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Flow Networks

• Use of graphs to model transportation networks: networks whoseedges carry some sort of traffic and whose nodes act as switchespassing traffic between different edges.
I Example. Fluid network in which edges are pipes that carry liquid,and the nodes are junctures where pipes are plugged together.
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Flow Networks – Ingredients

• Capacity on the edge, indicating how much “traffic” can carry;
• Source nodes in the graph, which generate traffic;
• sink (or destination) nodes in the graph, which can "absorb" trafficas it arrives;
• traffic or flow which is currently transmitted across an edge.
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Flow Networks – Ingredients/2A Flow Network is a tuple G = (V , E , s, t, c), where:
• (V , E ) is a directed graph, with
• a single source s ∈ V , and a single sink t ∈ V ;
• Nodes other than s and t will be called internal nodes.
• Capacity c(e) > 0 for each e ∈ E .Intuition. Material flowing through a transportation network,originating at source and sent to sink.

Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V  and sink t ∈ V. 

・Capacity c(e) > 0 for each e ∈ E. 

 
Intuition.  Material flowing through a transportation network; 
material originates at source and is sent to sink.
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Flow Networks – Ingredients/3

We make the following assumptions:
• No edge enters the source s , and no edge leaves the sink t;
• There is at least one edge incident to each node;
• Capacities are integers.
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Flow Networks – Ingredients/4We now define what it means for our network to carry traffic or flow.
• An st-flow is a function, f : E → R+, that satisfies:Capacity Condition ∀e ∈ E .0 ≤ f (e) ≤ c(e)Conservation Condition ∀v ∈ V \ {s, t}.

∑
e into v

f (e) = ∑
e out of v

f (e)

Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation]
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Flow Networks – Ingredients/5Value of a flow. Amount of flow generated at the source:
val (f ) = ∑

e out of s

f (e)
Max-Flow Problem. Find a flow of maximum value.

Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:

Max-flow problem.  Find a flow of maximum value. 
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Toward a Max-Flow Algorithm
Greedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a Max-Flow Algorithm
Greedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 
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Toward a Max-Flow Algorithm
Greedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a Max-Flow Algorithm
Greedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

+ 2 = 10

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a Max-Flow Algorithm
Greedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a Max-Flow AlgorithmGreedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a Max-Flow AlgorithmGreedy algorithm.
• Start with f (e) = 0 for each edge e ∈ E .
• Find an s-t path P where each edge has f (e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck!

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Why the greedy algorithm failsQ. Why does the greedy algorithm fail?A. Greedy algorithm never decreases the flow on an edge.Example. Consider the flow network G below.
• The unique max flow has f (v , w ) = 0.
• Greedy algorithm could choose s → v → w → t as firstaugmenting path.

Q.  Why does the greedy algorithm fail? 

A.  Once greedy algorithm increases flow on an edge, it never decreases it. 

 
Ex.  Consider flow network G . 

・The unique max flow has f *(v, w) = 0. 

・Greedy algorithm could choose s→v→w→t  as first augmenting path. 

 
 
 
 
 
 
 
 
 
 
Bottom line.  Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails

 19

s

t

w

v

1

2

2

22

flow network G

A. Artale Algorithms for Data Processing



Mechanism to Undo a Bad Decision
This is a more general way of pushing flow:
• We can push forward on edges with leftover capacity;
• We can push backward on edges that are already carrying flow, todivert it in a different direction.We now define the residual graph, which provides a systematic way tosearch for forward-backward operations.
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Residual network

Original edge.  e = (u, v)  ∈  E. 

・Flow f (e). 

・Capacity c(e). 
 
Reverse edge.  ereverse = (v, u). 

・“Undo” flow sent. 

 
Residual capacity. 

 
 
 
 
 
Residual network.  Gf = (V, Ef , s, t, cf ). 

・Ef  = {e : f (e) <  c(e)}  ∪  {ereverse : f (e)  >  0}. 

・Key property:  f ʹ is a flow in Gf iff  f + f ʹ is a flow in G.
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Augmenting Path
Augmenting Path. A simple s − t path in the residual network Gf , for agiven graph G and a flow f .Bottleneck Capacity. Minimal residual capacity of any edge in anaugmenting path.
Note. In the following a reverse edge will be denoted as a backwardedge.

