Algorithms for Data Processing
Lecture VII: Intractable Problems—Polynomial Reduction

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/"artale

artale@inf.unibz.it

2019/20 — First Semester
MSc in Computational Data Science — UNIBZ

Some material (text, figures) displayed in these slides is courtesy of:
Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

A. Artale Algorithms for Data Processing

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Cobham
(1964)

von Neumann
(1953)

Turing machine, word RAM, uniform circuits, ...

v

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3n?2

Practice. Poly-time algorithms scale to huge problems.

A. Artale Algorithms for Data Processing

Hard Problems

e Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

e There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.

A. Artale Algorithms for Data Processing

Hard Problems

e Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

e There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.

e A large class of problems in this gray area has been characterized, and it has been
proved that they are equivalent in the following sense:

» A polynomial-time algorithm for any one of them would imply the existence of a
polynomial-time algorithm for all of them.

A. Artale Algorithms for Data Processing

Hard Problems

Having defined efficient algorithms those solvable in polynomial-time gives us the
opportunity to prove mathematically that certain problems cannot be solved by
polynomial-time, and hence by any “efficient” algorithm.

There are hard problems for which we do not know of polynomial-time algorithms
BUT we cannot prove that no polynomial-time algorithm exists.

A large class of problems in this gray area has been characterized, and it has been
proved that they are equivalent in the following sense:
» A polynomial-time algorithm for any one of them would imply the existence of a
polynomial-time algorithm for all of them.

One such class is the class of NP-complete problems.

A. Artale Algorithms for Data Processing

NP Problems

e There are thousands of NP-complete problems arising in numerous areas of computer
science.

e The formulation of NP-completeness and the proof that such problems are equivalent
is a powerful thing:

» It says that all these open questions are really a single open question, a single type of
complexity that we don't yet fully understand.

e From a pragmatic point of view NP-complete means computationally hard.

e Discovering that a problem is NP-complete provides a reason to stop searching for
an efficient algorithm!

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?

Reduction. Problem X polynomial-time reduces to problem Y (in symbols, X <p Y) if
arbitrary inputs of problem X can be solved using:

e Polynomial time to transform the input to X into an input for Y, plus

e Polynomial number of calls to the algorithm that solves problem Y.

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction

To explore the space of computationally hard problems we need a mathematical
characterization of when two problems are computationally equivalent.

e When problem Y is at least as hard as problem X?

Reduction. Problem X polynomial-time reduces to problem Y (in symbols, X <p Y) if
arbitrary inputs of problem X can be solved using:

e Polynomial time to transform the input to X into an input for Y, plus

e Polynomial number of calls to the algorithm that solves problem Y.

At Least as Hard Problems. When problem Y is at least as hard as problem X?
e Whenever X <p Y

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction/2

Equivalent Hard Problems. If both X <p Y and Y <p X, we use the notation X =p Y.

Transitivity. If X <p Y and Y <p Z, then X <p Z.
Proof idea. Compose the two algorithms.

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction/3

Theorem 1. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

e Design polynomial-time algorithms for new problems: by reduction to a problem we
already know how to solve in polynomial time.

A. Artale Algorithms for Data Processing

Polynomial-Time Reduction/3

Theorem 1. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

e Design polynomial-time algorithms for new problems: by reduction to a problem we
already know how to solve in polynomial time.

Corollary 2. If X <p Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

e Establish intractability for new problems: by reduction of a problem we already know
cannot be solved in polynomial time:

> If we have a problem X that is known to be hard and we show that X <p Y then also Y
is hard.

A. Artale Algorithms for Data Processing

Independent Set

Independent Set Problem: Is a prototypical example of a hard problem: We don’t know a
polynomial-time algorithm for it, but we also don’t know how to prove that none exists.

Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| > k, and no two vertices in S are adjacent?

Note: The above problem is formulated as a yes/no problem, we call such problems
decision problems.

A. Artale Algorithms for Data Processing

Independent Set/2

Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| > k, and no two vertices in S are adjacent?

Ex. Is there an independent set of size > 67
Ex. Is there an independent set of size > 77

. independent set of size 6

e 6 O O

°
O
°
° O .

Vertex Cover
Definition. Given a graph G = (V, E) and an integer k, is there a subset of vertices S C V
such that |S| < k, and each edge is incident to at least one vertex in S?

Ex. Is there a vertex cover of size < 47
Ex. Is there a vertex cover of size < 37?

o O
o O
O L

. independent set of size 6
‘ . O vertex cover of size 4
o O

12

A. Artale Algorithms for Data Processing

Intractability: quiz 3 >y

Consider the following graph G. Which are true?

The white vertices are a vertex cover of size 7.
The black vertices are an independent set of size 3.

Both A and B.

S n ® »

Neither A nor B.

