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Matching

Matching. Given an undirected graph G = (V/, E) a subset of edges M C E is a matching
if each node appears in at most one edge in M.
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Bipartite Graphs — 2-Colorability
Bipartite Graph: An undirected graph G = (V/, E) is bipartite if the vertices can be colored
blue or white such that every edge has one white and one blue end.

e Applications.
Matching: residents = blue, hospitals = white;
Scheduling: machines = blue, jobs = white.

a bipartite graph
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Bipartite Matching

Bipartite Graph: A graph G is bipartite if the nodes can be partitioned into two subsets L
and R such that every edge connects a node in L with a node in R.

Bipartite Matching. Given a bipartite graph G find a max-cardinality matching.

matching: 1-1',2-2', 3-4', 4-5'
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Bipartite Matching: Max-Flow based Algorithm

Create a digraph G’ = (LUR U {s, t}, E');

Direct all edges from L to R and assign unit capacity;

Add unit-capacity edges from s to each node in L;

Add unit-capacity edges from each node in R to t;

The value of the maximum s-t flow in this network G’ is equal to the size of the

maximum matching in G.

G’
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Max-Flow based Algorithm: Proof of Correctness

By the Integrality Theorem there is a max-flow f,, in G’ of value val(fy,) = k;

Since all capacities = 1, each f(e) is equal to either 0 or 1;

Let M’ be the set of edges (x,y) such that x € L, y € R, and f(x,y) = 1;

Prop/1. M’ contains val(fy) = k edges.
» Consider the cut (S = LU {s}, T = RU {t}), and apply the Flow value Lemma:

k=val(fy)= Y  fle)— Y fle)=|M|-0

e outof S e into S
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Max-Flow based Algorithm: Proof of Correctness/2

e Prop/2. M’ is a matching.

@ Each node in L is the tail of at most one edge in M.
By contradiction, there would be a node x € L tail of two edges in M’. So, flow out of

x > 2 which violates the conservation condition.
@® Each node in R is the head of at most one edge in M.
e Prop/3. M’ has maximal size.

» Let M; be a matching having edges (xi, y1), ..., (Xp, ¥p), with p > k;
» Consider the flow f that sends one unit along each path of the form s — x; — y; — t, for

i=1,....p;
» We can easily show that f is an s-t flow of value p > k, which contradicts that k is the

value of the max-flow.
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Bipartite Matching: Run Time

o Letn=|X| =Y

e Since C =1, we can use the Ford-Fulkerson algorithm to find the max-flow.

, and let m be the number of edges of G.

Bipartite Matching: Run Time. The Ford-Fulkerson Algorithm can be used to find a
maximum matching in a bipartite graph in O(mn) time.

A. Artale Algorithms for Data Processing



Perfect Matchings in Bipartite Graphs

Definition. Given a bipartite graph G = (V/, E), a subset of edges M C E is a perfect
matching if each node appears in exactly one edge in M.

Perfect Matching Algorithm. We use the algorithm for Bipartite Matching and then check
if this matching is perfect.
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Edge-Disjoint Paths
Definition. Given a graph G = (V/, E), two paths are edge-disjoint if they have no edge in

common.

Definition [Directed Edge-Disjoint paths problem.] Given a directed graph G = (V, E) and
two distinguished vertices s, t, find the max number of edge-disjoint s — t paths.

@ ®

digraph G
2 edge-disjoint paths
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Edge-Disjoint Paths — Algorithm

Algorithm: Max-Flow formulation. Assign unit capacity to every edge and show that the

max-flow solves the problem, i.e., the max number of edge-disjoint s-t paths = value of
max flow.

We show the correctness of this Algorithm by showing the following two Lemmas.

Lemma 1. If there are k edge-disjoint s-t paths in a directed graph G, then the value of
the maximum s-t flow in G is at least k.
Proof.

e Set f(e) = 1 if e participates in some path P;; else set f(e) = 0;

e Since paths are edge-disjoint, then f is a flow, and val(f) = k.
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Edge-Disjoint Paths — Algorithm/2

We now show that also the converse holds.

