMORPHISM, INTEGER-FACTORIZATION, etc.
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Asymmetry of NP

Observation. The definition of efficient certification, and hence of NP, is asymmetric.

• YES instances. An input string s is a yes instance if and only if there exists a
polynomially bounded t so that C (s, t) = yes.

By negating the above statement we get:
• NO instances. An input string s is a no instance if and only if for all polynomially

bounded t , it is the case that C (s, t) = no.
I For a no instance, no short proof is guaranteed by the definition.
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Asymmetry of NP: SAT vs. UN-SAT

UN-SAT. Given a CNF formula Φ, is there NO satisfying truth assignment?

SAT vs. UN-SAT
• Can prove a CNF formula is satisfiable by specifying an assignment (certificate).
• How could we prove that a formula is not satisfiable?
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Complement Problems

Definition. Given a decision problem X , its complement, denoted as X , is the same
problem with the yes and no answers reversed.

The following are examples of complementary problems:
• SAT Vs. UN-SAT
• VERTEX-COVER Vs. NO-VERTEX-COVER
• etc.

co-NP. Complements of decision problems in NP.
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P Vs. co-P

Theorem. The class P is closed under complementation, i.e., P= co-P.
Proof. Let X ∈ P and AX be a polynomial algorithm solving the decision problem X .
Then, the algorithm AX that runs A and inverts the yes/no answers, is a polynomial
algorithm for X .
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NP Vs. co-NP

Observation. When X ∈ NP it is not so clear to see whether X ∈ NP.
• X has a different nature: An input string s ∈ X if and only if for all polynomially

bounded t , it is the case that C (s, t) = no.
I It is not enough to invert the answer of the efficient certifier C to get a certifier C for X .
I The critical point is the shift from there exists t to for all t.

Open Question. Does NP = co-NP?
• Consensus opinion: no.
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NP Vs. co-NP/2

Open Question. Does NP = co-NP?
• Consensus opinion: no.

Theorem. If NP 6= co-NP, then P 6= NP.
Proof. We show the contrapositive, i.e., if P = NP, then, NP = co-NP.
• Since P is closed under complementation, then, if P = NP, then, NP would be

closed under complementation as well.
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Good Characterizations: The Class NP ∩ co-NP

Good Characterization. [Edmonds 1965] NP ∩ co-NP.
• If problem X is in both NP and co-NP, then:

I for a yes instance, there is a succinct certificate;
I for a no instance, there is a succinct disqualifier.

• Problems for wich there is always a nice certificate for the solution.
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Good Characterizations: The Class NP ∩ co-NP/2

Observation. P ⊆ NP ∩ co-NP.

Open Question. Does P = NP ∩ co-NP?
• Mixed opinions.
• Many examples where problem found to have a nontrivial good characterization but

only years later discovered to be in P.
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Primality testing is in NP ∩ co-NP

Theorem.  [Pratt 1975]  PRIMES  ∈  NP  ∩  co-NP.
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EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTf

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a, string, is of length bounded by a polynomial
in log n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property thatshort proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log n operations of a Turing machine
for any fixed

The proof system used for certifying primes is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.

R1 (p, x, a), q - (p, x, qa) provided xtp- 1)/q (mod p) and ql(P 1).

R2: (p,x,p- 1)p providedxp- ,___ (modp).

THEOREM 1. p is a theorem p is a prime.
THEOREM 2. p is a theorem p has a proof of [4 log p lines.

Key words, primes, membership, nondeterministic, proof, NP-complete, computational complexity

1. Proofs. We know of no efficient method that will reliably tell whether
a given number is prime or composite. By "efficient", we mean a method for which
the time is at most a polynomial in the length of the number written in positional
notation. Thus the cost of testing primes and composites is very high. In contrast,
the cost of selling composites (persuading a potential customer that you have one)
is very low--in every case, one multiplication suffices. The only catch is that the
salesman may need to work overtime to prepare his short sales pitch; the effort
is nevertheless rewarded when there are many customers.

At a meeting of the American Mathematical Society in 1903, Frank Cole
used this property of composites to add dramatic impact to the presentation of
his paper. His result was that 267 1 was composite, contradicting a two-centuries-
old conjecture of Mersenne. Although it had taken Cole "three years of Sundays"
to find the factors, once he had done so he could, in a few minutes and without
uttering a word, convince a large audience of his result simply by writing down
the arithmetic for evaluating 267 and 193707721 x 761838257287.

