
Algorithms for Data Processing
Lecture VI: Network Flows – Applications

Alessandro Artale

Free University of Bozen-BolzanoFaculty of Computer Sciencehttp://www.inf.unibz.it/˜artale
artale@inf.unibz.it

2019/20 – First SemesterMSc in Computational Data Science — UNIBZ
Some material (text, figures) displayed in these slides is courtesy of:Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

A. Artale Algorithms for Data Processing

MatchingMatching. Given an undirected graph G = (V , E) a subset of edges M ⊆ E is a matchingif each node appears in at most one edge in M .
Def. Given an undirected graph G = (V, E), subset of edges M ⊆ E  
is a matching if each node appears in at most one edge in M.

 
Max matching. Given a graph G, find a max-cardinality matching.

Matching

 6

A. Artale Algorithms for Data Processing

Bipartite Graphs – 2-ColorabilityBipartite Graph: An undirected graph G = (V , E) is bipartite if the vertices can be coloredblue or white such that every edge has one white and one blue end.
• Applications.Matching: residents = blue, hospitals = white;Scheduling: machines = blue, jobs = white.

26

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored

blue or white such that every edge has one white and one blue end.

Applications.

・Stable matching: med-school residents = blue, hospitals = white.

・Scheduling: machines = blue, jobs = white.

a bipartite graph

A. Artale Algorithms for Data Processing

Bipartite MatchingBipartite Graph: A graph G is bipartite if the nodes can be partitioned into two subsets Land R such that every edge connects a node in L with a node in R .
Bipartite Matching. Given a bipartite graph G find a max-cardinality matching.

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets

L and R such that every edge connects a node in L with a node in R.
 
Bipartite matching. Given a bipartite graph G = (L ∪ R, E), find a max-

cardinality matching.

 7

RL

1

2

3

4

5

1'

2'

3'

4'

5'

matching: 1-1', 2-2', 3-4', 4-5'

A. Artale Algorithms for Data Processing

Bipartite Matching: Max-Flow based Algorithm
• Create a digraph G ′ = (L ∪ R ∪ {s, t}, E ′);
• Direct all edges from L to R and assign unit capacity;
• Add unit-capacity edges from s to each node in L;
• Add unit-capacity edges from each node in R to t;
• The value of the maximum s-t flow in this network G ′ is equal to the size of themaximum matching in G .

Bipartite matching: max-flow formulation

独Create digraph Gʹ = (L ∪ R∪ {s, t}, E ʹ).

独Direct all edges from L to R, and assign infinite (or unit) capacity.

独Add unit-capacity edges from s to each node in L.

独Add unit-capacity edges from each node in R to t.

8

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

R

G′

L

A. Artale Algorithms for Data Processing

Max-Flow based Algorithm: Proof of Correctness
• By the Integrality Theorem there is a max-flow fm in G ′ of value val(fm) = k ;
• Since all capacities = 1, each f (e) is equal to either 0 or 1;
• Let M ′ be the set of edges (x , y) such that x ∈ L, y ∈ R , and f (x , y) = 1;
• Prop/1. M ′ contains val(fm) = k edges.

I Consider the cut (S = L ∪ {s}, T = R ∪ {t}), and apply the Flow value Lemma:
k = val(fm) = ∑

e out of S

f (e)− ∑
e into S

f (e) = |M ′| − 0

A. Artale Algorithms for Data Processing

Max-Flow based Algorithm: Proof of Correctness/2
• Prop/2. M ′ is a matching.1 Each node in L is the tail of at most one edge in M ′.By contradiction, there would be a node x ∈ L tail of two edges in M ′. So, flow out of

x ≥ 2 which violates the conservation condition.2 Each node in R is the head of at most one edge in M ′.
• Prop/3. M ′ has maximal size.

I Let M1 be a matching having edges (x1, y1), . . . , (xp, yp), with p > k ;
I Consider the flow f that sends one unit along each path of the form s → xi → yi → t , for

i = 1, . . . , p;
I We can easily show that f is an s-t flow of value p > k , which contradicts that k is thevalue of the max-flow.

A. Artale Algorithms for Data Processing

Bipartite Matching: Run Time
• Let n = |X | = |Y |, and let m be the number of edges of G .
• Since C = 1, we can use the Ford-Fulkerson algorithm to find the max-flow.

Bipartite Matching: Run Time. The Ford-Fulkerson Algorithm can be used to find amaximum matching in a bipartite graph in O(mn) time.

A. Artale Algorithms for Data Processing

Perfect Matchings in Bipartite Graphs
Definition. Given a bipartite graph G = (V , E), a subset of edges M ⊆ E is a perfectmatching if each node appears in exactly one edge in M .
Perfect Matching Algorithm. We use the algorithm for Bipartite Matching and then checkif this matching is perfect.

A. Artale Algorithms for Data Processing

Edge-Disjoint PathsDefinition. Given a graph G = (V , E), two paths are edge-disjoint if they have no edge incommon.
Definition [Directed Edge-Disjoint paths problem.] Given a directed graph G = (V , E) andtwo distinguished vertices s, t , find the max number of edge-disjoint s → t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

 
Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes 
s and t, find the max number of edge-disjoint s↝t paths.

 
Ex. Communication networks.

digraph G
2 edge-disjoint paths

s

2

3

4

5

6

7

t

Edge-disjoint paths

 25

s

2

3

4

5

6

7

t

A. Artale Algorithms for Data Processing

Edge-Disjoint Paths – Algorithm
Algorithm: Max-Flow formulation. Assign unit capacity to every edge and show that themax-flow solves the problem, i.e., the max number of edge-disjoint s-t paths = value ofmax flow.We show the correctness of this Algorithm by showing the following two Lemmas.
Lemma 1. If there are k edge-disjoint s-t paths in a directed graph G , then the value ofthe maximum s-t flow in G is at least k .Proof.
• Set f (e) = 1 if e participates in some path Pj ; else set f (e) = 0;
• Since paths are edge-disjoint, then f is a flow, and val(f) = k .

