Algorithms for Data Processing Lecture V: Network Flow

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/~artale
artale@inf.unibz.it

2019/20 – First Semester MSc in Computational Data Science — UNIBZ

Some material (text, figures) displayed in these slides is courtesy of: Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

Flow Networks

- Use of graphs to model transportation networks: networks whose edges carry some sort of traffic and whose nodes act as switches passing traffic between different edges.
 - Example. Fluid network in which edges are pipes that carry liquid, and the nodes are junctures where pipes are plugged together.

Flow Networks – Ingredients

- Capacity on the edge, indicating how much "traffic" can carry;
- Source nodes in the graph, which generate traffic;
- sink (or destination) nodes in the graph, which can "absorb" traffic as it arrives;
- traffic or flow which is currently transmitted across an edge.

Flow Networks – Ingredients/2

- A Flow Network is a tuple G = (V, E, s, t, c), where:
 - (*V*, *E*) is a directed graph, with
 - a single source $s \in V$, and a single sink $t \in V$;
 - Nodes other than *s* and *t* will be called internal nodes.
 - Capacity c(e) > 0 for each $e \in E$.

Intuition. Material flowing through a transportation network, originating at source and sent to sink.

Flow Networks – Ingredients/3

We make the following assumptions:

- No edge enters the source *s*, and no edge leaves the sink *t*;
- There is at least one edge incident to each node;
- Capacities are integers.

Flow Networks - Ingredients/4

We now define what it means for our network to carry traffic or flow.

• An *st*-flow is a function, $f : E \to \mathbb{R}^+$, that satisfies: Capacity Condition $\forall e \in E.0 \le f(e) \le c(e)$ Conservation Condition $\forall v \in V \setminus \{s, t\}$. $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

f(e)

Flow Networks – Ingredients/5

Value of a flow. Amount of flow generated at the source:

$$val(f) = \sum_{e \text{ out of } s} f(e)$$

Max-Flow Problem. Find a flow of maximum value.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path *P*.
- Repeat until you get stuck!

- Start with f(e) = 0 for each edge $e \in E$.
- Find an *s*-*t* path *P* where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck!

Why the greedy algorithm fails

- Q. Why does the greedy algorithm fail?
- A. Greedy algorithm never decreases the flow on an edge.

Example. Consider the flow network *G* below.

- The unique max flow has f(v, w) = 0.
- Greedy algorithm could choose s → v → w → t as first augmenting path.

Mechanism to Undo a Bad Decision

This is a more general way of pushing flow:

- We can push forward on edges with leftover capacity;
- We can push backward on edges that are already carrying flow, to divert it in a different direction.

We now define the **residual graph**, which provides a systematic way to search for *forward-backward* operations.

Residual network

Original edge. $e = (u, v) \in E$.

- Flow *f*(*e*).
- Capacity *c*(*e*).

Reverse edge. $e^{\text{reverse}} = (v, u)$.

"Undo" flow sent.

original flow network G

Augmenting Path

Augmenting Path. A simple s – t path in the residual network G_f, for a given graph G and a flow f.
Bottleneck Capacity. Minimal residual capacity of any edge in an augmenting path.

Note. In the following a *reverse* edge will be denoted as a backward edge.

Augmenting Path/2

The following algorithm makes precise the way in which we push flow from s to t in G as a consequence of an augmenting path, P, in the residual network G_f .

```
AUGMENT(f,P)

b = BOTTLENECK(P, f);

for each edge (u, v) \in P do

\downarrow f(e) = f(e) + b in G

else

\downarrow f(e) = f(e) - b in G; /* (u, v) is a backward edge, and e = (v, u) */
```

return f

Key Property. The result of AUGMENT(f,P) is a new flow f' in G such that val(f') = val(f) + b.

