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Classify problems according to computational requirements

Q.  Which problems will we be able to solve in practice? 

 
A working definition.  Those with poly-time algorithms. 

 
 
 
 
 
 
 
 
 
Theory.  Definition is broad and robust. 

 
 
Practice.  Poly-time algorithms scale to huge problems.
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constants tend to be small, e.g., 3 n 2

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

Turing machine, word RAM, uniform circuits, …
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Hard Problems
• Having defined efficient algorithms those solvable in polynomial-time gives us theopportunity to prove mathematically that certain problems cannot be solved bypolynomial-time, and hence by any “efficient” algorithm.
• There are hard problems for which we do not know of polynomial-time algorithmsBUT we cannot prove that no polynomial-time algorithm exists.

• A large class of problems in this gray area has been characterized, and it has beenproved that they are equivalent in the following sense:

I A polynomial-time algorithm for any one of them would imply the existence of apolynomial-time algorithm for all of them.

• One such class is the class of NP-complete problems.
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NP Problems
• There are thousands of NP-complete problems arising in numerous areas of computerscience.
• The formulation of NP-completeness and the proof that such problems are equivalentis a powerful thing:

I It says that all these open questions are really a single open question, a single type ofcomplexity that we don’t yet fully understand.
• From a pragmatic point of view NP-complete means computationally hard.
• Discovering that a problem is NP-complete provides a reason to stop searching foran efficient algorithm!
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Polynomial-Time Reduction
To explore the space of computationally hard problems we need a mathematicalcharacterization of when two problems are computationally equivalent.
• When problem Y is at least as hard as problem X?

Reduction. Problem X polynomial-time reduces to problem Y (in symbols, X ≤P Y ) ifarbitrary inputs of problem X can be solved using:
• Polynomial time to transform the input to X into an input for Y , plus
• Polynomial number of calls to the algorithm that solves problem Y .

At Least as Hard Problems. When problem Y is at least as hard as problem X?
• Whenever X ≤P Y
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Polynomial-Time Reduction/2

Equivalent Hard Problems. If both X ≤P Y and Y ≤P X , we use the notation X ≡P Y .
Transitivity. If X ≤P Y and Y ≤P Z , then X ≤P Z .Proof idea. Compose the two algorithms.
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Polynomial-Time Reduction/3
Theorem 1. If X ≤P Y and Y can be solved in polynomial time, then X can be solved inpolynomial time.
• Design polynomial-time algorithms for new problems: by reduction to a problem wealready know how to solve in polynomial time.

Corollary 2. If X ≤P Y and X cannot be solved in polynomial time, then Y cannot besolved in polynomial time.
• Establish intractability for new problems: by reduction of a problem we already knowcannot be solved in polynomial time:

I If we have a problem X that is known to be hard and we show that X ≤P Y then also Yis hard.
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Independent Set
Independent Set Problem: Is a prototypical example of a hard problem: We don’t know apolynomial-time algorithm for it, but we also don’t know how to prove that none exists.
Definition. Given a graph G = (V ,E ) and an integer k , is there a subset of vertices S ⊆ Vsuch that |S | ≥ k , and no two vertices in S are adjacent?
Note: The above problem is formulated as a yes/no problem, we call such problemsdecision problems.
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Independent Set/2Definition. Given a graph G = (V ,E ) and an integer k , is there a subset of vertices S ⊆ Vsuch that |S | ≥ k , and no two vertices in S are adjacent?
Ex. Is there an independent set of size ≥ 6?Ex. Is there an independent set of size ≥ 7?

INDEPENDENT-SET.  Given a graph G = (V, E) and an integer k, is there  
a subset of k (or more) vertices such that no two are adjacent? 

 
Ex.  Is there an independent set of size ≥ 6 ? 
Ex.  Is there an independent set of size ≥ 7 ?

Independent set
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independent set of size 6
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Vertex CoverDefinition. Given a graph G = (V ,E ) and an integer k , is there a subset of vertices S ⊆ Vsuch that |S | ≤ k , and each edge is incident to at least one vertex in S?
Ex. Is there a vertex cover of size ≤ 4?Ex. Is there a vertex cover of size ≤ 3?

Vertex cover

VERTEX-COVER.  Given a graph G = (V, E) and an integer k, is there a  
subset of k (or fewer) vertices such that each edge is incident to 
at least one vertex in the subset? 

 
Ex.  Is there a vertex cover of size ≤ 4 ? 
Ex.  Is there a vertex cover of size ≤ 3 ?

 14

vertex cover of size 4

independent set of size 6

A. Artale Algorithms for Data Processing



Intractability:  quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7. 

