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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Cobham
(1964)

von Neumann
(1953)

Turing machine, word RAM, uniform circuits, ...

v

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3n?2

Practice. Poly-time algorithms scale to huge problems.
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Hard Problems

e Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

e There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.
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Hard Problems

e Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

e There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.

e A large class of problems in this gray area has been characterized, and it has been
proved that they are equivalent in the following sense:

» A polynomial-time algorithm for any one of them would imply the existence of a
polynomial-time algorithm for all of them.
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Hard Problems

Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.

A large class of problems in this gray area has been characterized, and it has been
proved that they are equivalent in the following sense:
» A polynomial-time algorithm for any one of them would imply the existence of a
polynomial-time algorithm for all of them.

One such class is the class of NP-complete problems.
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NP Problems

e There are thousands of NP-complete problems arising in numerous areas of computer
science.

e The formulation of NP-completeness and the proof that such problems are equivalent
is a powerful thing:

» It says that all these open questions are really a single open question, a single type of
complexity that we don't yet fully understand.

e From a pragmatic point of view NP-complete means computationally hard.

e Discovering that a problem is NP-complete provides a reason to stop searching for
an efficient algorithm!
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Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?
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Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?

Reduction. Problem X polynomial-time reduces to problem Y (in symbols, X <p Y) if
arbitrary inputs of problem X can be solved using:

e Polynomial time to transform the input to X into an input for Y, plus

e Polynomial number of calls to the algorithm that solves problem Y.
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Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?

Reduction. Problem X polynomial-time reduces to problem Y (in symbols, X <p Y) if
arbitrary inputs of problem X can be solved using:

e Polynomial time to transform the input to X into an input for Y, plus

e Polynomial number of calls to the algorithm that solves problem Y.

At Least as Hard Problems. When problem Y is at least as hard as problem X?
e Whenever X <p Y
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Polynomial-Time Reduction/2

Equivalent Hard Problems. If both X <p Y and Y <p X, we use the notation X =p Y.

Transitivity. If X <p Y and Y <p Z, then X <p Z.
Proof idea. Compose the two algorithms.
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Polynomial-Time Reduction/3

Theorem 1. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

e Design polynomial-time algorithms for new problems: by reduction to a problem we
already know how to solve in polynomial time.
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Polynomial-Time Reduction/3

Theorem 1. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

e Design polynomial-time algorithms for new problems: by reduction to a problem we
already know how to solve in polynomial time.

Corollary 2. If X <p Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

e Establish intractability for new problems: by reduction of a problem we already know
cannot be solved in polynomial time:

> If we have a problem X that is known to be hard and we show that X <p Y then also Y
is hard.
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Independent Set

Independent Set Problem: Is a prototypical example of a hard problem: We don’t know a
polynomial-time algorithm for it, but we also don’t know how to prove that none exists.

Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| > k, and no two vertices in S are adjacent?

Note: The above problem is formulated as a yes/no problem, we call such problems
decision problems.
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Independent Set/2

Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| > k, and no two vertices in S are adjacent?

Ex. Is there an independent set of size > 67
Ex. Is there an independent set of size > 77

. independent set of size 6

e 6 O O

°
O
°
° O .



Vertex Cover
Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| < k, and each edge is incident to at least one vertex in S?

Ex. Is there a vertex cover of size < 47
Ex. Is there a vertex cover of size < 37?

o O
o O
O L

. independent set of size 6
‘ . O vertex cover of size 4
o O

12
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Intractability: quiz 3 >y

Consider the following graph G. Which are true?

The white vertices are a vertex cover of size 7.
The black vertices are an independent set of size 3.

Both A and B.

S n ® »

Neither A nor B.

