Algorithms for Data Processing
Lecture V: Network Flow

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/"artale

artale@inf.unibz.it

2019/20 — First Semester
MSc in Computational Data Science — UNIBZ

Some material (text, figures) displayed in these slides is courtesy of:
Alberto Montresor, Werner Nutt, Kevin Wayne, Jon Kleinberg, Eva Tardos.

A. Artale Algorithms for Data Processing



Flow Networks

e Use of graphs to model transportation networks: networks whose
edges carry some sort of traffic and whose nodes act as switches
passing traffic between different edges.

» Example. Fluid network in which edges are pipes that carry liquid,
and the nodes are junctures where pipes are plugged together.

A. Artale Algorithms for Data Processing



Flow Networks — Ingredients

Capacity on the edge, indicating how much “traffic” can carry;

e Source nodes in the graph, which generate traffic;

sink (or destination) nodes in the graph, which can "absorb" traffic
as it arrives;

traffic or flow which is currently transmitted across an edge.

A. Artale Algorithms for Data Processing



Flow Networks — Ingredients/2
A Flow Network is a tuple G = (V, E, s, t, ¢), where:
e (V,E)is a directed graph, with
e a single source s € V, and a single sink t € V;
e Nodes other than s and t will be called internal nodes.
e Capacity c(e) > 0 for each e € E.

Intuition. Material flowing through a transportation network,
originating at source and sent to sink.

capacity

A. Artale Algorithms for Data Processing



Flow Networks — Ingredients/3

We make the following assumptions:

e No edge enters the source s, and no edge leaves the sink t;
e There is at least one edge incident to each node;

e Capacities are integers.

A. Artale

Algorithms for Data Processing



Flow Networks — Ingredients/4
We now define what it means for our network to carry traffic or flow.

e An st-flow is a function, 7 : £ — R, that satisfies:
Capacity Condition Ve € E.0 < f(e) < c(e)
Conservation Condition Vv € V' \ {s, t}. Z f(e) = Z f(e)

e into v e out of v
flow capacity
inflowatv = 5+5+4+0 =10
\ 5/9 outflow atv = 10+0 =10
N s, 0/15 S
\s\ /y\¢ ‘o
s 5/5 —5/8—)?—10/10—)r
7/, Q
() N
e ois o

10/16

A. Artale Algorithms for Data Processing



Flow Networks — Ingredients/5

Value of a flow. Amount of flow generated at the source:

val(fy= Y fle)

e out of s

Max-Flow Problem. Find a flow of maximum value.

8/9
\Q a d>/
/. 7,
o s 4
o 5 / 5 8/8 10/10 @
75 N
3 \
//5 6 N
value = 10+5 + 13 = \
13/16

A. Artale Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

flow capacity
flow network G and flow f \ /
@ o1i—— @
Q P 0 o
Q\\ 0/ Zp 0/6 /,0

value of flow

/
@ 0/10 Q 0/9 Q 0/10 @ 0

A. Artale

Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

flow network G and flow f

@\ ®
0/ 4
o 0/2 %, 0/6

-~
‘0

& o w\‘o—w-»@o

A. Artale

Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

flow network G and flow f

0/10 Q 0/9 C)—i/lo_}@ 0+8=8

A. Artale

Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

flow network G and flow f

S0

Q o
o N 26/2 8 0/6 %
\%\ /d, /o

2 10
0/10 s (e 0/ 9 s o 8/ 10 (1) 8 +2=10

A. Artale

Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

flow network G and flow f

A. Artale

Algorithms for Data Processing



Toward a Max-Flow Algorithm

Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

ending flow value = 16

flow network G and flow f

@ ——@

N 2/2 & 6/6 -

\°\

@ 6/10 Q 8/9 Q 10/10 (¢ 16

o

A. Artale Algorithms for Data Processing



Toward a Max-Flow Algorithm
Greedy algorithm.
e Start with f(e) = 0 for each edge e € E.
e Find an s-t path P where each edge has f(e) < c(e).
e Augment flow along path P.

e Repeat until you get stuck!

but max-flow value = 19

flow network G and flow f

@e——@

Q
S 0/2 )/@ 6/6 —

o (2

@O 3O 0@

A. Artale

Algorithms for Data Processing



Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Greedy algorithm never decreases the flow on an edge.

Example. Consider the flow network G below.
e The unique max flow has f(v, w) = 0.
e Greedy algorithm could choose s —» v — w — t as first
augmenting path.

flow network G

A. Artale Algorithms for Data Processing



Mechanism to Undo a Bad Decision

This is a more general way of pushing flow:

e We can push forward on edges with leftover capacity;
e We can push backward on edges that are already carrying flow, to
divert it in a different direction.

We now define the residual graph, which provides a systematic way to
search for forward-backward operations.

A. Artale Algorithms for Data Processing



Residual network

Original edge. e=(u,v) € E. original flow network G
* Flow f(e).
: J—————— 6 / 17 ————>( :
* Capacity c(e). / \
flow capacity
Reverse edge. ereverse = (v, u).
« “Undo” flow sent.

residual network G residual
Residual capacity. 4 capacity
u 11 %
()= {4 Il HeeE T
crl€e) =
! f(e) if ereverse ¢ 7 AN

reverse edge

edges with positive
residual capacity

Residual network. Gf= v, Ef, s, t, cf). where flow on a reverse edge
: o negates flow on
* Ef = {e :f(e) < c(e)} @] {ereverse :f(e) > 0}/ corresponding forward edge

+ Key property: f'is a flow in G,iff f+f"is a flow in G.