A. Artale Algorithms for Data Processing



Augmenting Path/2
The following algorithm makes precise the way in which we push flowfrom s to t in G as a consequence of an augmenting path, P , in theresidual network Gf .
AUGMENT(f,P)b = BOTTLENECK(P, f);
for each edge (u, v ) ∈ P do

if e = (u, v ) is a forward edge then
f (e) = f (e) + b in G

else
f (e) = f (e)− b in G ; /* (u, v ) is a backward edge, and e = (v , u) */

return f

Key Property. The result of AUGMENT(f,P) is a new flow f ′ in G suchthat val (f ′) = val (f ) + b.
A. Artale Algorithms for Data Processing



Ford-Fulkerson Algorithm (1956)
MAX-FLOW(G)
f (e) = 0 for all e ∈ G ;
G0 = G ; /* Initialize the residual graph G0 */
while there is an s-t path, P , in the residual graph Gf do

if P is a simple s-t path in Gf then
f ′ = AUGMENT(f , P);
Gf ′ = UPDATE(Gf ,P,f ′); /* Update Gf to Gf ′ */
f ← f ′;

return f
UPDATE(Gf ,P,f’)compute the bottleneck b from f and f ′;
for each (u, v ) in P doc(u,v) = c(u,v) - b;

if c(u,v) =0 thendelete edge (u, v ) from Gf

if (v , u) 6∈ Gf thenadd edge (v , u) to Gfc(v,u) = c(v,u) + b;
return Gf
A. Artale Algorithms for Data Processing



Correctness of the Ford-Fulkerson Algorithm
Property/1. Let f be a flow in G , and let P be a simple s-t path in Gf .Then, val (f ′) = val (f ) + bottleneck(P, f ); and since

bottleneck(P, f ) > 0, we have val (f ′) > val (f ).Property/2. Let C = maxe{c(e)}, then, the Ford-Fulkerson Algorithmterminates in at most nC iterations of the While loop.Proof. Note that:
• val(fmax ) ≤ ∑

e out of s

c(e) ≤ nC ;
• By Property/1, the value of the flow increases at eachiteration by at least 1 unit.

Note! The book has a different choice: C = ∑
e out of s

c(e)
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Running Time of the Ford-Fulkerson Algorithm
Assuming that all nodes have at least one incident edge, then m > n/2,and so we can say that O(m + n) = O(m).Running Time. The Ford-Fulkerson Algorithm can be implemented torun in O(mnC ) time.Proof. Complexity in one iteration of the While loop.
• The residual graph Gf has at most 2m edges;
• Gf is stored using an adjacency list;
• To find an s-t path in Gf , we can use BFS or DFS, which runs in

O(m + n) time which, by our assumption, is the same as O(m);
• The procedure AUGMENT(f , P) takes time O(n), as the path P has atmost n − 1 edges;
• The procedure UPDATE(Gf , P, b) takes also time O(n).
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Insight in the Max-Flow Problem
• We continue with the analysis of the Ford-Fulkerson Algorithm.
• Objective: to find considerable insights into the Maximum-Flowproblem itself.
• We already saw that val (f ) ≤ ∑

e out of s

c(e).
• Is there a better approximation of val (f )?
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Cut in a Flow Network
Cut in a Flow Network. A cut, (S , T ), in a Flow Network
G = (V , E , s, t, c) is called an s-t cut if it is a partition of V into S and
T = V \ S such that s ∈ S and t ∈ T .

Flusso massimo Dimostrazione di correttezza

Dimostrazione correttezza – Definizioni

Taglio
Un taglio (S, T ) della rete di flusso G = (V,E, s, t, c) è una partizione di
V in S e T = V − S tale che s ∈ S e t ∈ T .
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Cut in a Flow Network/2Capacity across the cut. The capacity across a cut, c(S , T ), is given bythe following formula:
c(S , T ) = ∑

u∈S ,v∈T

c(u, v ) = ∑
e out of S

c(e)
Flusso massimo Dimostrazione di correttezza

Dimostrazione correttezza – Definizioni

Capacità di un taglio
La capacità c(S, T ) attraverso il taglio (S, T ) è pari a:

c(S, T ) =
∑

u∈S,v∈T
c(u, v)
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Cut in a Flow Network/3Flow across the cut. The flow across a cut, f (S , T ), is given by thefollowing formula:
f (S , T ) = ∑

u∈S ,v∈T

f (u, v )− ∑
v∈T ,u∈S

f (v , u) = ∑
e out of S

f (e)− ∑
e into S

f (e)