® Q Q O L

O O O ® O

15
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Vertex Cover and Independent Set are Equivalent

Theorem. INDEPENDENT-SET =p VERTEX-COVER.
Proof. We show that S is an independent set of size k iff V' \ S is a vertex cover of size
n— k.
(=) Let S be any independent set of size k, then:
e V\S is of size n— k;
e Consider an arbitrary edge (u, v) € E, then
either u ¢ S, or v ¢ S, or both, then
eitherue V\S,orve V\S oruveV\S, then
V'\'S is a vertex cover.
Note: This also proves that VERTEX-COVER <p INDEPENDENT-SET.
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Vertex Cover and Independent Set are Equivalent

Theorem. INDEPENDENT-SET =p VERTEX-COVER.
Proof. We show that S is an independent set of size k iff V' \ S is a vertex cover of size

n—k.
(&) Let V\'S be a vertex cover of size n — k, then:

e S is of size k;

e Consider an arbitrary edge (u, v) € E, then
eitherue V\S,orve V\S oruve V\S, then

either u ¢ S, or v & S, or both, then

S is an independent set.
Note: This also proves that INDEPENDENT-SET <p VERTEX-COVER.
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Set Cover

e Vertex Cover can be viewed as a covering problem: The goal is to parsimoniously
“cover” all the edges in the graph using as few vertices as possible.

e Vertex Cover is a coveting problem phrased specifically in the language of graph.

e There is a more general covering problem, Set Cover, to cover an arbitrary set of
objects using a collection of sets.
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Set Cover/2

Definition. Given a set U of n elements, a collection S = {51, ..., Sm} of subsets of U, and
a number k, does there exist a collection of at most k of these sets whose union is equal
to U?

U={1,2,3,4,5,6,7}

- 5,={3,7} Sy={2.4}

' (5.={(3,4,5,6}) S;={5}

S, ={1)} (S;=11,2,6,7})
k=2

a set cover instance
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Vertex Cover Reduces to Set Cover

Intuitively, Vertex Cover seems a special case of Set Cover:
e In Set Cover, we are trying to cover a set using arbitrary subsets;

e In Vertex Cover, we are trying to cover edges of a graph using sets of edges incident
to a particular subset of vertices.
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Vertex Cover Reduces to Set Cover/2
Theorem. VERTEX-COVER <p SET-COVER (SET-COVER is at least as hard as VERTEX-COVER.)

Proof. Given a VERTEX-COVER input instance G = (V/, E) and k, we construct a SET-COVER
instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.
Instance Construction. We need to cover the edges in E:

e U=FE;

e For each vertex in the Vertex Cover Problem, we cover all the edges incident to it:
For each vertex v € V, we add a set S, = {e € E | e incident to v}.

©) ®

e e, ey

€3
@ 5
e s

©) @

vertex cover instance
(k = 2)
A. Artale

©

U={1,2,3,4,5,6,7}

Sa=1{3,7} Sp=1{2,4}
S.={3,4,5,6} S;={5}
S,={1} Sy ={1,2,6,7}

set cover instance
(k=2)
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Vertex Cover Reduces to Set Cover/3
Theorem. VERTEX-COVER <p SET-COVER.

(=, Completeness) Let G = (V/, E) contains a Vertex Cover of size k, then, (U, S, k) that
has a Set Cover of size k.
e Let X C V be a vertex cover of size k in G, then,
Y ={S, | v € X} is a set cover of size k.

©) ®

e e o @ P U={1,2,3,4,567}
‘ {8,={3,7} S,={2,4}
0 % G {(5.={3,4,5,6}) S,={5} i
o e Pos,={1} S = {1,267} ) i
vertex cover instance set cover instance
(k = 2) (k =2)

A. Artale Algorithms for Data Processing



Vertex Cover Reduces to Set Cover/4
Theorem. VERTEX-COVER <p SET-COVER.

(&, Soundness) Let (U, S, k) contains a Set Cover of size k, then, G = (V, E) contains a

Vertex Cover of size k.
e Let Y C S be a set cover of size k in (U, S, k), then,
X ={v|S, € Y} is a vertex cover of size k in G.

®  ® e

e, e, & ey U={1,2,3,4,5,6,7}

S,={3,7} S,={2,4}

o : ® GoEmse
“ : B c=xn)
@ @ e ermormermommmromommeor e oo ;

set cover instance

vertex cover instance
(k =2)

(k =2)

Algorithms for Data Processing

A. Artale



Satisfiability

Literal. A Boolean variable or its negation. X; Of X;
Clause. A disjunction of literals. Ci=x v X, VX
Conjunctive normal form (CNF). A propositional ® = CACA Ca C,

formula @ that is a conjunction of clauses.