We now show that the primes are to a lesser extent similarly blessed; one
may certify p with a proof of at most [4 log2 p] lines, in a system each of whose
inference rules are readily applied in time O(log3 p). The method is based on the
Lucas-Lehmer heuristic (Lehmer (1927)) for testing primeness.

In the system to be described, theorems take one of two forms:
(i) "p", asserting.that p is prime, or
(ii) "(p, x, a)", asserting that we are making progress towards establishing

that p is a prime and that x is a primitive root (mod p); a is a progress indicator

* Received by the editors May 24, 1974.
f Project MAC Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. This

research was supported by the National Science Foundation under Grant GJ-34671.
Edmonds (1965) discusses a similar situation with a "supervisor and his hard-working assistant".

214

A. Artale Algorithms for Data Processing



Primality testing is in P

Theorem. [Agrawal–Kayal–Saxena 2004]  PRIMES ∈ P. 
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PRIMES is in P

By Manindra Agrawal, Neeraj Kayal, and Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that

determines whether an input number is prime or composite.

1. Introduction

Prime numbers are of fundamental importance in mathematics in general,

and number theory in particular. So it is of great interest to study different

properties of prime numbers. Of special interest are those properties that

allow one to determine efficiently if a number is prime. Such efficient tests are

also useful in practice: a number of cryptographic protocols need large prime

numbers.

Let PRIMES denote the set of all prime numbers. The definition of prime

numbers already gives a way of determining if a number n is in PRIMES: try

dividing n by every number m ≤ √
n—if any m divides n then it is compos-

ite, otherwise it is prime. This test was known since the time of the ancient

Greeks—it is a specialization of the Sieve of Eratosthenes (ca. 240 BC) that

generates all primes less than n. The test, however, is inefficient: it takes

Ω(
√

n) steps to determine if n is prime. An efficient test should need only a

polynomial (in the size of the input = ⌈log n⌉) number of steps. A property

that almost gives an efficient test is Fermat’s Little Theorem: for any prime

number p, and any number a not divisible by p, ap−1 = 1 (mod p). Given an

a and n it can be efficiently checked if an−1 = 1 (mod n) by using repeated

squaring to compute the (n − 1)th power of a. However, it is not a correct

test since many composites n also satisfy it for some a’s (all a’s in case of

Carmichael numbers [Car]). Nevertheless, Fermat’s Little Theorem became

the basis for many efficient primality tests.

Since the beginning of complexity theory in the 1960s—when the notions

of complexity were formalized and various complexity classes were defined—

*The last two authors were partially supported by MHRD grant MHRD-CSE-20010018.
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Definitions
The Comlexity Classes

• NONE = ∅
• NC0 = Functions computable by constant-depth, bounded-fanin circuits.

• AC0 = Class of decision problems solvable by a nonuniform family of Boolean circuits,
with polynomial size, depth O(logi(n)), and unbounded fanin.

• REG = DSPACE(O(1)): The decision problems that can be solved in constant space

• NC1 = Class of decision problems solvable by a nonuniform family of Boolean circuits,
with polynomial size, depth O(log(n)), and fan-in 2.

• CFL = Context-Free Languages

• AC1 = Class of decision problems solvable by a nonuniform family of Boolean circuits,
with polynomial size, depth O(log(n))

• L = Class of decision problems solvable by a Turing machine restricted to use an
amount of memory logarithmic in the size of the input.

• NL = coNL Class of decision problems solvable by a nondeterministic Turing machine
restricted to use an amount of memory logarithmic in the size of the input.

• NC = AC: Decidable in polylogarithmic time on a parallel computer with a polynomial
number of processors.

• CSL = NLINSPACE The class of languages generated by context-sensitive grammars.

• P = Polysize(uniform) = The class of decision problems solvable in polynomial time by
a Turing machine.

• NP = Nondeterministic Polynomial-Time

• coNP= Complement of NP

• PSPACE = NPSPACE = AP = APP = IP

• EXPTIME =
⋃

k∈NDTIME(2n
k

)

• NEXPTIME =
⋃

k∈NNTIME(2n
k

)

• REC= Class of decidable Problems

• RE is the class of decision problems for which a
”
yes“ answer can be verified by a

Turing machine in a finite amount of time. (If the answer is
”
no,“ on the other hand,

the machine might never halt.)

