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Problems and Algorithms — Decision Problems

The Complexity Theory considers so called Decision Problems.

Decision Problem.
e Input encoded as a finite binary string s;
e Decision Problem X: Is conceived as a set of strings on which the answer to the
decision problem X is “yes”;
e Algorithm A for a decision problem X receives an input string s, and

| yes ifseX
A(S)_{no ifs¢ X
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Problems and Algorithms — Decision Problems

The Complexity Theory considers so called Decision Problems.

Decision Problem.
e Input encoded as a finite binary string s;
e Decision Problem X: Is conceived as a set of strings on which the answer to the

decision problem X is “yes”;
e Algorithm A for a decision problem X receives an input string s, and

| yes ifseX
A(S)_{no ifs¢ X

Definition. P = set of decision problems for which there exists a poly-time algorithm.
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Towards NP — Efficient Verification

e The issue here is the contrast between finding a solution Vs. checking a proposed
solution.
e Consider for example 3-SAT:

» We do not know a polynomial-time algorithm to find solutions; but
» Checking a proposed solution can be easily done in polynomial time (just plug 0/1 and
check if it is a solution).
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Towards NP — Efficient Verification/2

Formalize the idea that a solution to a problem can be checked efficiently.

e Checking Algorithm for a problem X: Checks whether t is a solution for a given input
s of problem X;

e { is called the certificate or witness that contains the evidence that s is a “yes”
instance of X.
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Towards NP — Efficient Verification/2

Formalize the idea that a solution to a problem can be checked efficiently.

e Checking Algorithm for a problem X: Checks whether t is a solution for a given input
s of problem X;

e { is called the certificate or witness that contains the evidence that s is a “yes”
instance of X.

Definition. An algorithm C(s, t) is an efficient certifier for a problem X if:
e ((s,t) runs in polynomial time, and

e For every strlng s, we have s € X if there exists a string t (the certificate) such that
[t] < p(|s]) (p() polynomial function), and C(s, t) = yes.
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Towards NP — Efficient Verification/3

Definition. An algorithm C(s, t) is an efficient certifier for a problem X if:
e ((s,t) runs in polynomial time, and

e For every string s, we have s € X if there exists a string t (the certificate) such that
[t] < p(|s]) (p() polynomial function), and C(s, t) = yes.

An efficient certifier C(s, t):
e |t is not deciding whether an input s belongs to X, but
e It is efficiently evaluating whether a given t is a certificate for s to belong to X.

e It can be used as an exponential brute force algorithm.
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The NP Class of Problems

Definition. NP = set of decision problems for which there exists an efficient certifier.

Note: NP stands for Nondeterministic Polynomial time.
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The NP Class of Problems

Definition. NP = set of decision problems for which there exists an efficient certifier.
Note: NP stands for Nondeterministic Polynomial time.
We can observe immediately that:

Theorem. P C NP.
Proof. Let A be a polynomial time algorithm that solves X. Then, choose t = € and

C(s, t) = A(s).
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Certifiers and certificates: satisfiability

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in ® has at least one true literal.

instances @ = (xl VX, vx3) A(x, VX, vx3) /\(x, VX, vx4)

certificate t x| = true, x2 = true, x3 = false, x4 = false

Conclusions. SAT € NP, 3-SAT € NP.
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P C NP C ExpTIME

P. Decision problems for which there exists a poly-time algorithm.

NP. Decision problems for which there exists a poly-time certifier.

ExpTiME. Decision problems for which there exists an exponential-time algorithm.

Theorem. P C NP.
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P C NP C ExpTIME

P. Decision problems for which there exists a poly-time algorithm.
NP. Decision problems for which there exists a poly-time certifier.

ExpTiME. Decision problems for which there exists an exponential-time algorithm.

Theorem. P C NP.

Theorem. NP C ExpTIME.
Proof. Consider any problem X &€ NP.
e By definition, there exists a poly-time certifier C(s, t) for X, where |t| < p(|s|) for

some polynomial p();
e To solve instance s, run C(s, t) on all strings t with [t| < p(|s]) (exponentially many).

e Return yes iff C(s, t) returns yes for at least one of these potential certificates.

Algorithms for Data Processing
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P Vs. NP

Facts.
@ P C NP C ExPTIME;
® P # ExpTiME, then:

either P # NP, or NP # ExpTIME, or both.
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gédel]
Is the decision problem as easy as the certification problem?

If P=NP If P=NP

If yes... Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, ...

If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, ...