® Q Q O L

O O O ® O

15

A. Artale Algorithms for Data Processing

Vertex Cover and Independent Set are Equivalent

Theorem. INDEPENDENT-SET =p VERTEX-COVER.
Proof. We show that S is an independent set of size k iff V' \ S is a vertex cover of size
n— k.
(=) Let S be any independent set of size k, then:
e V\S is of size n— k;
e Consider an arbitrary edge (u, v) € E, then
either u ¢ S, or v ¢ S, or both, then
eitherue V\S,orve V\S oruveV\S, then
V'\'S is a vertex cover.
Note: This also proves that VERTEX-COVER <p INDEPENDENT-SET.

A. Artale Algorithms for Data Processing

Vertex Cover and Independent Set are Equivalent

Theorem. INDEPENDENT-SET =p VERTEX-COVER.
Proof. We show that S is an independent set of size k iff V' \ S is a vertex cover of size

n—k.
(&) Let V\'S be a vertex cover of size n — k, then:

e S is of size k;

e Consider an arbitrary edge (u, v) € E, then
eitherue V\S,orve V\S oruve V\S, then

either u ¢ S, or v & S, or both, then

S is an independent set.
Note: This also proves that INDEPENDENT-SET <p VERTEX-COVER.

A. Artale Algorithms for Data Processing

Set Cover

e Vertex Cover can be viewed as a covering problem: The goal is to parsimoniously
“cover” all the edges in the graph using as few vertices as possible.

e Vertex Cover is a coveting problem phrased specifically in the language of graph.

e There is a more general covering problem, Set Cover, to cover an arbitrary set of
objects using a collection of sets.

A. Artale Algorithms for Data Processing

Set Cover/2

Definition. Given a set U of n elements, a collection S = {51, ..., Sm} of subsets of U, and
a number k, does there exist a collection of at most k of these sets whose union is equal
to U?

U={1,2,3,4,5,6,7}

- 5,={3,7} Sy={2.4}

' (5.={(3,4,5,6}) S;={5}

S, ={1)} (S;=11,2,6,7})
k=2

a set cover instance

A. Artale Algorithms for Data Processing

Vertex Cover Reduces to Set Cover

Intuitively, Vertex Cover seems a special case of Set Cover:
e In Set Cover, we are trying to cover a set using arbitrary subsets;

e In Vertex Cover, we are trying to cover edges of a graph using sets of edges incident
to a particular subset of vertices.

A. Artale Algorithms for Data Processing

Vertex Cover Reduces to Set Cover/2
Theorem. VERTEX-COVER <p SET-COVER (SET-COVER is at least as hard as VERTEX-COVER.)

Proof. Given a VERTEX-COVER input instance G = (V/, E) and k, we construct a SET-COVER
instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.
Instance Construction. We need to cover the edges in E:

e U=FE;

e For each vertex in the Vertex Cover Problem, we cover all the edges incident to it:
For each vertex v € V, we add a set S, = {e € E | e incident to v}.

©) ®

e e, ey

€3
@ 5
e s

©) @

vertex cover instance
(k = 2)
A. Artale

©

U={1,2,3,4,5,6,7}

Sa=1{3,7} Sp=1{2,4}
S.={3,4,5,6} S;={5}
S,={1} Sy ={1,2,6,7}

set cover instance
(k=2)

Algorithms for Data Processing

Vertex Cover Reduces to Set Cover/3
Theorem. VERTEX-COVER <p SET-COVER.

(=, Completeness) Let G = (V/, E) contains a Vertex Cover of size k, then, (U, S, k) that
has a Set Cover of size k.
e Let X C V be a vertex cover of size k in G, then,
Y ={S, | v € X} is a set cover of size k.

©) ®

e e o @ P U={1,2,3,4,567}
‘ {8,={3,7} S,={2,4}
0 % G {(5.={3,4,5,6}) S,={5} i
o e Pos,={1} S = {1,267}) i
vertex cover instance set cover instance
(k = 2) (k =2)

A. Artale Algorithms for Data Processing

Vertex Cover Reduces to Set Cover/4
Theorem. VERTEX-COVER <p SET-COVER.

(&, Soundness) Let (U, S, k) contains a Set Cover of size k, then, G = (V, E) contains a

Vertex Cover of size k.
e Let Y C S be a set cover of size k in (U, S, k), then,
X ={v|S, € Y} is a vertex cover of size k in G.

® ® e

e, e, & ey U={1,2,3,4,5,6,7}

S,={3,7} S,={2,4}

o : ® GoEmse
“ : B c=xn)
@ @ e ermormermommmromommeor e oo ;

set cover instance

vertex cover instance
(k =2)

(k =2)

Algorithms for Data Processing

A. Artale

Satisfiability

Literal. A Boolean variable or its negation. X; Of X;
Clause. A disjunction of literals. Ci=x v X, VX
Conjunctive normal form (CNF). A propositional ® = CACA Ca C,

formula @ that is a conjunction of clauses.