Flusso massimo Dimostrazione di correttezza

Dimostrazione correttezza – Definizioni

Flusso di un taglio
Se f è un flusso in G, il flusso netto F (S, T ) attraverso (S, T ) è pari a:

F (S, T ) =
∑

u∈S,v∈T
f(u, v)
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Flow value LemmaCuts provide very natural upper bounds on the values of flows.
Flow value Lemma. Let f be any s-t flow and (S , T ) be any s-t cut.Then, the value of the flow f equals the flow across the cut (S , T ):

val (f ) = ∑
e out of S

f (e)− ∑
e into S

f (e)
Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Flow value Lemma/2Cuts provide very natural upper bounds on the values of flows.
Flow value Lemma. Let f be any s-t flow and (S , T ) be any s-t cut.Then, the value of the flow f equals the flow across the cut (S , T ):

val (f ) = ∑
e out of S

f (e)− ∑
e into S
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Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 
the value of the flow f equals the net flow across the cut (A, B).  
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Flow value Lemma/3Cuts provide very natural upper bounds on the values of flows.
Flow value Lemma. Let f be any s-t flow and (S , T ) be any s-t cut.Then, the value of the flow f equals the flow across the cut (S , T ):

val (f ) = ∑
e out of S

f (e)− ∑
e into S

f (e)
Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 
the value of the flow f equals the net flow across the cut (A, B).  
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Flow value Lemma – Proof
Flow value Lemma. Let f be any s-t flow and (S , T ) be any s-t cut.Then, the value of the flow f equals the flow across the cut (S , T ):

val (f ) = ∑
e out of S

f (e)− ∑
e into S

f (e)
Proof.

val (f ) = ∑
e out of s

f (e) = ∑
e out of s

f (e)− ∑
e into s

f (e) =
= ∑

v∈S

( ∑
e out of v

f (e)− ∑
e into v

f (e)) [all are 0 except for v=s]
= ∑

e out of S

f (e)− ∑
e into S

f (e)
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Relationship between Flow and Capacity
Weak duality Lemma. Let f be any s-t flow, and (S , T ) any s-t cut.Then,

val (f ) ≤ c(S , T ).
Proof.

val (f ) = ∑
e out of S

f (e)− ∑
e into S

f (e) ≤
≤

∑
e out of S

f (e) ≤
≤

∑
e out of S

c(e) = c(S , T ).
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Relationship between Flow and Capacity/2
• The Weak duality Lemma abstracts from a partcular flow;
• The value of every flow is upper-bounded by the capacity of anypossible cut;
• Thus, if we exhibit an s-t cut in G of some value c(S , T ) we knowthat there cannot be an s-t flow in G of value greater than c(S , T ).
• Viceversa, if we exhibit any s-t flow, f ∗ in G , we know that therecannot be an s-t cut in G with s-t capacity less than f ∗.
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Certificate of optimality

Corollary.  Let f  be a flow and let (A, B) be any cut. 
If val( f )  = cap(A, B), then f  is a max flow and (A, B) is a min cut. 

 
Pf. 

・For any flow f ʹ:  val( f ʹ)  ≤  cap(A, B)  = val( f ).   

・For any cut (Aʹ, Bʹ):  cap(Aʹ, Bʹ)  ≥  val( f )  =  cap(A, B).  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

 32

1956 IRE TRANXACTIONX ON INFORiMATION THEORY 117 

A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 

c 

ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 

* Manuscript received by the PGIT, July 11, 1956. 
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst. 

Tech., CambrTdge, -Mass. 
1 Lincoln Lab., M.I.T., Lexington! Mass. 
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam- 

bridge, Mass. 

from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published. 
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min- 

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math. 
Studies, no. 38, Princeton, New Jersey, 1956. 

strong duality
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Analyzing the Ford-Fulkerson Algorithm
• Let f denote the flow that is returned by the Ford-FulkersonAlgorithm. We want to prove that f is the maximum-flow byshowing that there is an (S , T ) cut such that:

val(f ) = c(S , T )
• The Ford-Fulkerson Algorithm terminates when for the flow fthere is no s − t path in the residual graph Gf .This is the only property needed for proving its maximality.
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Correctness the Ford-Fulkerson Algorithm/1Theorem 1. If f is an s-t flow such that there is no s-t path in theresidual graph Gf (Augmenting Path) then there is an s-t cut (A, B) in
G for which val (f ) = c(A, B).Proof.
• Let A be set of nodes reachable from s in the residual network Gfand B = V \ A. We show that (A, B) is an s-t cut:

I (A, B) is a partition of V , and s ∈ A, and t 6∈ A by the assumptionthat there is no s-t path in Gf , hence t ∈ B .
• Let e = (u, v ) be an edge in G for which u ∈ A and v ∈ B , then

f (e) = c(e) – otherwise e would be a forward edge in Gf .
• Let e ′ = (u′, v ′) be an edge in G for which u′ ∈ B and v ′ ∈ A, then

f (e ′) = 0 – otherwise e ′ would give rise to a backward edge
e ′′ = (v ′, u′) in Gf .

• So all edges out of A are completely saturated with flow, while alledges into A are completely unused.
A. Artale Algorithms for Data Processing



Correctness the Ford-Fulkerson Algorithm/2
348 Chapter 7 Network Flow

Proof.
fin (A)

~ four (A)

~ f(e)
out of A

e out of A

= c(A, B).

Here the first line is simply (7.6); we pass from the first to the second since
fro(A) >_ 0, and we pass from the third to the fourth by applying the capacity
conditions to each term of the sum. []

In a sense, (7.8) looks weaker than (7.6), since it is only an inequality
rather than an equality. However, it will be extremely useful for us, since its
right-hand side is independent of any particular flow f. What (7.8) says is that
the value of every flow is upper-bounded by the capacity of every cut. In other
words, if we exhibit any s-t cut in G of some value c*, we know immediately by
(7.8) that there cannot be an s-t flow in G of value greater than c*. Conversely,
if we exhibit any s-t flow in G of some value v*, we know immediately by (7.8)

that there cannot be an s-t cut in G of value less than v*.

/~ Analyzing the Algorithm: Max-Flow Equals Min-Cut
Let ~ denote the flow that is returned by the Ford-Fulkerson Algorithm. We
want to show that ~ has the maximum possible value of any flow in G, and
we do this by the method discussed above: We exhibit an s-t cut (A% B*) for
which v(~) = c(A*, B*). This immediately establishes that ~ has the maximum
value of any flow, and that (A*, B*) has the minimum capacity of any s-t cut.

The Ford-Fulkerson Algorithm terminates when the flow f has no s-t path
in the residual graph Gf. This turns out to be the only property needed for
proving its maximality.

(7.9) If f is an s-t-flow such that there is no s-t path in the residual graph
then there is an s-t cut (A*,B*) in G for which v(f) = c(A*, B*). Consequently,
f has the maximum value of any flow in G, and (A*, B*) has the minimum
capacity of any s-t cut in G. .....

Proof. The statement claims the existence of a cut satisfying a certain desirable
property; thus we must now identify such a cut. To this end, let A* denote the
set of all nodes v in G for which there is an s-v path in @. Let B* denote.~e

set of all other nodes: B* = V - A*.

7.2 Maximum Flows and Minimum Cuts in a Network

Residual graph
wi(U, v) is samrated~th flow. )

n(U’, v’) carries~o flow.

Figure 7.5 The (A*, B*) cut in the proof of (7.9).

First we establish that (A*, B*) is indeed an s-t cut. It is clearly a partition
of V. The source s belongs to A* since there is always a path from s to s.
Moreover, t ~ A* by the assumption that there is no s-t path in the residual

.:
Next, suppose that e = (u, v) is an edge in G for which u ~ A* and v ~ B*, as

shown in Figure 7.5. We claim that f(e) = Ce. For if not, e would be a forward
edge in the residual graph Gf, and since u ~ A*, there is an s-u path in Gf;
appending e to this path, we would obtain an s-v path in Gf, contradicting our
assumption that v s B*.

Now suppose that e’ = (u’, v’) is an edge in G for which u’ ~ B* and v’ ~ A*.
We claim that f(e’) = 0. For if not, e’ would give rise to a backward edge
e" = (v’, u’) in the residual graph Gf, and since v’ ~ A*, there is an s-v’ path in
Gf; appending e" to this path, we would obtain an s-u’ path in Gf, contradicting
our assumption that u’ ~ B*.