A. Artale Algorithms for Data Processing

Edge-Disjoint Paths – Algorithm/2
We now show that also the converse holds.
Lemma 2. If f is a 0-1 valued flow with val(f) = k , then the set of edges with f (e) = 1contains a set of k edge-disjoint paths.Proof by induction on the number, m, of edges with f (e) = 1.
• [Base Case.] m = 0. Then k = 0, and there is no path. Thus the Lemma holds.
• [Inductive Step.] m ≥ 1. Then, k ≥ 1. Let (s, u) with f (s, u) = 1, by flow conservation,there exists an edge (u, v) with f (u, v) = 1. Continue until we reach either t or analready visited node, v .
• [Case 1.] We found an s → t path, P . Consider a new flow, f ′, obtained by decreasingthe flow values on the edges along P to 0. Then, val(f ′) = k − 1 and there are m′ < medges carrying a flow. By IH, we get k − 1 disjoint paths associated to the flow f ′and adding P we obtain k disjoint paths.

A. Artale Algorithms for Data Processing

Edge-Disjoint Paths – Algorithm/3
376 Chapter 7 Network Flow

I~low around a cycle~
~can be zeroed out.

Figure 7.I2 The edges in the figure all carry one unit of flow. The path P of dashed
edges is one possible path in the proof of (7.42).

We can summarize (7.41) and (7.42) in the following result.

{7.43} There are k edge-disjoint paths in a directed graph G from s to t if and
only if the value of the maximum value of an s-t flow in G is at least k.

Notice also how the proof of (7.42) provides an actual procedure for
constructing the k paths, given an integer-valued maximum flow in G. This
procedure is sometimes referred to as a path decomposition of the flow, since it
"decomposes" the flow into a constituent set of paths. Hence we have shown
that our flow-based algorithm finds the maximum number of edge-disjoint s-t
paths and also gives us a way to construct the actual paths.
Bounding the Running Time For this flow problem, C = ~eoutofs ce <
Igl-= n, as there are at most IVI edges out of s, each of which has capac-
it’] 1. Thus, by using the O(mC) bound in (7.5), we get an integer maximum
flow in O(mn) time.

The path decomposition procedure in the proof of (7.42), which produces
the paths themselves, can also be made to run in O(mn) time. To see this, note
that this procedure, with a little care, can produce a single path from s to t
using at most constant work per edge in the graph, and hence in O(m) time.
Since there can be at most n 1 edge-disioint paths from s to t (each must
use a different edge out of s), it therefore takes time O(mn) to produce al! the
paths.

In summary, we have shown

(7.44) The Ford-Fulkerson Algorithm can be used to find a maximum set of
edge-disjoint s-t paths in a directed graph G in O(mn) time.

A Version of the Max-Flow Min-Cut Theorem for Disjoint Paths The Max-
Flow Min-Cut Theorem (7.13) can be used to give the following characteri-

7.6 Disjoint Paths in Directed and Undirected Graphs

zation of the maximum number of edge-disjoint s-t paths. We say that a set
F ___ E of edges separates s from t if, after removing the edges F from the graph
G, no s-t paths remain in the graph.

(7.45) In every directed graph with nodes s and t, the maximum number of
edge-disjoint s-t paths is equal to the minimum number of edges whose removal
separates s from t.

Proof. If the remOva! of a set F __c E of edges separates s from t, then each s-t
path must use at least one edge from F, and hence the number of edge-disjoint_
s-t paths is at most IFI.

To prove the other direction, we will use the Max-Flow Min-Cut Theorem
(7.13). By (7.43) the maximum number of edge-disjoint paths is the value v
of the maximum s-t flow. Now (7.13) states that there is an s-t cut (A, B) with
capacity v. Let F be the set of edges that go from A to B. Each edge has capacity
1, so IFI = v and, by the definition of an s-t cut, removing these u edges from
G separates s from t. *,

This result, then, can be viewed as the natural special case of the Max-
Flow Min-Cut Theorem in which all edge capacities are equal to ~. In fact,
this special case was proved by Menger in 1927, much before the full Max-
Flow Min-Cut Theorem was formulated and proved; for this reason, (7.45)
is often called Menger’s Theorem. If we think about it, the proof of Hall’s
Theorem (7.40) for bipartite matchings involves a reduction to a graph with
unit-capacity edges, and so it can be proved using Menger’s Theorem rather
than the general Max-Flow Min-Cut Theorem. In other words, Hall’s Theorem
is really a specia! case of Menger’s Theorem, which in turn is a special case
of the Max-Flow Min-Cut Theorem. And the history follows this progression,
since they were discovered in this order, a few decades apaxt.2

Extensions: Disjoint Paths in Undirected Graphs
Finally, we consider the disjoint paths problem in an undirected graph G.
Despite the fact that our graph G is now undirected, we can use the maximum-
flow algorithm to obtain edge-disjoint paths in G. The idea is quite simple: We
replace each undirected edge (u, v) in G by two directed edges (u, v) and

a In fact, in an interesting retrospective written in 1981, Menger relates his version of the story of how

he first explained his theorem to K6nig, one of the independent discoverers of HaWs Theorem. You
might think that K6nig, having thought a lot about these problems, would have immediately grasped
why Menger’s generalization of his theorem was true, and perhaps even considered it obvious. But, in
fact, the opposite happened; K6nig didn’t believe it could be right and stayed up all night searching
for a counterexample. The next day, exhausted, he sought out Menger and asked him for the proof.

377

• [Case 2.] Consider the cicle C involving node v . Consider a new flow, f ′, obtained bydecreasing the flow values on the edges along C to 0. Then, val(f ′) = k and there are
m′ < m edges carrying a flow. By IH, we get k disjoint paths associated to the flow f ′.Thus the Lemma holds!

A. Artale Algorithms for Data Processing

Edge-Disjoint Paths – Algorithm/4
We proved the following:Thorem 1. There are k edge-disjoint paths in a directed graph G from s to t if and only ifthe value of the maximum value of an s-t flow in G is at least k .
Path Extraction. The proof of Lemma 2 provides a procedure for constructing the k paths,given a max flow in G . This procedure is sometimes referred to as a path decomposition ofthe flow.
Run Time Analysis. The algorithm as provided in the Proof of Lemma 2 runs in O(mn).
A. Artale Algorithms for Data Processing

Generalisation of the Max-Flow Problem

• Multiple sources and multiple sinks.
• New conservation conditions.
• Lower bounds on edge flows.