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

<1>=(xlvx2vx3)/\(xlvx2vx3) /\(xlvxzvx4)

yes instance: x; = true, X, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

25

A. Artale Algorithms for Data Processing

Syntax of Propositional Logic

Countable alphabet ¥ of atomic propositions: a, b, c,

o,y — a atomic formula
| L false
T true
¢ negation

Propositional formulas: . .
¢ AN conjunction

|

|

|

| ¢V disjunction
| ¢ — ¢ implication
| ¢ < ¢ equivalence

e Atom: atomic formula e Clause: disjunction of literals

e Literal: (negated) atomic formula

A. Artale Algorithms for Data Processing

Semantics: Formally
A truth value assignment (or interpretation) of the atoms in X is a function p:
v: I —{0,1}.

Note: Instead of v(a) we also write a".

Definition: A formula ¢ is satisfied by an interpretation v (v |= ¢), or is true under v, if
and only if:

vVET, viEL
vE a iff av=1
vE-¢ iff v ¢
VEOAY iff vEdandvE ¢
vE VY iff ViE porviEy
vE - ¢ iff ifvE ¢ thenvEy

ViE ¢ ¢ iff viE ¢, ifandonlyifv E ¢

A. Artale Algorithms for Data Processing

Exercises

Let:
a — 1
. b — 0
v: c s 0
d — 1
Check the truth value under Z of the following formulas:
e b—-cVvd
ecVd—b
e becVvd

e ((aVb)e (cVA)A(=(aAb)V(cA-d))

A. Artale Algorithms for Data Processing

3-SAT Reduces to Independent Set

3-SAT. Let ® be a set of clauses (i, ..., Ck, each of length 3, over a set of variables
X ={x1,...,Xp}, does there exist a satisfying truth assignment for ®?

Theorem. 3-SAT <p INDEPENDENT-SET.

Instance Construction: Intuitions.
e Choose one literal from each clause, and then find a truth assignment that causes all
these literals to evaluate to 1, thereby satisfying all clauses.

e Conflicting Literals. Two literals conflict if one is equal to a variable x; and the other
is equal to its negation X;.

e If we avoid choosing conflicting literals we can find a truth assignment that makes
the selected literals from each clause evaluate to 1.

A. Artale Algorithms for Data Processing

3-SAT Reduces to Independent Set/2
Theorem. 3-SAT <p INDEPENDENT-SET (INDEPENDENT-SET is at least as hard as 3-SAT))

Instance Construction.
e Construct G containing 3 nodes for each clause in ®, one for each literal;
e Connect 3 literals in a clause in a triangle;
e Connect literal to each of its negations (conflicting literals).

Xy X3 X X3 Xy Xy

A. Artale Algorithms for Data Processing

3-SAT Reduces to Independent Set/3
Theorem. 3-SAT <p INDEPENDENT-SET.

(=, Completeness) Let ® be satisfiable, then G contains an independent set of size
k = |c|)|_
e Consider any satisfying assignment for ®;

e For each triangle, select one node labeled by a true literal;
e This is an independent set, S, of size k = |®|, since if there were an edge between

two nodes u, v € S, then the labels of v and v would have to conflict.

X1

X1 X

X, X3 X X3 X, X,

<1>=(x1vx2vx3)/\(xlvx2vx3) A(xlvxzvx4)

Algorithms for Data Processing

A. Artale

3-SAT Reduces to Independent Set/4

(&<, Soundness) Let G contains an independent set of size k =| ® |, then, ® is satisfiable.

e Let S be an independent set of size k;

e S must contain exactly one node in each triangle;

e Set these literals to true (and remaining literals consistently): This is an assignment
satisfying ®, indeed, exactly one of x; or X; may appear as a label of a node in S, for
otherwise there would be an edge between these two nodes.

X X X

X, X3 X X3 Xy Xy

k=3
¢=(;lvx2vx3)A(xlv;2vx3) A(;lvxzvx4)

A. Artale Algorithms for Data Processing

tale

Karp’s 20 poly-time reductions from satisfiability

o
&
SATISFIABILITY
cL1QUR 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE _ SET -
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED . EXACT CLIQUE
NODE SET ARC SET ~ HAMILTON . oo . COVER COVER
CIRCUIT
3-DIMENSIONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT
SEQUENCING PARTITION
=
3
MAX CUT ;
%
=
. z
FIGURE 1 - Complete Problems -
>
H
3

Dick Karp (1972)
1985 Turing Award

78
ithms for Data Process:

Thank You!

ale Algorithms for Data Processi