Ford–Fulkerson Algorithm (1956)

```
MAX-FLOW(G)
f(e) = 0 for all e \in G;
G_0 = G;
                                               /* Initialize the residual graph G_0 */
while there is an s-t path, P, in the residual graph G_f do
    if P is a simple s-t path in G_f then
        f' = \text{AUGMENT}(f, P);
     G_{f'} = UPDATE(G_f, P, f');

f \leftarrow f';
                                                                    /* Update G_f to G_{f'} */
return f
UPDATE(G_f, P, f')
compute the bottleneck b from f and f';
for each (u, v) in P do
    c(u,v) = c(u,v) - b;
    if c(u,v) = 0 then
     delete edge (u, v) from G_f
    if (v, u) \notin G_f then
    add edge (v, u) to G_f
    c(v,u) = c(v,u) + b;
return G<sub>f</sub>
                                                    Algorithms for Data Processing
```

A. Artale

Correctness of the Ford-Fulkerson Algorithm

Property/1. Let f be a flow in G, and let P be a simple s-t path in G_f . Then, val(f') = val(f) + bottleneck(P, f); and since bottleneck(P, f) > 0, we have val(f') > val(f).

Property/2. Let $C = \max_{e} \{c(e)\}$, then, the Ford-Fulkerson Algorithm terminates in at most nC iterations of the While loop. Proof. Note that:

•
$$val(f_{max}) \leq \sum c(e) \leq nC;$$

• By Property/1, the value of the flow increases at each

iteration by at least 1 unit.

Note! The book has a different choice: $C = \sum_{e \text{ out of } s} c(e)$

Running Time of the Ford-Fulkerson Algorithm

Assuming that all nodes have at least one incident edge, then m > n/2, and so we can say that O(m + n) = O(m).

Running Time. The Ford-Fulkerson Algorithm can be implemented to run in O(mnC) time.

Proof. Complexity in one iteration of the While loop.

- The residual graph *G_f* has at most 2*m* edges;
- *G_f* is stored using an adjacency list;
- To find an s-t path in G_f , we can use BFS or DFS, which runs in O(m + n) time which, by our assumption, is the same as O(m);
- The procedure AUGMENT(f, P) takes time O(n), as the path P has at most n - 1 edges;
- The procedure UPDATE(G_f , P, b) takes also time O(n).

Insight in the Max-Flow Problem

- We continue with the analysis of the Ford-Fulkerson Algorithm.
- Objective: to find considerable insights into the Maximum-Flow problem itself.

e out of s

- We already saw that $val(f) \leq \sum c(e)$.
- Is there a better approximation of *val(f)*?

Cut in a Flow Network

Cut in a Flow Network. A cut, (S, T), in a Flow Network G = (V, E, s, t, c) is called an s-t cut if it is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

Cut in a Flow Network/2

Capacity across the cut. The capacity across a cut, c(S, T), is given by the following formula:

$$c(S, T) = \sum_{u \in S, v \in T} c(u, v) = \sum_{e \text{ out of } S} c(e)$$

Cut in a Flow Network/3

Flow across the cut. The flow across a cut, f(S, T), is given by the following formula:

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v) - \sum_{v \in T, u \in S} f(v,u) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

Flow value Lemma

Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut. Then, the value of the flow f equals the flow across the cut (S, T):

$$val(f) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

Flow value Lemma/2

Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut. Then, the value of the flow f equals the flow across the cut (S, T):

$$val(f) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

Algorithms for Data Processing

Flow value Lemma/3

Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut. Then, the value of the flow f equals the flow across the cut (S, T):

$$val(f) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

net flow across cut = (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25 5/9 0/4 5/8 0/15 5/8 10/1010/10

Flow value Lemma – Proof

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut. Then, the value of the flow f equals the flow across the cut (S, T):

$$val(f) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

$$val(f) = \sum_{e \text{ out of } s} f(e) = \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ into } s} f(e) =$$
$$= \sum_{v \in S} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e) \right) [all \text{ are } 0 \text{ except for } v=s]$$
$$= \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e)$$

Relationship between Flow and Capacity

Weak duality Lemma. Let f be any s-t flow, and (S, T) any s-t cut. Then,

 $val(f) \leq c(S, T).$

Proof.

$$val(f) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e) \le \\ \le \sum_{e \text{ out of } S} f(e) \le \\ \le \sum_{e \text{ out of } S} c(e) = c(S, T).$$

Relationship between Flow and Capacity/2

- The Weak duality Lemma abstracts from a partcular flow;
- The value of every flow is upper-bounded by the capacity of any possible cut;
- Thus, if we exhibit an s-t cut in G of some value c(S, T) we know that there cannot be an s-t flow in G of value greater than c(S, T).
- Viceversa, if we exhibit any s-t flow, f^* in G, we know that there cannot be an s-t cut in G with s-t capacity less than f^* .