Lemma 2. If f is a 0-1 valued flow with val(f) = k, then the set of edges with f(e) =1
contains a set of k edge-disjoint paths.
Proof by induction on the number, m, of edges with f(e) = 1.

e [Base Case.] m=0. Then k =0, and there is no path. Thus the Lemma holds.

e [Inductive Step.] m > 1. Then, k > 1. Let (s, u) with f(s, u) = 1, by flow conservation,
there exists an edge (u, v) with f(u, v) = 1. Continue until we reach either t or an
already visited node, v.

e [Case 1.] We found an s — t path, P. Consider a new flow, f’, obtained by decreasing
the flow values on the edges along P to 0. Then, val(f’) = k — 1 and there are m" < m
edges carrying a flow. By IH, we get k — 1 disjoint paths associated to the flow f’
and adding P we obtain k disjoint paths.
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Edge-Disjoint Paths — Algorithm/3

Flow around a cycle
can be zeroed out.

e [Case 2.] Consider the cicle C involving node v. Consider a new flow, f’, obtained by
decreasing the flow values on the edges along C to 0. Then, val(f’) = k and there are
m’ < m edges carrying a flow. By IH, we get k disjoint paths associated to the flow f’.

Thus the Lemma holds!
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Edge-Disjoint Paths — Algorithm/4

We proved the following:

Thorem 1. There are k edge-disjoint paths in a directed graph G from s to t if and only if
the value of the maximum value of an s-t flow in G is at least k.

Path Extraction. The proof of Lemma 2 provides a procedure for constructing the k paths,
given a max flow in G. This procedure is sometimes referred to as a path decomposition of
the flow.

Run Time Analysis. The algorithm as provided in the Proof of Lemma 2 runs in O(mn).
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Generalisation of the Max-Flow Problem

e Multiple sources and multiple sinks.
e New conservation conditions.

e Lower bounds on edge flows.
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Multiple Sources and Sinks

Definition. Given a directed graph G = (V/, E) with edge capacities c(e) > 0 and multiple
source nodes and multiple sink nodes, find a max flow that can be sent from the source
nodes to the sink nodes.

flow network G 9 6 @
: \ { /!

3
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Multiple Sources and Sinks: Max-Flow Formulation

e Add a new source node s and sink node t;
e For each original source node s; add edge (s, s;) with capacity oo;
e For each original sink node t;, add edge (t;, t) with capacity oo.

flow network G’ @ 8 O 6 @

00 27 @
G —@— ' s —®
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Circulation with Supplies and Demands

Definition. Given a directed graph G = (V, E), with edge capacities c(e) > 0, we associate
to each node a demand, d(v) € Z, such that:
e d(v) < 0. The node is a supply node: the node is a source wishing to send out —d(v)
units more flow than it receives.
e d(v) > 0. The node is a demand node: the node is a sink wishing to receive d(v) units
more flow than it sends.
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Circulation with Supplies and Demands/2

Definition. Given a directed graph G = (V, E), with edge capacities c(e) > 0 and demand
d(v) € Z, a circulation is a function f(e) that satisfies:
[Capacity Condition.] For each node e € E: 0 < f(e) < c(e);

[Demand Condition.] For each vertex v € V : Z fle) — Z f(e) = d(v).

e into v e out of v

(supply node)

flow network G -8 -6
O O flow capacity
6/7 1/7 l /
4/10 6/6 2/4 749

=7 O 3/3 O O 4/4 O 1

10 0

(demand node) (transshipment node)
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Feasible Circulations

Feasible Circulation Problem. Given a directed graph G = (V, E), with edge capacities
c(e) > 0 and demand d(v) € Z, check whether there exists a circulation that meets both
capacity and demand conditions.
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Feasible Circulations

Feasible Circulation Problem. Given a directed graph G = (V, E), with edge capacities
c(e) > 0 and demand d(v) € Z, check whether there exists a circulation that meets both
capacity and demand conditions.

The flow value in the following graph represents a feasible circulation.

(supply node)

flow network G -8 -6
O O flow capacity
6/7 1/7 l /
4/10 6/6 2/4 749
7 F— 23 ——Q O——+/+—0 1
10 0
(demand node) (transshipment node)
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Feasible Circulations/2

There is a simple conservation condition that must hold in order for a feasible circulation
to exist:

Property. If there exists a feasible circulation with demand d(v), then )}, d(v) =0, i.e,

D= Y dv)= ) —d(v)

d(v)>0 d(v)<0
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Feasible Circulations solved with Max-Flow
Starting from G generate a graph G’ as follows:
e Add new source s and sink t;
e For each vertex v with d(v) < 0, add edge (s, v) with capacity —d(v);
e For each vertex v with d(v) > 0, add edge (v, t) with capacity d(v).

) ﬁsﬁ\
flow network G’ 5/
7

supply

6«
o

7

10 6 4

" ——0_ O——=0 "
AN
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Feasible Circulations solved with Max-Flow/2

Theorem. There is a feasible circulation with demands d(v) in G if and only if the
maximum s-t flow in G’ has value D.
Proof.
e There cannot be an s-t flow in G’ of value greater than D since the cut (A, B) with
A = {s} has c(A, B) = D.
e (=) If there is a feasible circulation f with demands d(v) in G, then by sending a flow

value of —d(v) on each edge (s, v), and a flow value of d(v) on each edge (u, t), we

obtain an s-t flow in G’ of value D, and by the min-cut/max-flow Theorem this is a
max-flow.

e (<) Conversely, suppose there is a max s-t flow in G’ of value D.