A. Artale Algorithms for Data Processing

Multiple Sources and SinksDefinition. Given a directed graph G = (V , E) with edge capacities c(e) > 0 and multiplesource nodes and multiple sink nodes, find a max flow that can be sent from the sourcenodes to the sink nodes.

Multiple sources and sinks

Def. Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and multiple

source nodes and multiple sink nodes, find max flow that can be sent  
from the source nodes to the sink nodes.

 41

t1

t2

9 6

7

4

5

2
3

8

1

10

flow network G

s2

s3

s1

A. Artale Algorithms for Data Processing

Multiple Sources and Sinks: Max-Flow Formulation
• Add a new source node s and sink node t;
• For each original source node si add edge (s, si) with capacity ∞;
• For each original sink node tj , add edge (tj , t) with capacity ∞.

Multiple sources and sinks: max-flow formulation

独Add a new source node s and sink node t.

独For each original source node si add edge (s, si) with capacity ∞.

独For each original sink node tj, add edge (tj, t) with capacity ∞.

 
Claim. 1–1 correspondence betweens flows in G and Gʹ.

 42

s

t

t1

t2

9

∞

∞

∞

∞

∞

6

7

4

5

2
3

8

1

10

flow network G′

s2

s3

s1

A. Artale Algorithms for Data Processing

Circulation with Supplies and Demands
Definition. Given a directed graph G = (V , E), with edge capacities c(e) > 0, we associateto each node a demand, d (v) ∈ Z, such that:
• d (v) < 0. The node is a supply node: the node is a source wishing to send out −d (v)units more flow than it receives.
• d (v) > 0. The node is a demand node: the node is a sink wishing to receive d (v) unitsmore flow than it sends.

A. Artale Algorithms for Data Processing

Circulation with Supplies and Demands/2Definition. Given a directed graph G = (V , E), with edge capacities c(e) > 0 and demand
d (v) ∈ Z, a circulation is a function f (e) that satisfies:[Capacity Condition.] For each node e ∈ E : 0 ≤ f (e) ≤ c(e);[Demand Condition.] For each vertex v ∈ V : ∑

e into v

f (e) − ∑
e out of v

f (e) = d (v).

Circulation with supplies and demands

Def. Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and 
node demands d(v), a circulation is a function f(e) that satisfies:

独For each e ∈ E: 0 ≤ f (e) ≤ c(e) (capacity)

独For each v ∈ V: (flow conservation)

 43

flow capacity

4 / 10

3 / 3

6 / 6

6 / 7 1 / 7

2 / 4

4 / 4

7 / 9

flow network G

11

0

�7

�8

10

(supply node)

(demand node) (transshipment node)

�6

�

e BM iQ v

f(e) �
�

e Qmi Q7 v

f(e) = d(v)
<latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit>

A. Artale Algorithms for Data Processing

Feasible CirculationsFeasible Circulation Problem. Given a directed graph G = (V , E), with edge capacities
c(e) > 0 and demand d (v) ∈ Z, check whether there exists a circulation that meets both
capacity and demand conditions.

The flow value in the following graph represents a feasible circulation.

Circulation with supplies and demands

Def. Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and 
node demands d(v), a circulation is a function f(e) that satisfies:

独For each e ∈ E: 0 ≤ f (e) ≤ c(e) (capacity)

独For each v ∈ V: (flow conservation)

 43

flow capacity

4 / 10

3 / 3

6 / 6

6 / 7 1 / 7

2 / 4

4 / 4

7 / 9

flow network G

11

0

�7

�8

10

(supply node)

(demand node) (transshipment node)

�6

�

e BM iQ v

f(e) �
�

e Qmi Q7 v

f(e) = d(v)
<latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit>

A. Artale Algorithms for Data Processing

Feasible CirculationsFeasible Circulation Problem. Given a directed graph G = (V , E), with edge capacities
c(e) > 0 and demand d (v) ∈ Z, check whether there exists a circulation that meets both
capacity and demand conditions.
The flow value in the following graph represents a feasible circulation.

Circulation with supplies and demands

Def. Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and 
node demands d(v), a circulation is a function f(e) that satisfies:

独For each e ∈ E: 0 ≤ f (e) ≤ c(e) (capacity)

独For each v ∈ V: (flow conservation)

 43

flow capacity

4 / 10

3 / 3

6 / 6

6 / 7 1 / 7

2 / 4

4 / 4

7 / 9

flow network G

11

0

�7

�8

10

(supply node)

(demand node) (transshipment node)

�6

�

e BM iQ v

f(e) �
�

e Qmi Q7 v

f(e) = d(v)
<latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit><latexit sha1_base64="tpyTsgza9J5RKtRgIV3bv5MUuLM=">AAACe3icbVBdSyMxFE3Hj1XXj6qPvgTLQhUtM8suK4gg7IuPClsVOqVkMnc0NJMMyU1pGeZ37W/xwVf9FcJmah9s3QsJh3POzc09SSGFxTB8agRLyyurX9bWN75ubm3vNHf3bq12hkOXa6nNfcIsSKGgiwIl3BcGWJ5IuEuGv2v9bgTGCq3+4KSAfs4elMgEZ+ipQfMmti4flEBjhDGWVCiKmlZ0VNGsDUc0Po/PT+mCSTukOptz0Yv6Stujo0GzFXbCadHPIJqBFpnV9WC3sRenmrscFHLJrO1FYYH9khkUXEK1ETsLBeND9gA9DxXLwfbL6e4V/eaZlGba+KOQTtmPHSXLrZ3kiXfmDB/tolaT/9N6DrOzfilU4RAUfx+UOVnHUwdJU2GAo5x4wLgR/q+UPzLDOPq456ZM3y6Az21Sjp0SXKewwEoco2GVTzFazOwzuP3eicJOdPOjdXk2y3ONHJBD0iYR+UUuyRW5Jl3CyV/yTF7Ia+MtaAXHwcm7NWjMevbJXAU//wEXUMDE</latexit>

A. Artale Algorithms for Data Processing

Feasible Circulations/2
There is a simple conservation condition that must hold in order for a feasible circulationto exist:
Property. If there exists a feasible circulation with demand d (v), then ∑v d (v) = 0, i.e.,

D = ∑
d (v)>0

d (v) = ∑
d (v)<0

−d (v)
.