Some Missing Classes
• EEXPTIME

• NEEXPTIME

• EXPSPACE

• BPP

• BQP

The Languages
• An = {x|x ∈ {a}∗} ∈ REG

• AnBn = {anbn|n ≥ 1} ∈ CFL

• AnBnCn = {anbncn|n ≥ 1} ∈ CSL

• BIN − PACKING =Objects of different volumes must be packed into a finite number of
bins of capacity V in a way that minimizes the number of bins used. ∈ NP − c

• DT := {i|Φ1
i is total} /∈ RE

• CHECKERS = The generalized version of the game ∈ EXPTIME − c

• CHESS = The generalized version of the game chess ∈ EXPTIME − c

• CFL−MEM = Context Free Grammar Membership

• CLIQUE = If a graph contains a clique of at least a given size k. ∈ NP − c

• COPY = {uv|u = v}
• CV P = Circuit Value Problem ∈ P − c

– NAND − CV P = CV P only using NAND-components ∈ P

• GAP = PATH = {〈D, s, t〉 |Dir. Graph D has path from sto t} ∈ NL− c

– UGAP = GAP in an undericted graph ∈ L− c

– TREE −GAP = GAP in a tree (DAG) ∈ L− c

• GEO ∈ PSCACE − c

• GIP = Graph isomorphism problem: Determining whether two graphs are isomorphic ∈ NP

• GLP = {(A, b) ∈ Zm,n × Zm|∃x ∈ Zn : Ax ≤ b} ∈ NP − c

• GO = The generalized version of the japanese game Go ∈ EXPTIME − c

• H := {〈i, x〉 |x ∈ dom(Φ1
i )} ∈ RE − c

– H = {〈i, x〉 |x /∈ H} /∈ RE

• HAMILTON − CIRC = If A graph contains a hamilton circle. ∈ NP − c

• INTFAC = integer factorization is the process of breaking down a composite number
into smaller non-trivial divisors, which when multiplied together equal the original integer.
∈ NP ∩ co−NP

• MAX − CUT = The Maximum Cut of a Graph. ∈ NP − c

• PALINDROME = if a word is a palindrome. ∈ CFL

• PARITY = {a ∈ {0, 1}∗|#1 is odd} ∈ REG

• PCP = Post correspondence problem ∈ NP − c

• PLANSAT = set off all strings s ⊆ L∗ such that s is the statement of a solvable
problem. ∈ NEXPTIME − c (Without certain restrictions the problem is
∈ EXPSPACE − c.)

• PRIMES = Determining whether an input number is prime. ∈ P

• QBF = Satisfiability problem for quantified boolean formula ∈ PSPACE − c

• REV ERSI = Generalized Version of the board game. ∈ PSPACE − c

• SAT = Boolean satisfiability problem ∈ NP − c

– 2− SAT = SAT with CNF with 2 variables per clause ∈ NL− c

– 2− SAT = {x|x /∈ 2− SAT} ∈ NL− c

– 3− SAT = SAT with CNF with 3 variables per clause ∈ NP − c

– Horn− SAT = SAT with a conjunction of Horn clauses. ∈ P − c

– SSAT = Probabilistic satisfiability problem ∈ PSPACE − c

• STRONG− CONNECT ∈ NL

• TAUTOLOGY = If a given boolean formula is a tautology. ∈ co−NPc

• TSP = Traveling sales person ∈ NP − c

• U1V = {u1v||u| = |v|}

Relations
Unsolved Problems
• NL ⊆ EXPTIME

This includes the questions of
”
NL 6= P?“,

”
P 6= NP?“,

”
PSAPCE 6= P?“ and

”
EXPTIME 6= PSAPCE?“

• Is NC propper? ⇔ NCi 6= NCi+1? (and is AC propper?)

• Is EXPTIME=NEXPTIME? (A direct result of P=NP would be EXPTIME=NEXPTIME)

Known Subsets
• Chomsky hierarchy:
REG = TY PE3 ⊂ DCFL ⊂ CFL = TY PE2 ⊂ CSL = TY PE1 ⊂ RE = TY PE0

• NC0 ⊂ AC0 ⊂ NC1 ⊂ L ⊂ NL ⊆ NC = AC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆
NEXPTIME ⊆ EXPSPACE = NEXPSAPCE ⊆ REC ⊆ RE

• NL ( PSPACE ( EXPSPACE

• NC ( PSPACE and NC ⊆ CSL

Savich’s Theorem
For any function f(n) ≥ log(n) : DSPACE(f(n)) ⊆ NSPACE(f(n))
⇒ L 6= NL, PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, ...

c© Lukas Ruge

I do not give any guarantee on these informations.
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