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut. If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Max-flow min-cut theorem

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, IR. AND D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by T Harris as follows:

"Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other."

strong duality

A Note on the Maximum Flow Through a Network*

P. ELIAST & FEINSTEINT AND C. E. SHANNONS

Summary-This note discusses the problem of maximizing the rate of flow from one terminal to another, through a network which consists of a number of branches, each of which has a limited capaconsists of a number of principles, each of which has a finited capa-city. The main result is a theorem: The maximum possible flow from network above, some examples of cut-sets are (d, e, f). left to right through a network is equal to the minimum value among all simple cut-sets. This theorem is applied to solve a more general problem, in which a number of input nodes and a number of output nodes are used.

from one terminal to the other in the original network passes through at least one branch in the cut-set. In the and (b, c, e, g, h), (d, g, h, i). By a simple cut-set we will mean a cut-set such that if any branch is omitted it is no longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple cut-sets while (d, a, k, i) is not. When a simple cut-set is

Analyzing the Ford-Fulkerson Algorithm

• Let \overline{f} denote the flow that is returned by the Ford-Fulkerson Algorithm. We want to prove that \overline{f} is the maximum-flow by showing that there is an (S, T) cut such that:

 $val(\overline{f}) = c(S, T)$

• The Ford-Fulkerson Algorithm terminates when for the flow f there is no s - t path in the residual graph G_f . This is the only property needed for proving its maximality.

Correctness the Ford-Fulkerson Algorithm/1

Theorem 1. If f is an s-t flow such that there is no s-t path in the residual graph G_f (Augmenting Path) then there is an s-t cut (A, B) in G for which val(f) = c(A, B). Proof.

- Let A be set of nodes reachable from s in the residual network G_f and $B = V \setminus A$. We show that (A, B) is an s-t cut:
 - ► (*A*, *B*) is a partition of *V*, and $s \in A$, and $t \notin A$ by the assumption that there is no s-t path in G_f , hence $t \in B$.
- Let e = (u, v) be an edge in G for which $u \in A$ and $v \in B$, then f(e) = c(e) otherwise e would be a forward edge in G_f .
- Let e' = (u', v') be an edge in G for which $u' \in B$ and $v' \in A$, then f(e') = 0 otherwise e' would give rise to a backward edge e'' = (v', u') in G_f .
- So all edges out of *A* are completely saturated with flow, while all edges into *A* are completely unused.

Correctness the Ford-Fulkerson Algorithm/2

Figure 7.5 The (A^*, B^*) cut in the proof of (7.9).

Correctness the Ford-Fulkerson Algorithm/3

• We can now use the Flow value Lemma:

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) =$$
$$= \sum_{e \text{ out of } A} c(e) - 0$$
$$= c(A, B)$$

That proves the Theorem!

Theorem 2. The flow \overline{f} returned by the Ford-Fulkerson Algorithm is a maximum flow.

Integer-Value Flows

When all capacities are integer values we can guarantee the existence of a max-flow as expressed in the following Theorem.

Theorem [Integrality theorem.] If all capacities in the flow network are integers, then there is a maximum flow f for which every flow value f(e) is an integer.

Choosing Good Augmenting Paths

• We already saw that $val(f) \le \sum_{e \text{ out of } s} c(e)$ is an upper bound to the

number of iterations.

• The Ford-Fulkerson Algorithm can perform vary badly when pathological augmenting paths are selected: Here we need 200 steps!!

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- If we choose paths with large bottleneck capacity we will require less iterations.
- A natural idea is to select at each iteration the path that has the largest bottleneck capacity.
- Finding such paths can slow down each iteration.

Capacity-Scaling Algorithm

Main Idea: Choosing augmenting paths with large bottleneck capacity though not necessarily the largest.

- Maintain a scaling parameter Δ ;
- Let $G_f(\Delta)$ be the sub-graph of the residual network G_f containing only those edges with residual capacity $\geq \Delta$;
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.