» Then, each edge out of s, and each edge into t, is completely saturated with flow;
> If we delete these edges, we obtain a circulation f in G with

Z fle) — Z f(e) = d(v), for every v € V.

e into v e out of v
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Circulation with Supplies, Demands, and
Lower Bounds

In many applications, we want to force the flow to make use of certain edges. This can be
enforced by placing lower bounds on edges.

Definition. Given a directed graph G = (V, E), with edge capacities c(e) > 0, lower
bounds ¢(e) > 0 and demand d(v) € Z, a circulation is a function f(e) that satisfies:
[Capacity Condition.] For each node e € E: Z(e) < f(e) < c(e);
[Demand Condition.] For each vertex v € V: Z f(e) — Z f(e) = d(v).

e into v e out of v
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Circulation with Supplies, Demands, and
Lower Bounds

In many applications, we want to force the flow to make use of certain edges. This can be
enforced by placing lower bounds on edges.

Definition. Given a directed graph G = (V, E), with edge capacities c(e) > 0, lower
bounds ¢(e) > 0 and demand d(v) € Z, a circulation is a function f(e) that satisfies:
[Capacity Condition.] For each node e € E: Z(e) < f(e) < c(e);
[Demand Condition.] For each vertex v € V: Z f(e) — Z f(e) = d(v).

e into v e out of v

Circulation problem with lower bounds. Given (V/, E, ¥, c, d), does there exist a feasible
circulation?
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Circulation with Supplies, Demands, and Lower Bounds/2
Max-flow formulation. Model lower bounds as circulation with demands (but no lower
bounds)

e Start with a flow fy s.t. on every edge in G, fy(e) = ¢(e), to satisfy the lower bounds.
e Add a new flow f’ s.t. fo + 1’ is a feasible circulation in G, when 7’ is a feasible

circulation in G” without lower bounds with demands d’ and capacity c”:
> For each v € V, (fn(v) — £2U(v)) + (F7(v) — FoUt(v)) = d(v), Le.,

d'(v) = d(v) = ("(v) = W) =dv)— ( D ee)— Y L))

e into v e out of v
» Foreach e€ E, c'(e) = c(e) — ¥(e)
lower bound upper bound capacity
N v
O—ra—® ®— 0
d®v) dw) d(v) +2 d(w) -2
flow network G flow network G’
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Circulation with Supplies, Demands, and Lower Bounds/3

Theorem. There exists a circulation in G iff there exists a circulation in G.
Proof Sketch. f is a circulation in G iff there exists a circulation ' in G’ s.t.
f(e) = f'(e) + fole).
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Survey Design

e We consider here a task faced by many companies wanting to measure customer
satisfaction;

e We illustrates how the Bipartite Matching Problem is useful to balance decisions
across a set of options:

» designing questionnaires by balancing relevant questions across a population of
consumers.

e A major issue in the field of data mining to study consumer preference patterns.

» A company wishing to conduct a survey, sending customized questionnaires to a
particular group of n customers to determine which products people like.
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Survey Design Guidelines

e A customer can only be asked about products that he or she has purchased (think
about “Shopper Cards”);

e Ask consumer / between ¢; and C,-’ number of products;

o Ask between p; and p; distinct consumers about a given product J.

Problem. Decide if there is a way to design a questionnaire for each customer so as to
satisfy all these conditions.
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Survey Design as a Bipartite Matching Problem

CIA— Cl i . Cl Cl i Cl i Cl i i Cl [ Cl i
Max-flow formulation. Model as a Bipartite Matching Problem together with a circulation
problem with lower bounds.

e Nodes are the customers and the products;

Add edge (/,J) if customer i purchased product J;

Add edges from s to customer /, from product j to t;

Demands are all set to 0;

Let e = (s, /), then c(e) = [Ci, C,-']i

Let e = (J, t), then c(e) =[pj, pj};
Let e = (/,J), then c(e) =10, 1].
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Survey Design as a Bipartite Matching Problem/2

[0, o]
® [0. 1] @
[e1,c¢l] [p1,p1']
©) @
© ©, ® O,
@
consumers products
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Survey Design as a Bipartite Matching Problem/2

[0, %]

consumers products

Theorem. The max-flow formulation of a survey design has a feasible circulation if and
only if there is a feasible (i.e., respecting all the guidelines) way to design the survey.
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Airline Scheduling