A. Artale Algorithms for Data Processing

Feasible Circulations solved with Max-FlowStarting from G generate a graph G ′ as follows:
• Add new source s and sink t;
• For each vertex v with d (v) < 0, add edge (s, v) with capacity −d (v);
• For each vertex v with d (v) > 0, add edge (v , t) with capacity d (v).

Circulation with supplies and demands: max-flow formulation

独Add new source s and sink t.

独For each v with d(v) < 0, add edge (s, v) with capacity −d(v).

独For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim. G has circulation iff G ʹ has max flow of value D =

 44

s

t

10

3

6

7 7

4

4

9

supply
7 8 6

demand

10 11

flow network G′ �8

11

�6

10 0

�7

D =
�

v : d(v)>0

d(v) =
�

v : d(v)<0

�d(v)

<latexit sha1_base64="EY99dEiZK1gMaTbbHbm9TRq7UCU=">AAACc3icbVBNS8NAEN3G7++qRy+LVdBDSyKCQlUEPehNwarQlLLZTNvFzSbsTool9Df5azx40V/h3U2bg60+WHi8eTOz84JECoOu+1FyZmbn5hcWl5ZXVtfWN8qbW48mTjWHBo9lrJ8DZkAKBQ0UKOE50cCiQMJT8HKV15/6oI2I1QMOEmhFrKtER3CGVmqXb6+pX6fn1Ddp1M761M9HKhoe9A/pBXWHY+bX/fr/nrPcU81pu1xxa+4I9C/xClIhBe7am6UtP4x5GoFCLpkxTc9NsJUxjYJLGC77qYGE8RfWhaalikVgWtno5iHdt0pIO7G2TyEdqb87MhYZM4gC64wY9sx0LRf/qzVT7Jy2MqGSFEHx8aJOKinGNA+QhkIDRzmwhHEt7F8p7zHNONqYJ7aMZifAJy7JXlMleBzClCrxFTUb2hS96cz+ksejmufWvPvjyuVpkeci2SG75IB45IRckhtyRxqEkzfyTj7JV+nb2XF2nb2x1SkVPdtkAk71Bxo5vCw=</latexit><latexit sha1_base64="EY99dEiZK1gMaTbbHbm9TRq7UCU=">AAACc3icbVBNS8NAEN3G7++qRy+LVdBDSyKCQlUEPehNwarQlLLZTNvFzSbsTool9Df5azx40V/h3U2bg60+WHi8eTOz84JECoOu+1FyZmbn5hcWl5ZXVtfWN8qbW48mTjWHBo9lrJ8DZkAKBQ0UKOE50cCiQMJT8HKV15/6oI2I1QMOEmhFrKtER3CGVmqXb6+pX6fn1Ddp1M761M9HKhoe9A/pBXWHY+bX/fr/nrPcU81pu1xxa+4I9C/xClIhBe7am6UtP4x5GoFCLpkxTc9NsJUxjYJLGC77qYGE8RfWhaalikVgWtno5iHdt0pIO7G2TyEdqb87MhYZM4gC64wY9sx0LRf/qzVT7Jy2MqGSFEHx8aJOKinGNA+QhkIDRzmwhHEt7F8p7zHNONqYJ7aMZifAJy7JXlMleBzClCrxFTUb2hS96cz+ksejmufWvPvjyuVpkeci2SG75IB45IRckhtyRxqEkzfyTj7JV+nb2XF2nb2x1SkVPdtkAk71Bxo5vCw=</latexit><latexit sha1_base64="EY99dEiZK1gMaTbbHbm9TRq7UCU=">AAACc3icbVBNS8NAEN3G7++qRy+LVdBDSyKCQlUEPehNwarQlLLZTNvFzSbsTool9Df5azx40V/h3U2bg60+WHi8eTOz84JECoOu+1FyZmbn5hcWl5ZXVtfWN8qbW48mTjWHBo9lrJ8DZkAKBQ0UKOE50cCiQMJT8HKV15/6oI2I1QMOEmhFrKtER3CGVmqXb6+pX6fn1Ddp1M761M9HKhoe9A/pBXWHY+bX/fr/nrPcU81pu1xxa+4I9C/xClIhBe7am6UtP4x5GoFCLpkxTc9NsJUxjYJLGC77qYGE8RfWhaalikVgWtno5iHdt0pIO7G2TyEdqb87MhYZM4gC64wY9sx0LRf/qzVT7Jy2MqGSFEHx8aJOKinGNA+QhkIDRzmwhHEt7F8p7zHNONqYJ7aMZifAJy7JXlMleBzClCrxFTUb2hS96cz+ksejmufWvPvjyuVpkeci2SG75IB45IRckhtyRxqEkzfyTj7JV+nb2XF2nb2x1SkVPdtkAk71Bxo5vCw=</latexit><latexit sha1_base64="EY99dEiZK1gMaTbbHbm9TRq7UCU=">AAACc3icbVBNS8NAEN3G7++qRy+LVdBDSyKCQlUEPehNwarQlLLZTNvFzSbsTool9Df5azx40V/h3U2bg60+WHi8eTOz84JECoOu+1FyZmbn5hcWl5ZXVtfWN8qbW48mTjWHBo9lrJ8DZkAKBQ0UKOE50cCiQMJT8HKV15/6oI2I1QMOEmhFrKtER3CGVmqXb6+pX6fn1Ddp1M761M9HKhoe9A/pBXWHY+bX/fr/nrPcU81pu1xxa+4I9C/xClIhBe7am6UtP4x5GoFCLpkxTc9NsJUxjYJLGC77qYGE8RfWhaalikVgWtno5iHdt0pIO7G2TyEdqb87MhYZM4gC64wY9sx0LRf/qzVT7Jy2MqGSFEHx8aJOKinGNA+QhkIDRzmwhHEt7F8p7zHNONqYJ7aMZifAJy7JXlMleBzClCrxFTUb2hS96cz+ksejmufWvPvjyuVpkeci2SG75IB45IRckhtyRxqEkzfyTj7JV+nb2XF2nb2x1SkVPdtkAk71Bxo5vCw=</latexit>