Consensus opinion. Probably no.
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Possible outcomes

P+ NP

“ I conjecture that there is no good algorithm for the traveling salesman
problem. My reasons are the same as for any mathematical conjecture:
(i) It is a legitimate mathematical possibility and (ii) I do not know.”

— Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the
answer to any of these questions. If I had to bet now, I would bet that
P is not equal to NP. I estimate the half-life of this problem at 25-50

more years, but [ wouldn’t bet on it being solved before 2100.”
— Bob Tarjan (2002)
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Possible outcomes

P=NP

“ [ think that in this respect I am on the loony fringe of the mathematical
community: I think (not too strongly!) that P=NP and this will be
proved within twenty years. Some years ago, Charles Read and 1

worked on it quite bit, and we even had a celebratory dinner in a

good restaurant before we found an absolutely fatal mistake. ”

— Béla Bollobds (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just
that we came late to this theory, and haven't yet developed any
techniques for proving computations to be hard. Eventually, it will

just be a footnote in the books.”  — John Conway
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Millennium prize

Millennium prize. $1 million for resolution of P = NP problem.

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME | ABOUTCMI | PROGRAMS | NEWSS&EVENTS | AWARDS | SCHOLARS | PUBLICATIONS

Birch and Swinnerton-Dyer

illennium Proble Coniecture

In order to celebrate mathematics in the new millennium, The Clay Hodge Conjecture
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Navier-Stokes Equations.
Prize Problems. The Scientific Advisory Board of CMI selected these problems, Pys e
focusing on important classic questions that have resisted solution over the e T
years. The Board of Directors of CMI designated a $7 million prize fund for the Rlemann Hyoothesia

solution to these problems, with $1 million allocated to each. During the

Yang-Mills Theory
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy

Gowers presented a lecture entitled The Importance of Mathematics, aimed for Rules
the general public, while John Tate and Michael Atiyah spoke on the problems. Millennium Meeting Videos

e ‘The CMI invited specialists to formulate each problem.

$1,000,000
ARD
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NP-completeness and pop culture

Some writers for the Simpsons and Futurama.
* J. Steward Burns. M.S.in mathematics (Berkeley "93).
* David X. Cohen. M.S. in computer science (Berkeley *92).
* Al Jean. B.S.in mathematics. (Harvard '81).
* Ken Keeler. Ph.D.in applied mathematics (Harvard ’90).
+ Jeff Westbrook. Ph.D.in computer science (Princeton ’89).

4
Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox
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NP-complete Problems

Fundamental Question: What are the hardest problems in NP?
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NP-complete Problems

Fundamental Question: What are the hardest problems in NP?

Definition. A problem X is said NP-complete if:
@ X € NP, and
® Forany Y NP, Y <p X.

Thus, X is as hard as any other NP problem!
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Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem,
others fall like dominoes.

Recipe. To prove that Y € NP-complete:
* Step 1. Show that Y € NP.
* Step 2. Choose an NP-complete problem X.
« Step 3. Prove that X<, Y.

Proposition. If X € NP-complete, Y € NP, and X <, Y, then Y € NP-complete.
Pf. Consider any problem W € NP. Then, both W<,X and X=<,Y.
« By transitivity, W=, Y. 1 1

5 L by definition of by assumption
Hence Y € NP-complete. = (-
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NP-complete Problems/2

Theorem. Let X € NP-complete problems. Then, X is solvable in polynomial time if and
only if P = NP.

(<) If P = NP, then X € P because X € NP.
(=) Let X be solvable in polynomial time. Since X is NP-complete, then
e Forany Y € NP, Y <p X, and thus Y is solvable in polynomial time, thus

e NP C P, and since we already proved that P C NP, we finally obtain
e P =NP.

A. Artale
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The “first” NP-complete problem

Theorem. [Cook 1971

Levin 1973]

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto
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Circuit Satisfiability Problem
Definition. A Circuit C is a labeled, directed acyclic graph where:
e Nodes with no incoming edges (later called inputs) are labeled either with one of the
constants O or 1, or with the name of a distinct variable;
e Internal nodes are labeled with one of the Boolean operators A, V, —;
e There is a single node with no outgoing edges, representing the output (the result

that is computed by the circuit.)

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth

values, and one output.
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Circuit Satisfiability: The First NP-Complete Problem

Theorem. [Cook 1971, Levin 1973] Circuit Satisfiability is NP-complete.
[Proof Sketch]

Show that given an arbitrary problem X € NP, then X <p Circuit Satisfiability.