Capacity-Scaling Algorithm/2

$$\begin{array}{l} \text{CAPACITY-SCALING}(G,s,t)\\ f(e) = 0 \text{ for all } e \in G;\\ \Delta = \text{ largest power of } 2 \leq \max_{e \ out \ of \ s} \{c(e)\};\\ \text{Compute } G_0(\Delta);\\ \text{while } \Delta \geq 1 \text{ do}\\ \\ & \text{ while there is an s-t path, } P, \ in \ the \ residual \ graph \ G_f(\Delta) \ \text{do}\\ \\ & \text{ if } P \ is \ a \ simple \ s-t \ path \ \text{then}\\ \\ & f' = \text{AUGMENT}(f, P);\\ \\ & G_{f'}(\Delta) = \text{UPDATE}(G_f(\Delta), P, f'); \\ & f \leftarrow f';\\ \\ & \Delta = \Delta/2 \\ \text{return } f \end{array}$$

Correctness of the Capacity-Scaling Algorithm

- The Capacity-Scaling Max-Flow Algorithm is just an optimized implementation of the original Ford-Fulkerson Algorithm.
- The search in the restricted residual graph $G_f(\Delta)$ is used to guide the selection of augmenting paths with large residual capacity.

Properties of Capacity–Scaling Algorithm. If the capacities are integer-valued, then throughout the Capacity–Scaling Max–Flow algorithm the flow and the residual capacities remain integer-valued. This implies that when $\Delta = 1$, $G_f(\Delta)$ is the same as G_f and hence when the algorithm terminates the flow, f, is of maximum value.

Capacity-Scaling Algorithm: Run Time Analysis

- We call an iteration of the outside While loop, with a fixed value of $\Delta,$ the $\Delta\text{-scaling phase.}$
- We denote $C = \max_{e} \{ c(e) \}.$

Lemma 1. There are $1 + \lfloor \log_2 C \rfloor \Delta$ -scaling phases. Proof. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. During the Δ -scaling phase each augmentation increases the flow value by at least Δ . Proof. During the Δ -scaling phase we only use edges with residual capacity of at least Δ .

Capacity-Scaling Algorithm: Run Time Analysis/2// (Proof Not Required)

Lemma 3. Let f be the flow at the end of a Δ -scaling phase. Then, the max-flow value $\leq val(f) + m\Delta$ (where m is the number of edges). Proof.

- We show there exists a cut (A, B) such that $c(A, B) \leq val(f) + m\Delta$.
- Let A be the set of nodes reachable from s in $G_f(\Delta)$ and $B = V \setminus A$. We show that (A, B) is an s-t cut:
 - (*A*, *B*) is a partition of *V*, and $s \in A$, and $t \notin A$ for otherwise there is an s-t path in $G_f(\Delta)$, hence $t \in B$.
- Let e = (u, v) be an edge in G for which $u \in A$ and $v \in B$, then $c(e) f(e) < \Delta$, otherwise e would be a forward edge in $G_f(\Delta)$, contradicting $v \in B$.
- Let e' = (u', v') be an edge in G for which $u' \in B$ and $v' \in A$, then $f(e') < \Delta$, otherwise e' would give rise to a backward edge e'' = (v', u') in $G_f(\Delta)$.
- So all edges out of A are almost saturated $(f(e) > c(e) \Delta)$, while

Algorithms for Data Processing

A. Artale

Capacity-Scaling Algorithm: Run Time Analysis/3 (Proof Not Required)

Capacity-Scaling Algorithm: Run Time Analysis/4 (Proof Not Required)

Proof of Lemma 3 (cont.)

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \ge \text{ [By the Flow Value Lemma]}$$
$$\ge \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ into } A} \Delta =$$
$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ into } A} \Delta \ge c(A, B) - m\Delta.$$

Thus, $c(A, B) \leq val(f) + m\Delta$, which proves Lemma 3.

Capacity-Scaling Algorithm: Run Time Analysis/5 (Proof Not Required)

Lemma 4. The number of augmentations in each scaling phase is $\leq 2m$. Proof.

- True in the first scaling phase: we can have as many augmenting paths as many edges out of *s* (note that by Lemma 2, each augmenting phase increases the flow by at least Δ);
- In any later Δ -scaling phase, let f_p the flow at the end of the *previous* scaling phase;
- In the *previous* scaling phase we had $\Delta_p = 2\Delta$;
- By Lemma 3, $val(f_{max}) \leq val(f_p) + m\Delta_p = val(f_p) + 2m\Delta;$
- In the current Δ -scaling phase, by Lemma 2, each augmentation increases the flow by at least Δ , and hence there can be at most 2m augmentations.