A. Artale Algorithms for Data Processing

Feasible Circulations solved with Max-Flow/2Theorem. There is a feasible circulation with demands d (v) in G if and only if themaximum s-t flow in G ′ has value D .Proof.
• There cannot be an s-t flow in G ′ of value greater than D since the cut (A, B) with

A = {s} has c(A, B) = D .
• (⇒) If there is a feasible circulation f with demands d (v) in G , then by sending a flowvalue of −d (v) on each edge (s, v), and a flow value of d (v) on each edge (u, t), weobtain an s-t flow in G ′ of value D , and by the min-cut/max-flow Theorem this is amax-flow.
• (⇐) Conversely, suppose there is a max s-t flow in G ′ of value D .

I Then, each edge out of s, and each edge into t, is completely saturated with flow;
I If we delete these edges, we obtain a circulation f in G with∑

e into v

f (e)− ∑
e out of v

f (e) = d (v), for every v ∈ V .
A. Artale Algorithms for Data Processing

Circulation with Supplies, Demands, andLower Bounds
In many applications, we want to force the flow to make use of certain edges. This can beenforced by placing lower bounds on edges.
Definition. Given a directed graph G = (V , E), with edge capacities c(e) > 0, lowerbounds `(e) ≥ 0 and demand d (v) ∈ Z, a circulation is a function f (e) that satisfies:[Capacity Condition.] For each node e ∈ E : `(e) ≤ f (e) ≤ c(e);[Demand Condition.] For each vertex v ∈ V : ∑

e into v

f (e)− ∑
e out of v

f (e) = d (v).

Circulation problem with lower bounds. Given (V , E , `, c , d), does there exist a feasiblecirculation?

A. Artale Algorithms for Data Processing

Circulation with Supplies, Demands, andLower Bounds
In many applications, we want to force the flow to make use of certain edges. This can beenforced by placing lower bounds on edges.
Definition. Given a directed graph G = (V , E), with edge capacities c(e) > 0, lowerbounds `(e) ≥ 0 and demand d (v) ∈ Z, a circulation is a function f (e) that satisfies:[Capacity Condition.] For each node e ∈ E : `(e) ≤ f (e) ≤ c(e);[Demand Condition.] For each vertex v ∈ V : ∑

e into v

f (e)− ∑
e out of v

f (e) = d (v).
Circulation problem with lower bounds. Given (V , E , `, c , d), does there exist a feasiblecirculation?
A. Artale Algorithms for Data Processing

Circulation with Supplies, Demands, and Lower Bounds/2Max-flow formulation. Model lower bounds as circulation with demands (but no lowerbounds)
• Start with a flow f0 s.t. on every edge in G , f0(e) = `(e), to satisfy the lower bounds.
• Add a new flow f ′ s.t. f0 + f ′ is a feasible circulation in G , when f ′ is a feasiblecirculation in G ′ without lower bounds with demands d ′ and capacity c ′:

I For each v ∈ V , (f in
0 (v)− f out

0 (v)) + (f ′in(v)− f ′out (v)) = d (v), i.e.,
d ′(v) = d (v)− (f in

0 (v)− f out
0 (v)) = d (v)− (∑

e into v

`(e)− ∑
e out of v

`(e))
I For each e ∈ E , c ′(e) = c(e)− `(e)

Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.

独Send �(e) units of flow along edge e.

独Update demands of both endpoints.

 
 
 
 
 
 
 
Theorem. There exists a circulation in G iff there exists a circulation in Gʹ.  
Moreover, if all demands, capacities, and lower bounds in G are integers,  
then there exists a circulation in G that is integer-valued.

 
Pf sketch. f (e) is a circulation in G iff f ʹ(e) = f (e) – �(e) is a circulation in Gʹ.

 47

lower bound upper bound

d(v) d(w)
flow network G

v w[2, 9]

capacity

d(v) + 2 d(w) – 2
flow network G′

v w7

A. Artale Algorithms for Data Processing

Circulation with Supplies, Demands, and Lower Bounds/3

Theorem. There exists a circulation in G iff there exists a circulation in G ′.Proof Sketch. f is a circulation in G iff there exists a circulation f ′ in G ′ s.t.
f (e) = f ′(e) + f0(e).

A. Artale Algorithms for Data Processing

Survey Design
• We consider here a task faced by many companies wanting to measure customersatisfaction;
• We illustrates how the Bipartite Matching Problem is useful to balance decisionsacross a set of options:

I designing questionnaires by balancing relevant questions across a population ofconsumers.
• A major issue in the field of data mining to study consumer preference patterns.

I A company wishing to conduct a survey, sending customized questionnaires to aparticular group of n customers to determine which products people like.

A. Artale Algorithms for Data Processing

Survey Design Guidelines
• A customer can only be asked about products that he or she has purchased (thinkabout “Shopper Cards”);
• Ask consumer i between ci and c ′i number of products;
• Ask between pj and p′j distinct consumers about a given product j .

Problem. Decide if there is a way to design a questionnaire for each customer so as tosatisfy all these conditions.

A. Artale Algorithms for Data Processing

Survey Design as a Bipartite Matching Problem
Max-flow formulation. Model as a Bipartite Matching Problem together with a circulationproblem with lower bounds.
• Nodes are the customers and the products;
• Add edge (i , j) if customer i purchased product j ;
• Add edges from s to customer i , from product j to t;
• Demands are all set to 0;
• Let e = (s, i), then c(e) = [ci , c ′i];
• Let e = (j , t), then c(e) = [pj , p′j];
• Let e = (i , j), then c(e) = [0, 1].

A. Artale Algorithms for Data Processing

Survey Design as a Bipartite Matching Problem/2

Survey design

Max-flow formulation. Model as a circulation problem with lower bounds.

独Add edge (i, j) if consumer j owns product i.