Airline scheduling problem.
e Complex computational problem faced by airline carriers;

e Must produce large number of schedules that are efficient in terms of equipment
usage, crew allocation, and customer satisfaction;

e Deal with unpredictable issues like weather and breakdowns;

e One of the largest consumers of high-powered algorithmic techniques.
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Airline Scheduling

Airline scheduling problem.
e Complex computational problem faced by airline carriers;

e Must produce large number of schedules that are efficient in terms of equipment
usage, crew allocation, and customer satisfaction;

e Deal with unpredictable issues like weather and breakdowns;

e One of the largest consumers of high-powered algorithmic techniques.

We concentrate on the resource allocation problem.
e Input: set of m flight routes for a given day.

e Each flight route / has: origin o;, starting time s; and arrives at destination d; at final
time f;.
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Airline Scheduling/2

Goal in this problem. Determine whether it is possible to serve all m flight routes on your
original list, using at most k planes in total.

In order to do this, you need to find a way of efficiently reusing planes for multiple flights
routes.
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Airline Scheduling Example

S5 SEAG
BOS6 DCA7 DCAS LAX 11 LA

O-0  O—0 00

PHL 11 SFO2 SFO  SEA
PHL7  PITS 215 315

@

@ Boston (depart 6am) - Washington DC (arrive 7am)

® Philadelphia (depart 7am) - Pittsburgh (arrive 8am)

® Washington DC (depart 8am) - Los Angeles (arrive 11am)
O Philadelphia (depart 11am) - San Francisco (arrive 2pm)
® San Francisco (depart 2:15pm) - Seattle (arrive 3:15pm)

O Las Vegas (depart 5pm) - Seattle (arrive 6pm)
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Airline Scheduling Example/2

P e o Lass  SEAG
- LAX 11 - - LA
BOSG6 DCAZ~"DCAS 1 N

Reachable Flight Routes. Whenever the same plane can be reused for different flight
routes, for example according to these rules:
@ The destination of flight route / is the same as the origin of j, and there is enough
time to perform maintenance on the plane in between; or
® A flight route can be added in between that gets the plane from the destination of /
to the origin of j with adequate time in between.
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Airline Scheduling Example/3

P el BN LASS5 SEAG
~ s AX 11 A A
BOSG6 DCAZ~ DCA 8

Solution with 2 planes.
e Plane 1: (1), (3), (6) is not a solution:

» Not enough maintenance time in San Francisco between flights (4) and (5).
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Airline Scheduling Example/3

Py R TS~._LAS5 SEAG
Ty LAX 11 -~ N
BOSG DCA7.-“DCAS N

Solution with 2 planes.
e Plane 1: (1), (3), (6) is not a solution:

» Not enough maintenance time in San Francisco between flights (4) and (5).
e Plane 1: (1), (3), (5)
e Plane 2: (2), (4), (0)
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Airline Scheduling — Net Flow Solution

Circulation formulation: To see if k planes suffice we construct the following circulation

graph G.

Units of flow will correspond to planes;

There is an edge (u;, v;) for each flight route / with upper and lower capacity bounds
of 1 to enforce that exactly one unit of flow (i.e., plane) serves the flight route;

If flight route j is reachable from flight route / add edge (v;, u;) with capacity 1;

Add source node s with edges (s, u;) and capacity 1 (a plane can begin the day with
any flight route);

Add sink t with edges (v;, t) with capacity 1 (a plane can finish the day with any
flight route).

the node s will have a demand of -k, and the node t will have a demand of k. All
other nodes will have a demand of 0.
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Airline Scheduling — Net Flow Solution/2

plane can begin the day
with any flight route @

use k planes @ [1,11]

P

flight route is served

®

plane can end the day
with any flight

/

[0, 1]

® @

[0, 1]

\

same plane can do flight route 2 and 4
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Airline Scheduling — Algorithm Analysis

Theorem. There is a way to serve all flight routes using k planes if and only if there is a
feasible circulation in the circulation graph G.

Note: To output the flight routes assigned to a given plane is enough to generate the

paths with edge (s, u;) that carries one unit of flow (the problem is similar to the
edge-disjoint paths).

A. Artale
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Airline Scheduling — Algorithm Analysis

Theorem. There is a way to serve all flight routes using k planes if and only if there is a
feasible circulation in the circulation graph G.

Note: To output the flight routes assigned to a given plane is enough to generate the

paths with edge (s, u;) that carries one unit of flow (the problem is similar to the
edge-disjoint paths).

How do you modify the algorithm to allow at most k planes?
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Thank You!
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