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

<1>=(xlvx2vx3)/\(xlvx2vx3) /\(xlvxzvx4)

yes instance: x; = true, X, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

25
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Syntax of Propositional Logic

Countable alphabet ¥ of atomic propositions: a, b, c, . . ..

o,y — a atomic formula
| L false
T true
¢ negation

Propositional formulas: . .
¢ AN conjunction

|

|

|

| ¢V disjunction
| ¢ — ¢ implication
| ¢ < ¢ equivalence

e Atom: atomic formula e Clause: disjunction of literals

e Literal: (negated) atomic formula
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Semantics: Formally
A truth value assignment (or interpretation) of the atoms in X is a function p:
v: I —{0,1}.

Note: Instead of v(a) we also write a".

Definition: A formula ¢ is satisfied by an interpretation v (v |= ¢), or is true under v, if
and only if:

vVET, viEL
vE a iff av=1
vE-¢ iff v ¢
VEOAY iff vEdandvE ¢
vE VY iff ViE porviEy
vE - ¢ iff ifvE ¢ thenvEy

ViE ¢ ¢ iff viE ¢, ifandonlyifv E ¢
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Exercises

Let:
a — 1
. b — 0
v: c s 0
d — 1
Check the truth value under Z of the following formulas:
e b—-cVvd
ecVd—b
e becVvd

e ((aVb)e (cVA)A(=(aAb)V(cA-d))
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3-SAT Reduces to Independent Set

3-SAT. Let ® be a set of clauses (i, ..., Ck, each of length 3, over a set of variables
X ={x1,...,Xp}, does there exist a satisfying truth assignment for ®?

Theorem. 3-SAT <p INDEPENDENT-SET.

Instance Construction: Intuitions.
e Choose one literal from each clause, and then find a truth assignment that causes all
these literals to evaluate to 1, thereby satisfying all clauses.

e Conflicting Literals. Two literals conflict if one is equal to a variable x; and the other
is equal to its negation X;.

e If we avoid choosing conflicting literals we can find a truth assignment that makes
the selected literals from each clause evaluate to 1.
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3-SAT Reduces to Independent Set/2
Theorem. 3-SAT <p INDEPENDENT-SET (INDEPENDENT-SET is at least as hard as 3-SAT))

Instance Construction.
e Construct G containing 3 nodes for each clause in ®, one for each literal;
e Connect 3 literals in a clause in a triangle;
e Connect literal to each of its negations (conflicting literals).

Xy X3 X X3 Xy Xy
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3-SAT Reduces to Independent Set/3
Theorem. 3-SAT <p INDEPENDENT-SET.

(=, Completeness) Let ® be satisfiable, then G contains an independent set of size
k = |c|)|_
e Consider any satisfying assignment for ®;

e For each triangle, select one node labeled by a true literal;
e This is an independent set, S, of size k = |®|, since if there were an edge between

two nodes u, v € S, then the labels of v and v would have to conflict.

X1

X1 X

X, X3 X X3 X, X,

<1>=(x1vx2vx3)/\(xlvx2vx3) A(xlvxzvx4)

Algorithms for Data Processing
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3-SAT Reduces to Independent Set/4

(&<, Soundness) Let G contains an independent set of size k =| ® |, then, ® is satisfiable.

e Let S be an independent set of size k;

e S must contain exactly one node in each triangle;

e Set these literals to true (and remaining literals consistently): This is an assignment
satisfying ®, indeed, exactly one of x; or X; may appear as a label of a node in S, for
otherwise there would be an edge between these two nodes.

X X X

X, X3 X X3 Xy Xy

k=3
¢=(;lvx2vx3)A(xlv;2vx3) A(;lvxzvx4)
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Karp’s 20 poly-time reductions from satisfiability

o
&
SATISFIABILITY
cL1QUR 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE  _ SET -
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED . EXACT CLIQUE
NODE SET ARC SET ~ HAMILTON . oo . COVER COVER
CIRCUIT
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%
=
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FIGURE 1 - Complete Problems -
>
H
3

Dick Karp (1972)
1985 Turing Award
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Thank You!
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