Main Idea: Show that any algorithm that takes a fixed number n of bits as input and
produces a yes/no answer can be represented by a circuit.

This circuit should output 1 on precisely the inputs for which the algorithm outputs
yes.
If the algorithm takes p(n) steps, then the circuit has polynomial size.

We are not showing this construction but we see how it can be used in the proof.
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Circuit Satisfiability: The First NP-Complete Problem/2

Theorem. [Cook 1971, Levin 1973] Circuit Satisfiability is NP-complete.
[Proof Sketch/2]

Since X € NP it has an efficient certifier, thus

To determine whether s € X, for some input s of size n, we need to answer the
following question:
Is there a certificate t of length p(n) so that C(s, t) = yes?

We view C(s, t) as an algorithm on n+ p(n) bits: the input s and the certificate t, and
Convert it to a polynomial-size circuit C with n+ p(n) sources.
The first n sources will be hard-coded with the values of the bits in s, and

The p(n) sources will be labeled with variables representing the bits of t; these latter
sources will be the inputs to C.

s € X if and only if the circuit C is satisfiable.
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More hard computational problems

Garey and Johnson. Computers and Intractability.
Appendix includes over 300 NP-complete problems.
» Most cited reference in computer science literature.

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer* database as of January 17, 2013. This lst is automatically generated and may contain errors. The listis generated in batch
mode and citation counts may differ from those currently in the CiteSeer* database, since the database is continuously updated.

Al Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 2012 | 2013
MR Garey, D S Johnson

Computers and Intractability. A Guide to the Theory of NP-Completeness 1979

8665

T Cormen, C E Leiserson, R Rivest

Introduction to Aigorithms 1990

7210
3. VN Vapnik
The nature of statistcal learning theory 1998 COMPUTERS AND INTRACTABILITY
6580 A Guide to the Theory of NP-Com

AP Dempster, N M Laird, D B Rubin
Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977
6082

5. T Cover, J Thomas
Elements of Information Theory 1991
6075
6. DE Goldberg
Genetic Algorithms in Search, Optimization, and Machine Learning, 1989
5998
7. J Pearl
Probabilstic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988
5582
8. E Gamma, R Helm, R Johnson, J Viissides
Design Patterns: Elements of Reusable Object-Oriented Software 1995
4614
9. CE Shannon
Amathematical theory of communication Bell Syst. Tech. J, 1948
4118
10. JR Quinlan
C4.5: Programs for Machine Learning 1983
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More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer aj, ..., a,, COMpute v/ﬂ”«wu,mxvosw)x»»vxm(u,,a) o
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.
Statistics. Optimal experimental design.
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Graph k-Coloring

While 2-Coloring (Bipartite Graphs) is a P-Time problem, checking whether a graph is
3-colorable is a hard problem.

Graph k-colorability. Given a graph G and an integer k assign a color to each node of G
so that if (u, v) is an edge, then v and v are assigned different colors from the k available
colors.

Applications. Graph colorability is a problem that arises naturally whenever one is trying
to allocate resources in the presence of conflicts.

e e.g. assign one of k transmitting wavelengths to each of n devices; but if two devices
are sufficiently close to each other, then they need to be assigned different
wavelengths to prevent interference.
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Graph k-Coloring/2

e Fact 1. There is not fixed constant k so that every graph is k-colorable.
» For example, take a set of n nodes and join each pair of them by an edge, the resulting
graph needs n colors.
e Fact 2. No simple efficient algorithm for the 3-Coloring Problem exists.
» The following graph is not 3-colorable but does not have a cicle of 4 nodes mutually
connected.
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3-Coloring is NP-complete
Theorem. Graph 3-coloring in an NP-complete problem.

Graph 3-coloring is in NP. Certificate: a k-coloring of the graph. We can check in
polynomial time whether k < 3 and that every edge in the graph has endpoints with
different colors.

Show that 3-SAT <p 3-COLORING.
Instance Construction. We first construct the following graph G (here is the case with 3
variables):
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3-Coloring is NP-complete/2

e Extend G so that there is a satisfying assignments if and only if the full graph is

3-colorable.
e To each set of 3 nodes in a Clause we a attach a 6-node graph. For example, consider

the clause C = x1 VX2 V x3

The top node can only be
colored if one of vy, Ty, or vy
does not get the False color.

Algorithms for Data Processing
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3-Coloring is NP-complete/3

(<, Soundness) Suppose G is 3-colorable.

Each node v; is assigned either the True or the False color (see first graph);

We set the assignment to x; accordingly.