So all edges out of A* are completely saturated with flow, while all edges
into A* are completely unused. We can now use (7.6) to reach the desired
conclusion:

v(f) = f°Ut(A*) - fin(A*)

= 2 f(e)-
e into A*

0
e out of A*

=c(A*,B*). []

f(e)

349
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Correctness the Ford-Fulkerson Algorithm/3
• We can now use the Flow value Lemma:

val (f ) = ∑
e out of A

f (e)− ∑
e into A

f (e) =
= ∑

e out of A

c(e)− 0

= c(A, B)
That proves the Theorem!

Theorem 2. The flow f returned by the Ford-Fulkerson Algorithm is amaximum flow.
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Integer-Value Flows
When all capacities are integer values we can guarantee the existenceof a max-flow as expressed in the following Theorem.
Theorem [Integrality theorem.] If all capacities in the flow network areintegers, then there is a maximum flow f for which every flow value
f (e) is an integer.
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Choosing Good Augmenting Paths
• We already saw that val (f ) ≤ ∑

e out of s

c(e) is an upper bound to the
number of iterations.

• The Ford-Fulkerson Algorithm can perform vary badly whenpathological augmenting paths are selected: Here we need 200steps!!352 Chapter 7 Network Flow

In the next section, we discuss how to select augmenting paths so as to avoid
the potential bad behavior of the algorithm.

7.3 Choosing Good Augmenting Paths
In the previous section, we saw that any way of choosing an augmenting path
increases the value of the flow, and this led to a bound of C on the number of
augmentations, where C = ~e out of s % When C is not very large, this can be
a reasonable bound; however, it is very weak when C is large.

To get a sense for how bad this bound can be, consider the example graph
in Figure 7.2; but this time assume the capacities are as follows: The edges
(s, v), (s, u), (v, t) and (u, t) have capacity 100, and the edge (u, v) has capacity
!, as shown in Figure 7.6. It is easy to see that the maximum flow has value 200,
and has f(e) = 100 for the edges (s, v), (s, u), (v, t) and (u, t) and value 0 on the
edge (u, v). This flow can be obtained by a sequence of two augmentations,
using the paths of nodes s, u, t and path s, v, t. But consider how bad the
Ford-Fulkerson Algorithm can be with pathological choices for the augntenting
paths. Suppose we start with augmenting path P1 of nodes s, u, u, t in this
order (as shown in Figure 7.6). This path has bottleneck(P1, f) = 1. After
this augmentation, we have [(e) = 1 on the edge e = (u, v), so the reverse
edge is in the residual graph. For the next augmenting path, we choose the
path P2 of the nodes s, v, u, t in this order. In this second augmentation, we
get bottleneck(P2, f) = 1 as well. After this second augmentation, we have
f(e) = 0 for the edge e = (u, u), so the edge is again in the residual graph.
Suppose we alternate between choosing PI and P2 for augmentation. In this
case, each augmentation will have 1 as the bottleneck capacity, and it will
take 200 augmentations to get the desired flow of value 200. This is exactly
the bound we proved in (7.4), since C = 200 in this example.

~ Designing a Faster Flow Algorithm
The goal of this section is to show that with a better choice of paths, we can
improve this bound significantly. A large amount of work has been devoted
to finding good ways of choosing augmenting paths in the Maximum-Flow
Problem so as to minimize the number of iterations. We focus here on one
of the most natura! approaches and will mention other approaches at the end
of the section. Recall that augmentation increases the value of the maximum
flow by the bottleneck capacity of the selected path; so if we choose paths
with large bottleneck capacity, we will be making a lot of progress. A natural
idea is to select the path that has the largest bottleneck capacity. Having to
find such paths can slow down each individual iteration by quite a bit. We-will
avoid this slowdown by not worrying about selecting the path that has exactly

7.3 Choosing Good Augmenting Paths

100 .~x~ 100

(b)

I00

Pl

99

(d)
Figure 7.6 Parts (a) through (d) depict four iterations of the Ford-Fu~erson Algorithm
using a bad choice of augmenting paths: The augmentations alternate between the path
Pl through the nodes s, u, u, t in order and the path P2 through the nodes s, u, u, t in
order.

the largest bottleneck capacity. Instead, we will maintain a so-called scaling
parameter A, and we will look for paths that have bottleneck capacity of at
least A.

Let Gf(A) be the subset of the residual graph consisting only of edges with
residual capacity of at least A. We will work with values of A that are powers
of 2. The algorithm is as follows.