独Add edge from s to consumer j.

独Add edge from product i to t.

独Add edge from t to s.

独All demands = 0.

独Integer circulation ⟺ feasible survey design.

 50consumers products

[0, ∞]

[0, 1]

[p1, p1ʹ][c1, c1ʹ]

ts

1

3

4

1ʹ

2ʹ

3ʹ

4ʹ

2

all supplies and
demands are 0

Theorem. The max-flow formulation of a survey design has a feasible circulation if andonly if there is a feasible (i.e., respecting all the guidelines) way to design the survey.

A. Artale Algorithms for Data Processing

Survey Design as a Bipartite Matching Problem/2

Survey design

Max-flow formulation. Model as a circulation problem with lower bounds.

独Add edge (i, j) if consumer j owns product i.

独Add edge from s to consumer j.

独Add edge from product i to t.

独Add edge from t to s.

独All demands = 0.

独Integer circulation ⟺ feasible survey design.

 50consumers products

[0, ∞]

[0, 1]

[p1, p1ʹ][c1, c1ʹ]

ts

1

3

4

1ʹ

2ʹ

3ʹ

4ʹ

2

all supplies and
demands are 0

Theorem. The max-flow formulation of a survey design has a feasible circulation if andonly if there is a feasible (i.e., respecting all the guidelines) way to design the survey.
A. Artale Algorithms for Data Processing

Airline Scheduling
Airline scheduling problem.
• Complex computational problem faced by airline carriers;
• Must produce large number of schedules that are efficient in terms of equipmentusage, crew allocation, and customer satisfaction;
• Deal with unpredictable issues like weather and breakdowns;
• One of the largest consumers of high-powered algorithmic techniques.

We concentrate on the resource allocation problem.
• Input: set of m flight routes for a given day.
• Each flight route i has: origin oi , starting time si and arrives at destination di at finaltime fi .

A. Artale Algorithms for Data Processing

Airline Scheduling
Airline scheduling problem.
• Complex computational problem faced by airline carriers;
• Must produce large number of schedules that are efficient in terms of equipmentusage, crew allocation, and customer satisfaction;
• Deal with unpredictable issues like weather and breakdowns;
• One of the largest consumers of high-powered algorithmic techniques.

We concentrate on the resource allocation problem.
• Input: set of m flight routes for a given day.
• Each flight route i has: origin oi , starting time si and arrives at destination di at finaltime fi .

A. Artale Algorithms for Data Processing

Airline Scheduling/2

Goal in this problem. Determine whether it is possible to serve all m flight routes on youroriginal list, using at most k planes in total.In order to do this, you need to find a way of efficiently reusing planes for multiple flightsroutes.

A. Artale Algorithms for Data Processing

Airline Scheduling Example388

BOS 6 DCA 7 DCA 8

Chapter 7 Network Flow

LAX II LAS 5 SEA 6

PHL 7 PIT 8 PHL 11 SFO 2 SFO SEA
2:15 3:15

(a)

BOS 6 DCA 7~’~)~A 8 LAX II -’--.. "’-...LA~S 5SE/~A6

PHL 7 - PHL 11 ." SFO
PIT 8"’. // 2:15

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An
expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) - Los Angeles (arrive 1I A.M.)

(4) Philadelphia (depart 11 A.M.) - San Francisco (arrive 2 P.M.)

(5) San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:!5 P.M.)

(6) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well

as the airports.
It is possible to use a single plane for a flight segment i, and then later for

a flight segment j, provided that
(a) the destination of i is the same as the origin of j, and there’s enough time

to perform maintenance on the plane in between; or
(b) you can add a flight segment in between that gets the plane from the

destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could
use a single plane for flights (1), (3), and (6) by having the plane sit in
Washington, DC, between flights (!) and (3), and then inserting the flight

7.9 Airline Scheduling

Los Angeles (depart 12 noon) - Las Vegas (! P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general
way as follows, abstracting away from specific roles about maintenance times
and intermediate flight segments: We will simply say that flight j is reachable
from flight i if it is possible to use the same plane for flight i, and then later
for flight j as we.ll. So under our specific rules (a) and (b) above, we can
easily determine for each pair i,j whether flight j is reachable from flight
i. (Of course, one can easily imagine more complex rules for teachability.
For example, the length of maintenance time needed in (a) might depend on
the airport; or in (b) we might require that the flight segment you insert be
sufficiently profitable on its own.) But the point is that we can handle any
set of rules with our definition: The input to the problem will include not just
the flight segments, but also a specification of the pairs (i, j) for which a later
flight j is reachable from an earlier flight i. These pairs can form an arbitrary
directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all
m flights on your original list, using at most k planes total. In order to do this,
you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we
have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)
as proposed above, we wouldn’t be able to serve all of flights (2), (4), and
(5) with the other (since there wouldn’t be enough maintenance time in San
Francisco between flights (4) and (5)). However, there is a way to serve all six
flights using two planes, via a different solution: One plane serves flights (!),
(3), and (5) (splicing in an LAX-SFO flight), while the other serves (2), (4),
and (6) (splicing in PIT-PHL and SFO-LAS).

f! Designing the Algorithm
We now discuss an efficient algorithm that can solve arbitrary instances of
the Airline Scheduling Problem, based on network flow. We will see that flow
techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of’flow will correspond
to airplanes. We will have an edge for each flight, and upper and lower capacity
bounds of 1 on these edges to require that exactly one unit of flow crosses this
edge. In other words, each flight must be served by one of the planes. If (ui, vi)
is the edge representing flight i, and (uj, vj) is the edge representing flight j,
and flight j is reachable from flight i, then we wil! have an edge from ui to uj

389

1 Boston (depart 6am) - Washington DC (arrive 7am)2 Philadelphia (depart 7am) - Pittsburgh (arrive 8am)3 Washington DC (depart 8am) - Los Angeles (arrive 11am)4 Philadelphia (depart 11am) - San Francisco (arrive 2pm)5 San Francisco (depart 2:15pm) - Seattle (arrive 3:15pm)6 Las Vegas (depart 5pm) - Seattle (arrive 6pm)
A. Artale Algorithms for Data Processing

Airline Scheduling Example/2

388

BOS 6 DCA 7 DCA 8

Chapter 7 Network Flow

LAX II LAS 5 SEA 6

PHL 7 PIT 8 PHL 11 SFO 2 SFO SEA
2:15 3:15

(a)

BOS 6 DCA 7~’~)~A 8 LAX II -’--.. "’-...LA~S 5SE/~A6

PHL 7 - PHL 11 ." SFO
PIT 8"’. // 2:15

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An
expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) - Los Angeles (arrive 1I A.M.)