As we said above, there must be in every clause at least one variable set to True for
otherwise G is not 3-colorable (a contradiction).

(=, Completeness) Let 3-SAT be satisfiable, then the resulting graph is 3-colorable.

Can be showed by a case analysis and by setting to the True color the variable
assigned to 1.
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P or NP-complete

There are Problems in NP which are not known to be in P nor in the class of
NP-complete problems.

Theorem [Ladner 1975] Unless P = NP, there exist problems in NP that are in neither
P nor NP-complete.

NP-intermediate. GRAPH-ISOMORPHISM, INTEGER-FACTORIZATION, etc.
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Asymmetry of NP

Observation. The definition of efficient certification, and hence of NP, is asymmetric.

e YES instances. An input string s is a yes instance if and only if there exists a
polynomially bounded t so that C(s, t) = yes.

By negating the above statement we get:

e NO instances. An input string s is a no instance if and only if for all polynomially
bounded t, it is the case that C(s, t) = no.

» For a no instance, no short proof is guaranteed by the definition.
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Asymmetry of NP: SAT vs. UN-SAT

UN-SAT. Given a CNF formula &, is there NO satisfying truth assignment?

SAT vs. UN-SAT
e Can prove a CNF formula is satisfiable by specifying an assignment (certificate).

e How could we prove that a formula is not satisfiable?
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Complement Problems

Definition. Given a decision problem X, its complement, denoted as X, is the same
problem with the yes and no answers reversed.

The following are examples of complementary problems:
e SAT Vs. UN-SAT
e VERTEX-COVER Vs. NO-VERTEX-COVER

e ctc.

co-NP. Complements of decision problems in NP.
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P Vs. co-P

Theorem. The class P is closed under complementation, i.e., P= co-P.
Proof. Let X € P and Ax be a polynomial algorithm solving the decision problem X.

Then, the algorithm Ax that runs A and inverts the yes/no answers, is a polynomial
algorithm for X.

A. Artale Algorithms for Data Processing



NP Vs. co-NP

Observation. When X € NP it is not so clear to see whether X € NP.

e X has a different nature: An input string s € X if and only if for all polynomially
bounded t, it is the case that C(s, t) = no.

» It is not enough to invert the answer of the efficient certifier C to get a certifier C for X.
» The critical point is the shift from there exists t to for all t.
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NP Vs. co-NP

Observation. When X € NP it is not so clear to see whether X € NP.

e X has a different nature: An input string s € X if and only if for all polynomially
bounded t, it is the case that C(s, t) = no.

» It is not enough to invert the answer of the efficient certifier C to get a certifier C for X.
» The critical point is the shift from there exists t to for all t.

Open Question. Does NP = co-NP?

e Consensus opinion: no.
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NP Vs. co-NP/2

Open Question. Does NP = co-NP?

e Consensus opinion: no.

Theorem. If NP # co-NP, then P # NP.
Proof. We show the contrapositive, i.e, if P = NP, then, NP = co-NP.

e Since P is closed under complementation, then, if P = NP, then, NP would be
closed under complementation as well.
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Good Characterizations: The Class NP N co-NP

Good Characterization. [Edmonds 1965] NP N co-NP.

e |f problem X is in both NP and co-NP, then:

» for a yes instance, there is a succinct certificate;
» for a no instance, there is a succinct disqualifier.

e Problems for wich there is always a nice certificate for the solution.
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Good Characterizations: The Class NP N co-NP/2

Observation. P € NP N co-NP.

Open Question. Does P = NP N co-NP?
e Mixed opinions.

e Many examples where problem found to have a nontrivial good characterization but
only years later discovered to be in P.
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Primality testing is in NP n co-NP

Theorem. [Pratt 1975] PRIMES € NP N co-NP.

SIAM J. Comput.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*
VAUGHAN R. PRATT

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only logj n operations of a Turing machine
for any fixed o.

The proof system used for certifying primes is as follows.

AxioM. (x, y, 1).

INFERENCE RULEs.

Ry: (p,x,0), 4+~ (p,x,qa) provided x*~V % 1 (mod p) and ql(p — 1).

Ry: (p,x,p — 1)~ p provided x*~' = 1 (mod p).

‘THEOREM 1. p is a theorem = p is a prime.
‘THEOREM 2. p is a theorem > p has a proof of [4 log, p] lines.
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Primality testing is in P

Theorem. [Agrawal-Kayal-Saxena 2004] PRIMES € P.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

Abstract

‘We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.
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Thank You!
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