Scaling Max-Flow

Initially f(e)= 0 for all e in G

Initially set A to be the largest power of 2 that is no larger

than the maximum capacity out of s: A<maXeoutofsCe
While A >_ 1

While there is an s-t path in the graph
Let P be a simple s-t path in G/(A)

353
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Choosing Good Augmenting Paths
Use care when selecting augmenting paths.
• If we choose paths with large bottleneck capacity we will requireless iterations.
• A natural idea is to select at each iteration the path that has thelargest bottleneck capacity.
• Finding such paths can slow down each iteration.
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Capacity-Scaling AlgorithmMain Idea: Choosing augmenting paths with large bottleneck capacitythough not necessarily the largest.
• Maintain a scaling parameter ∆;
• Let Gf (∆) be the sub-graph of the residual network Gf containingonly those edges with residual capacity ≥ ∆;
• Any augmenting path in Gf (∆) has bottleneck capacity ≥ ∆.

Capacity-scaling algorithm

Overview.  Choosing augmenting paths with “large” bottleneck capacity. 

・Maintain scaling parameter Δ. 

・Let Gf (Δ) be the part of the residual network containing 
only those edges with capacity ≥  Δ. 

・Any augmenting path in Gf (Δ) has bottleneck capacity ≥  Δ.

 42Gf

t

s
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0
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Gf (Δ),  Δ = 100
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0

though not necessarily largest

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm/2
CAPACITY-SCALING(G,s,t)
f (e) = 0 for all e ∈ G ;∆ = largest power of 2 ≤ maxe out of s{c(e)};Compute G0(∆);
while ∆ ≥ 1 do

while there is an s-t path, P , in the residual graph Gf (∆) do
if P is a simple s-t path then

f ′ = AUGMENT(f , P);
Gf ′ (∆) = UPDATE(Gf (∆),P,f ′); /* Update Gf (∆) to Gf ′ (∆) */
f ← f ′;

∆ = ∆/2
return f
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Correctness of the Capacity-Scaling Algorithm
• The Capacity-Scaling Max-Flow Algorithm is just an optimizedimplementation of the original Ford-Fulkerson Algorithm.
• The search in the restricted residual graph Gf (∆) is used to guidethe selection of augmenting paths with large residual capacity.

Properties of Capacity-Scaling Algorithm. If the capacities areinteger-valued, then throughout the Capacity-Scaling Max-Flowalgorithm the flow and the residual capacities remain integer-valued.This implies that when ∆ = 1, Gf (∆) is the same as Gf and hence whenthe algorithm terminates the flow, f , is of maximum value.
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Capacity-Scaling Algorithm: Run Time Analysis
• We call an iteration of the outside While loop, with a fixed value of∆, the ∆-scaling phase.
• We denote C = maxe{c(e)}.Lemma 1. There are 1 + blog2 Cc ∆-scaling phases.Proof. Initially C /2 < ∆ ≤ C ; ∆ decreases by a factor of 2 in eachiteration.

Lemma 2. During the ∆-scaling phase each augmentation increases theflow value by at least ∆.Proof. During the ∆-scaling phase we only use edges with residualcapacity of at least ∆.
A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/2//(Proof Not Required)Lemma 3. Let f be the flow at the end of a ∆-scaling phase. Then, themax-flow value ≤ val(f ) + m∆ (where m is the number of edges).Proof.
• We show there exists a cut (A, B) such that c(A, B) ≤ val(f ) + m∆.
• Let A be the set of nodes reachable from s in Gf (∆) and B = V \A.We show that (A, B) is an s-t cut:

I (A, B) is a partition of V , and s ∈ A, and t 6∈ A for otherwise thereis an s-t path in Gf (∆), hence t ∈ B .
• Let e = (u, v ) be an edge in G for which u ∈ A and v ∈ B , then

c(e)− f (e) < ∆, otherwise e would be a forward edge in Gf (∆),contradicting v ∈ B .
• Let e ′ = (u′, v ′) be an edge in G for which u′ ∈ B and v ′ ∈ A, then

f (e ′) < ∆, otherwise e ′ would give rise to a backward edge
e ′′ = (v ′, u′) in Gf (∆).

• So all edges out of A are almost saturated (f (e) > c(e)− ∆), whileall edges into A are almost empty (f (e) < ∆).A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/3(Proof Not Required)
Lemma 2.  Let f be the flow at the end of a Δ-scaling phase.  
Then, the max-flow value  ≤  val( f ) + m Δ. 