(4) Philadelphia (depart 11 A.M.) - San Francisco (arrive 2 P.M.)

(5) San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:!5 P.M.)

(6) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well

as the airports.
It is possible to use a single plane for a flight segment i, and then later for

a flight segment j, provided that
(a) the destination of i is the same as the origin of j, and there’s enough time

to perform maintenance on the plane in between; or
(b) you can add a flight segment in between that gets the plane from the

destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could
use a single plane for flights (1), (3), and (6) by having the plane sit in
Washington, DC, between flights (!) and (3), and then inserting the flight

7.9 Airline Scheduling

Los Angeles (depart 12 noon) - Las Vegas (! P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general
way as follows, abstracting away from specific roles about maintenance times
and intermediate flight segments: We will simply say that flight j is reachable
from flight i if it is possible to use the same plane for flight i, and then later
for flight j as we.ll. So under our specific rules (a) and (b) above, we can
easily determine for each pair i,j whether flight j is reachable from flight
i. (Of course, one can easily imagine more complex rules for teachability.
For example, the length of maintenance time needed in (a) might depend on
the airport; or in (b) we might require that the flight segment you insert be
sufficiently profitable on its own.) But the point is that we can handle any
set of rules with our definition: The input to the problem will include not just
the flight segments, but also a specification of the pairs (i, j) for which a later
flight j is reachable from an earlier flight i. These pairs can form an arbitrary
directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all
m flights on your original list, using at most k planes total. In order to do this,
you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we
have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)
as proposed above, we wouldn’t be able to serve all of flights (2), (4), and
(5) with the other (since there wouldn’t be enough maintenance time in San
Francisco between flights (4) and (5)). However, there is a way to serve all six
flights using two planes, via a different solution: One plane serves flights (!),
(3), and (5) (splicing in an LAX-SFO flight), while the other serves (2), (4),
and (6) (splicing in PIT-PHL and SFO-LAS).

f! Designing the Algorithm
We now discuss an efficient algorithm that can solve arbitrary instances of
the Airline Scheduling Problem, based on network flow. We will see that flow
techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of’flow will correspond
to airplanes. We will have an edge for each flight, and upper and lower capacity
bounds of 1 on these edges to require that exactly one unit of flow crosses this
edge. In other words, each flight must be served by one of the planes. If (ui, vi)
is the edge representing flight i, and (uj, vj) is the edge representing flight j,
and flight j is reachable from flight i, then we wil! have an edge from ui to uj

389

Reachable Flight Routes. Whenever the same plane can be reused for different flightroutes, for example according to these rules:1 The destination of flight route i is the same as the origin of j , and there is enoughtime to perform maintenance on the plane in between; or2 A flight route can be added in between that gets the plane from the destination of ito the origin of j with adequate time in between.
A. Artale Algorithms for Data Processing

Airline Scheduling Example/3

388

BOS 6 DCA 7 DCA 8

Chapter 7 Network Flow

LAX II LAS 5 SEA 6

PHL 7 PIT 8 PHL 11 SFO 2 SFO SEA
2:15 3:15

(a)

BOS 6 DCA 7~’~)~A 8 LAX II -’--.. "’-...LA~S 5SE/~A6

PHL 7 - PHL 11 ." SFO
PIT 8"’. // 2:15

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An
expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) - Los Angeles (arrive 1I A.M.)

(4) Philadelphia (depart 11 A.M.) - San Francisco (arrive 2 P.M.)

(5) San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:!5 P.M.)

(6) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well

as the airports.
It is possible to use a single plane for a flight segment i, and then later for

a flight segment j, provided that
(a) the destination of i is the same as the origin of j, and there’s enough time

to perform maintenance on the plane in between; or
(b) you can add a flight segment in between that gets the plane from the

destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could
use a single plane for flights (1), (3), and (6) by having the plane sit in
Washington, DC, between flights (!) and (3), and then inserting the flight

7.9 Airline Scheduling

Los Angeles (depart 12 noon) - Las Vegas (! P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general
way as follows, abstracting away from specific roles about maintenance times
and intermediate flight segments: We will simply say that flight j is reachable
from flight i if it is possible to use the same plane for flight i, and then later
for flight j as we.ll. So under our specific rules (a) and (b) above, we can
easily determine for each pair i,j whether flight j is reachable from flight
i. (Of course, one can easily imagine more complex rules for teachability.
For example, the length of maintenance time needed in (a) might depend on
the airport; or in (b) we might require that the flight segment you insert be
sufficiently profitable on its own.) But the point is that we can handle any
set of rules with our definition: The input to the problem will include not just
the flight segments, but also a specification of the pairs (i, j) for which a later
flight j is reachable from an earlier flight i. These pairs can form an arbitrary
directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all
m flights on your original list, using at most k planes total. In order to do this,
you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we
have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)
as proposed above, we wouldn’t be able to serve all of flights (2), (4), and
(5) with the other (since there wouldn’t be enough maintenance time in San
Francisco between flights (4) and (5)). However, there is a way to serve all six
flights using two planes, via a different solution: One plane serves flights (!),
(3), and (5) (splicing in an LAX-SFO flight), while the other serves (2), (4),
and (6) (splicing in PIT-PHL and SFO-LAS).

f! Designing the Algorithm
We now discuss an efficient algorithm that can solve arbitrary instances of
the Airline Scheduling Problem, based on network flow. We will see that flow
techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of’flow will correspond
to airplanes. We will have an edge for each flight, and upper and lower capacity
bounds of 1 on these edges to require that exactly one unit of flow crosses this
edge. In other words, each flight must be served by one of the planes. If (ui, vi)
is the edge representing flight i, and (uj, vj) is the edge representing flight j,
and flight j is reachable from flight i, then we wil! have an edge from ui to uj

389

Solution with 2 planes.
• Plane 1: (1), (3), (6) is not a solution:

I Not enough maintenance time in San Francisco between flights (4) and (5).