B. The black vertices are an independent set of size 3. 

C. Both A and B. 

D. Neither A nor B.

 15
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Vertex Cover and Independent Set are Equivalent
Theorem. INDEPENDENT-SET ≡P VERTEX-COVER.Proof. We show that S is an independent set of size k iff V \ S is a vertex cover of size
n − k .(⇒) Let S be any independent set of size k , then:
• V \ S is of size n − k ;
• Consider an arbitrary edge (u, v ) ∈ E , then
• either u 6∈ S , or v 6∈ S , or both, then
• either u ∈ V \ S , or v ∈ V \ S , or u, v ∈ V \ S , then
• V \ S is a vertex cover.
• Note: This also proves that VERTEX-COVER ≤P INDEPENDENT-SET.
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Set Cover
• Vertex Cover can be viewed as a covering problem: The goal is to parsimoniously“cover” all the edges in the graph using as few vertices as possible.
• Vertex Cover is a coveting problem phrased specifically in the language of graph.
• There is a more general covering problem, Set Cover, to cover an arbitrary set ofobjects using a collection of sets.
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Set Cover/2Definition. Given a set U of n elements, a collection S = {S1, . . . ,Sm} of subsets of U , anda number k , does there exist a collection of at most k of these sets whose union is equalto U?

Set cover

SET-COVER.  Given a set U of elements, a collection S of subsets of U, and an 

integer k, are there ≤ k of these subsets whose union is equal to U ? 
 
Sample application. 

独m available pieces of software. 

独Set U of n capabilities that we would like our system to have. 

独The ith piece of software provides the set Si ⊆ U of capabilities. 

独Goal:  achieve all n capabilities using fewest pieces of software.

 19

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }      Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }      Sd = { 5 } 
Se = { 1 }      Sf =  { 1, 2, 6, 7 }
k = 2

a set cover instance
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Vertex Cover Reduces to Set Cover
Intuitively, Vertex Cover seems a special case of Set Cover:
• In Set Cover, we are trying to cover a set using arbitrary subsets;
• In Vertex Cover, we are trying to cover edges of a graph using sets of edges incidentto a particular subset of vertices.
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Vertex Cover Reduces to Set Cover/2Theorem. VERTEX-COVER ≤P SET-COVER (SET-COVER is at least as hard as VERTEX-COVER.)
Proof. Given a VERTEX-COVER input instance G = (V ,E ) and k , we construct a SET-COVERinstance (U,S , k) that has a set cover of size k iff G has a vertex cover of size k .Instance Construction. We need to cover the edges in E :
• U = E ;
• For each vertex in the Vertex Cover Problem, we cover all the edges incident to it:For each vertex v ∈ V , we add a set Sv = {e ∈ E | e incident to v}.

Vertex cover reduces to set cover

Theorem.  VERTEX-COVER ≤ P SET-COVER. 

Pf.  Given a VERTEX-COVER instance G = (V, E) and k, we construct a 
SET-COVER instance (U, S, k) that has a set cover of size k iff G has a 
vertex cover of size k. 
 
Construction.   

独Universe U = E. 

独Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

 21

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }   Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 }   Sd = { 5 } 
Se = { 1 }   Sf  =  { 1, 2, 6, 7 }
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Vertex Cover Reduces to Set Cover/3Theorem. VERTEX-COVER ≤P SET-COVER.

(⇒, Completeness) Let G = (V ,E ) contains a Vertex Cover of size k , then, (U,S , k) thathas a Set Cover of size k .
• Let X ⊆ V be a vertex cover of size k in G , then,

Y = {Sv | v ∈ X} is a set cover of size k .

Vertex cover reduces to set cover

Lemma.  G = (V, E) contains a vertex cover of size k iff (U, S, k) contains 
a set cover of size k. 
 
Pf.  ⇒  Let X  ⊆  V be a vertex cover of size k in G. 

独Then Y = { Sv : v ∈ X } is a set cover of size k.  ▪
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set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }   Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 }   Sd = { 5 } 
Se = { 1 }   Sf  =  { 1, 2, 6, 7 }

vertex cover instance 
(k = 2)

e1 

e2 e3 

e5 

e4 

e6 

e7 

a b

e

f

d

ccff

“yes” instances of VERTEX-COVER 
are solved correctly

A. Artale Algorithms for Data Processing



Vertex Cover Reduces to Set Cover/4Theorem. VERTEX-COVER ≤P SET-COVER.
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Satisfiability

Literal. A Boolean variable or its negation. 

 
Clause. A disjunction of literals. 

 
Conjunctive normal form (CNF).  A propositional 
formula Φ that is a conjunction of clauses. 

 
SAT.  Given a CNF formula Φ, does it have a satisfying truth assignment? 