Pf. 

・We show there exists a cut (A, B) such that cap(A, B)  ≤  val( f ) + m Δ. 

・Choose A to be the set of nodes reachable from s in Gf (Δ). 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

t

Capacity-scaling algorithm:  analysis of running time

 46

original flow network

s

A B

edge e = (v, w) with v ∈ B, w ∈ A 
must have f(e) < Δ

edge e = (v, w) with v ∈ A, w ∈ B 
must have f(e) > c(e) – Δ 
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Capacity-Scaling Algorithm: Run Time Analysis/4(Proof Not Required)
Proof of Lemma 3 (cont.)

val(f ) = ∑
e out of A

f (e)− ∑
e into A

f (e) ≥ [By the Flow Value Lemma]
≥

∑
e out of A

(
c(e)− ∆)− ∑

e into A

∆ =
= ∑

e out of A

c(e)− ∑
e out of A

∆ − ∑
e into A

∆ ≥ c(A, B)−m∆.

Thus, c(A, B) ≤ val(f ) + m∆, which proves Lemma 3.
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Capacity-Scaling Algorithm: Run Time Analysis/5(Proof Not Required)
Lemma 4. The number of augmentations in each scaling phase is ≤ 2m.Proof.
• True in the first scaling phase: we can have as many augmentingpaths as many edges out of s (note that by Lemma 2, eachaugmenting phase increases the flow by at least ∆);
• In any later ∆-scaling phase, let fp the flow at the end of the

previous scaling phase;
• In the previous scaling phase we had ∆p = 2∆;
• By Lemma 3, val(fmax) ≤ val(fp) + m∆p = val(fp) + 2m∆;
• In the current ∆-scaling phase, by Lemma 2, each augmentationincreases the flow by at least ∆, and hence there can be at most

2m augmentations.
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Capacity-Scaling Algorithm: Run Time Analysis/6(Proof Not Required)
Theorem. The Scaling Max-Flow algorithm in a graph with m edgesand integer capacities finds a maximum flow in at most
2m(1 + blog2 Cc) augmentations. It can be implemented to run in atmost O(m2 log2 C ) time.Proof.
• By Lemmas 1 and 4, we can have at most 2m(1 + blog2 Cc)augmentations, i.e., O(m log2 C );
• Each augmentation takes O(m) including the time to find a path(BFS/DFS) and to generate the new residual graph.
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Considerations on Running Time
• When C is large, the scaling algorithm, O(m2 log2 C ), outperformsthe generic implementation of the Ford-Fulkerson Algorithm,

O(mnC ).

• The generic Ford-Fulkerson algorithm requires time proportionalto the magnitude of the capacities, while the scaling algorithmonly requires time proportional to the number of bits needed tospecify the capacities in the input.
• When the generic Ford-Fulkerson algorithm chooses patologicalpaths could require C iterations, i.e., exponential time in the sizeof the bit representation of the input.
• The scaling algorithm is running in time polynomial in the size ofthe input, i.e., the number of edges and the bit representation ofthe capacities.
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Augmenting Path Algorithms: SummaryAugmenting-path algorithms:  summary

 72

year method # augmentations running time

1955 augmenting path n C O(m n C)

1972 fattest path m log (mC) O(m2 log n log (mC))

1972 capacity scaling m log C O(m2 log C)

1985 improved capacity scaling m log C O(m n log C)

1970 shortest augmenting path m n O(m2 n)

1970 level graph m n O(m n2 )

1983 dynamic trees m n O(m n log n )

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths
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Max-Flow Algorithms: SummaryMaximum-flow algorithms:  theory highlights

 73

year method worst case discovered by

1951 simplex O(m n2 C) Dantzig

1955 augmenting paths O(m n C) Ford–Fulkerson

1970 shortest augmenting paths O(m n2) Edmonds–Karp, Dinitz

1974 blocking flows O(n3) Karzanov

1983 dynamic trees O(m n log n) Sleator–Tarjan

1985 improved capacity scaling O(m n log C) Gabow

1988 push–relabel O(m n log (n2 / m)) Goldberg–Tarjan

1998 binary blocking flows O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 compact networks O(m n) Orlin

2014 interior-point methods Õ(m m1/2 log C) Lee–Sidford

2016 electrical flows Õ(m10/7 C1/7) Mądry

20xx

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C
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Thank You!
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