Capacity-Scaling Algorithm: Run Time Analysis/6 (Proof Not Required)

Theorem. The Scaling Max-Flow algorithm in a graph with *m* edges and integer capacities finds a maximum flow in at most $2m(1 + \lfloor \log_2 C \rfloor)$ augmentations. It can be implemented to run in at most $O(m^2 \log_2 C)$ time. Proof.

- By Lemmas 1 and 4, we can have at most 2m(1 + [log₂ C]) augmentations, i.e., O(m log₂ C);
- Each augmentation takes *O*(*m*) including the time to find a path (BFS/DFS) and to generate the new residual graph.

• When *C* is large, the scaling algorithm, $O(m^2 \log_2 C)$, outperforms the generic implementation of the Ford-Fulkerson Algorithm, O(mnC).

- When *C* is large, the scaling algorithm, $O(m^2 \log_2 C)$, outperforms the generic implementation of the Ford-Fulkerson Algorithm, O(mnC).
- The generic Ford-Fulkerson algorithm requires time proportional to the *magnitude* of the capacities, while the scaling algorithm only requires time proportional to the *number of bits* needed to specify the capacities in the input.

- When *C* is large, the scaling algorithm, $O(m^2 \log_2 C)$, outperforms the generic implementation of the Ford-Fulkerson Algorithm, O(mnC).
- The generic Ford-Fulkerson algorithm requires time proportional to the *magnitude* of the capacities, while the scaling algorithm only requires time proportional to the *number of bits* needed to specify the capacities in the input.
- When the generic Ford–Fulkerson algorithm chooses patological paths could require *C* iterations, i.e., exponential time in the size of the bit representation of the input.

- When *C* is large, the scaling algorithm, $O(m^2 \log_2 C)$, outperforms the generic implementation of the Ford-Fulkerson Algorithm, O(mnC).
- The generic Ford-Fulkerson algorithm requires time proportional to the *magnitude* of the capacities, while the scaling algorithm only requires time proportional to the *number of bits* needed to specify the capacities in the input.
- When the generic Ford–Fulkerson algorithm chooses patological paths could require *C* iterations, i.e., exponential time in the size of the bit representation of the input.
- The scaling algorithm is running in time polynomial in the size of the input, i.e., the number of edges and the bit representation of the capacities.

Augmenting Path Algorithms: Summary

year	method	# augmentations	running time	
1955	augmenting path	n C	O(m n C)	
1972	fattest path	$m \log(mC)$	$O(m^2 \log n \log (mC))$	Ţ
1972	capacity scaling	$m \log C$	$O(m^2 \log C)$	fat paths
1985	improved capacity scaling	$m \log C$	$O(m n \log C)$	1
1970	shortest augmenting path	m n	$O(m^2 n)$	Ţ
1970	level graph	m n	$O(m n^2)$	shortest path
1983	dynamic trees	m n	$O(m n \log n)$	1

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

Max-Flow Algorithms: Summary

year	method	worst case	discovered by
1951	simplex	$O(m n^2 C)$	Dantzig
1955	augmenting paths	$O(m \ n \ C)$	Ford–Fulkerson
1970	shortest augmenting paths	$O(m n^2)$	Edmonds-Karp, Dinitz
1974	blocking flows	$O(n^3)$	Karzanov
1983	dynamic trees	$O(m n \log n)$	Sleator-Tarjan
1985	improved capacity scaling	$O(m n \log C)$	Gabow
1988	push-relabel	$O(m n \log (n^2 / m))$	Goldberg-Tarjan
1998	binary blocking flows	$O(m^{3/2}\log{(n^2/m)\log{C}})$	Goldberg-Rao
2013	compact networks	O(m n)	Orlin
2014	interior-point methods	$\tilde{O}(mm^{1/2}\logC)$	Lee–Sidford
2016	electrical flows	$ ilde{O}(m^{10/7} C^{1/7})$	Mądry
20xx		335	

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

Thank You!