3-SAT.  SAT where each clause contains exactly 3 literals  
(and each literal corresponds to a different variable). 

 
 
 
 
 
Key application.  Electronic design automation (EDA).

 25

  

€ 

Cj = x1 ∨ x2 ∨ x3

  

€ 

xi   or  xi

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

yes instance:  x1 = true, x2 = true, x3 = false, x4 = false

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )
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Syntax of Propositional Logic
Countable alphabet Σ of atomic propositions: a, b, c , . . ..

Propositional formulas:
φ,ψ −→ a atomic formula

| ⊥ false
| > true
| ¬φ negation
| φ ∧ ψ conjunction
| φ ∨ ψ disjunction
| φ → ψ implication
| φ ↔ ψ equivalence

• Atom: atomic formula
• Literal: (negated) atomic formula • Clause: disjunction of literals
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Semantics: FormallyA truth value assignment (or interpretation) of the atoms in Σ is a function µ:
ν : Σ→ {0, 1}.

Note: Instead of ν(a) we also write aν .
Definition: A formula φ is satisfied by an interpretation ν (ν |= φ), or is true under ν, ifand only if:

ν |= >, ν 6|= ⊥
ν |= a iff aν = 1

ν |= ¬φ iff ν 6|= φ
ν |= φ ∧ ψ iff ν |= φ and ν |= ψ
ν |= φ ∨ ψ iff ν |= φ or ν |= ψ
ν |= φ → ψ iff if ν |= φ, then ν |= ψ
ν |= φ ↔ ψ iff ν |= φ, if and only if ν |= ψ
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Exercises
Let:

ν :


a 7→ 1
b 7→ 0
c 7→ 0
d 7→ 1Check the truth value under I of the following formulas:

• b → c ∨ d

• c ∨ d → b

• b ↔ c ∨ d

• ((a ∨ b)↔ (c ∨ d )) ∧ (¬(a ∧ b) ∨ (c ∧ ¬d ))
A. Artale Algorithms for Data Processing



3-SAT Reduces to Independent Set
3-SAT. Let Φ be a set of clauses C1, . . . ,Ck , each of length 3, over a set of variables
X = {x1, . . . , xn}, does there exist a satisfying truth assignment for Φ?
Theorem. 3-SAT ≤P INDEPENDENT-SET.

Instance Construction: Intuitions.
• Choose one literal from each clause, and then find a truth assignment that causes allthese literals to evaluate to 1, thereby satisfying all clauses.
• Conflicting Literals. Two literals conflict if one is equal to a variable xi and the otheris equal to its negation xi .
• If we avoid choosing conflicting literals we can find a truth assignment that makesthe selected literals from each clause evaluate to 1.
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3-SAT Reduces to Independent Set/2Theorem. 3-SAT ≤P INDEPENDENT-SET (INDEPENDENT-SET is at least as hard as 3-SAT.)
Instance Construction.
• Construct G containing 3 nodes for each clause in Φ, one for each literal;
• Connect 3 literals in a clause in a triangle;
• Connect literal to each of its negations (conflicting literals).

3-satisfiability reduces to independent set

Theorem.  3-SAT ≤ P INDEPENDENT-SET. 

Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of 

INDEPENDENT-SET that has an independent set of size k = ⎜Φ⎜ iff Φ is satisfiable. 

 
Construction. 

独G contains 3 nodes for each clause, one for each literal. 

独Connect 3 literals in a clause in a triangle. 

独Connect literal to each of its negations.
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€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )
k = 3

G
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3-SAT Reduces to Independent Set/3Theorem. 3-SAT ≤P INDEPENDENT-SET.

(⇒, Completeness) Let Φ be satisfiable, then G contains an independent set of size
k = |Φ|.
• Consider any satisfying assignment for Φ;
• For each triangle, select one node labeled by a true literal;
• This is an independent set, S , of size k = |Φ|, since if there were an edge betweentwo nodes u, v ∈ S , then the labels of u and v would have to conflict.

3-satisfiability reduces to independent set
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3-SAT Reduces to Independent Set/4
(⇐, Soundness) Let G contains an independent set of size k =| Φ |, then, Φ is satisfiable.
• Let S be an independent set of size k ;
• S must contain exactly one node in each triangle;
• Set these literals to true (and remaining literals consistently): This is an assignmentsatisfying Φ, indeed, exactly one of xi or xi may appear as a label of a node in S, forotherwise there would be an edge between these two nodes.

3-satisfiability reduces to independent set

Theorem.  3-SAT ≤ P INDEPENDENT-SET. 

Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of 
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Karp’s 20 poly-time reductions from satisfiability

 78

Dick Karp (1972) 
1985 Turing Award
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Thank You!
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