• Plane 1: (1), (3), (5)
• Plane 2: (2), (4), (6)

A. Artale Algorithms for Data Processing

Airline Scheduling Example/3

388

BOS 6 DCA 7 DCA 8

Chapter 7 Network Flow

LAX II LAS 5 SEA 6

PHL 7 PIT 8 PHL 11 SFO 2 SFO SEA
2:15 3:15

(a)

BOS 6 DCA 7~’~)~A 8 LAX II -’--.. "’-...LA~S 5SE/~A6

PHL 7 - PHL 11 ." SFO
PIT 8"’. // 2:15

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An
expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) - Los Angeles (arrive 1I A.M.)

(4) Philadelphia (depart 11 A.M.) - San Francisco (arrive 2 P.M.)

(5) San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:!5 P.M.)

(6) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well

as the airports.
It is possible to use a single plane for a flight segment i, and then later for

a flight segment j, provided that
(a) the destination of i is the same as the origin of j, and there’s enough time

to perform maintenance on the plane in between; or
(b) you can add a flight segment in between that gets the plane from the

destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could
use a single plane for flights (1), (3), and (6) by having the plane sit in
Washington, DC, between flights (!) and (3), and then inserting the flight

7.9 Airline Scheduling

Los Angeles (depart 12 noon) - Las Vegas (! P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general
way as follows, abstracting away from specific roles about maintenance times
and intermediate flight segments: We will simply say that flight j is reachable
from flight i if it is possible to use the same plane for flight i, and then later
for flight j as we.ll. So under our specific rules (a) and (b) above, we can
easily determine for each pair i,j whether flight j is reachable from flight
i. (Of course, one can easily imagine more complex rules for teachability.
For example, the length of maintenance time needed in (a) might depend on
the airport; or in (b) we might require that the flight segment you insert be
sufficiently profitable on its own.) But the point is that we can handle any
set of rules with our definition: The input to the problem will include not just
the flight segments, but also a specification of the pairs (i, j) for which a later
flight j is reachable from an earlier flight i. These pairs can form an arbitrary
directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all
m flights on your original list, using at most k planes total. In order to do this,
you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we
have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)
as proposed above, we wouldn’t be able to serve all of flights (2), (4), and
(5) with the other (since there wouldn’t be enough maintenance time in San
Francisco between flights (4) and (5)). However, there is a way to serve all six
flights using two planes, via a different solution: One plane serves flights (!),
(3), and (5) (splicing in an LAX-SFO flight), while the other serves (2), (4),
and (6) (splicing in PIT-PHL and SFO-LAS).

f! Designing the Algorithm
We now discuss an efficient algorithm that can solve arbitrary instances of
the Airline Scheduling Problem, based on network flow. We will see that flow
techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of’flow will correspond
to airplanes. We will have an edge for each flight, and upper and lower capacity
bounds of 1 on these edges to require that exactly one unit of flow crosses this
edge. In other words, each flight must be served by one of the planes. If (ui, vi)
is the edge representing flight i, and (uj, vj) is the edge representing flight j,
and flight j is reachable from flight i, then we wil! have an edge from ui to uj

389

Solution with 2 planes.
• Plane 1: (1), (3), (6) is not a solution:

I Not enough maintenance time in San Francisco between flights (4) and (5).
• Plane 1: (1), (3), (5)
• Plane 2: (2), (4), (6)

A. Artale Algorithms for Data Processing

Airline Scheduling – Net Flow Solution
Circulation formulation: To see if k planes suffice we construct the following circulationgraph G .
• Units of flow will correspond to planes;
• There is an edge (ui , vi) for each flight route i with upper and lower capacity boundsof 1 to enforce that exactly one unit of flow (i.e., plane) serves the flight route;
• If flight route j is reachable from flight route i add edge (vi , uj) with capacity 1;
• Add source node s with edges (s, ui) and capacity 1 (a plane can begin the day with

any flight route);
• Add sink t with edges (vi , t) with capacity 1 (a plane can finish the day with any

flight route).
• the node s will have a demand of -k, and the node t will have a demand of k. Allother nodes will have a demand of 0.

A. Artale Algorithms for Data Processing

Airline Scheduling – Net Flow Solution/2

Airline scheduling

Circulation formulation. [to see if k crews suffice]

独For each flight i, include two nodes ui and vi.

独Add source s with demand −k, and edges (s, ui) with capacity 1.

独Add sink t with demand k, and edges (vi, t) with capacity 1.

独For each i, add edge (ui, vi) with lower bound and capacity 1.

独if flight j reachable from i, add edge (vi, uj) with capacity 1.

s

u1

u2

u3

v1

v3

v2

t

[0, 1]

[1, 1]

u4 v4

[0, 1]

[0, 1]

plane can begin the day
with any flight route

flight route is served

plane can end the day
with any flight

same plane can do flight route 2 and 4

−k

k

use k planes

A. Artale Algorithms for Data Processing

Airline Scheduling – Algorithm Analysis
Theorem. There is a way to serve all flight routes using k planes if and only if there is afeasible circulation in the circulation graph G .
Note: To output the flight routes assigned to a given plane is enough to generate thepaths with edge (s, ui) that carries one unit of flow (the problem is similar to theedge-disjoint paths).

How do you modify the algorithm to allow at most k planes?

A. Artale Algorithms for Data Processing

Airline Scheduling – Algorithm Analysis
Theorem. There is a way to serve all flight routes using k planes if and only if there is afeasible circulation in the circulation graph G .
Note: To output the flight routes assigned to a given plane is enough to generate thepaths with edge (s, ui) that carries one unit of flow (the problem is similar to theedge-disjoint paths).
How do you modify the algorithm to allow at most k planes?

A. Artale Algorithms for Data Processing

Thank You!

A. Artale Algorithms for Data Processing