A. Artale Algorithms for Data Processing



Augmenting Path

Augmenting Path. A simple s — t path in the residual network Gr, for a
given graph G and a flow f.

Bottleneck Capacity. Minimal residual capacity of any edge in an
augmenting path.

Note. In the following a reverse edge will be denoted as a backward
edge.

A. Artale

Algorithms for Data Processing



Augmenting Path/2

The following algorithm makes precise the way in which we push flow
from s to t in G as a consequence of an augmenting path, P, in the
residual network Gr.

AUGMENT(f,P)
b = BOTTLENECK(P, f);
for each edge (u,v) € P do
if e = (u,v) is a forward edge then
| fle)=f(e)+bin G
else
L f(e)="f(e)—bin G; /* (u,v) is a backward edge, and e = (v, u) */

return f

Key Property. The result of AUGMENT (£,P) is a new flow f" in G such
that val(f’) = val(f) + b.

A. Artale Algorithms for Data Processing



Ford-Fulkerson Algorithm (1956)
MAX-FLOW(G)

f(e)=0forall e € G;
Go = G; /* Initialize the residual graph Gp */
while there is an s-t path, P, in the residual graph G¢ do
if P is a simple s-t path in G then
f' = AUGMENT(f, P);
Gy = UPDATE(G¢,P.f'); /* Update G to Gg */
ff;
return f
UPDATE(Gy,P,f")
compute the bottleneck b from f and f’;
for each (u,v) in P do
c(uv) = c(uyv) - b;
if c(u,v) =0 then
| delete edge (u, v) from Gf
if (v, u) & Gy then
| add edge (v, u) to Gf
c(vu) = c(vu) + b;

return Gy

A. Artale Algorithms for Data Processing



Correctness of the Ford-Fulkerson Algorithm

Property/1. Let f be a flow in G, and let P be a simple s-t path in Gf.
Then, val(f’) = val(f) + bottleneck(P, f); and since
bottleneck(P, f) > 0, we have val(f') > val(f).

Property/2. Let C = maxe{c(e)}, then, the Ford-Fulkerson Algorithm
terminates in at most nC iterations of the While loop.
Proof. Note that:

o vall(fmad) < ) c(e) < nC;

e outof s
e By Property/1, the value of the flow increases at each

iteration by at least 1 unit.

Note! The book has a different choice: C = Z c(e)

e out of s

A. Artale Algorithms for Data Processing



Running Time of the Ford-Fulkerson Algorithm

Assuming that all nodes have at least one incident edge, then m > n/2,
and so we can say that O(m + n) = O(m).

Running Time. The Ford-Fulkerson Algorithm can be implemented to
run in O(mnC) time.
Proof. Complexity in one iteration of the While loop.
e The residual graph Gr has at most 2m edges;

e Gr is stored using an adjacency list;

To find an s-t path in Gf, we can use BFS or DFS, which runs in
O(m + n) time which, by our assumption, is the same as O(m);

The procedure AUGMENT(f, P) takes time O(n), as the path P has at
most n — 1 edges;

The procedure UPDATE(Gy, P, b) takes also time O(n).

A. Artale

Algorithms for Data Processing



Insight in the Max-Flow Problem

We continue with the analysis of the Ford-Fulkerson Algorithm.

Objective: to find considerable insights into the Maximum-Flow
problem itself.
We already saw that val(f) < Z c(e).

e out of s
Is there a better approximation of val(f)?

A. Artale

Algorithms for Data Processing



Cut in a Flow Network

Cut in a Flow Network. A cut, (S, T), in a Flow Network
G =(V,E,s, t, c)is called an s-t cut if it is a partition of V into S and
T=V\Ssuchthatse Sandte T.

A. Artale Algorithms for Data Processing



Cut in a Flow Network/2

Capacity across the cut. The capacity across a cut, ¢(S, T), is given by
the following formula:

oS, T)= >  cluv)= )Y cle

ueS,veT e out of S

A. Artale Algorithms for Data Processing



Cut in a Flow Network/3

Flow across the cut. The flow across a cut, f(S, T), is given by the
following formula:

fS,T)= Y fluv)— Y flvuy= )Y fle— > f(e)

ueS,veT veT,ues e out of S e into S
S ={a,b,c,d}
T=A{ef
2/2 { }
5 C(S, T) =14
F(S,T)=6
4/8

A. Artale Algorithms for Data Processing



Flow value Lemma

Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut.
Then, the value of the flow f equals the flow across the cut (S, T):

val(fy= > fle)— Y _ f(e)

e out of S e into S

net flow across cut = 5+ 10 + 10 = 25

() 5/9 \
3

s o

° 5/5 . 5/8 .—10/10}( value of flow = 25

% \\“
2
RY

%
. 10/16 /

A. Artale Algorithms for Data Processing



Flow value Lemma/2
Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut.
Then, the value of the flow f equals the flow across the cut (S, T):

val(fy= > fle)— Y f(e)

e out of S e into S

net flow across cut = 10 + 5 + 10 = 25

5/9

KN 8 S

7,
o & 0\
<5/5+ 5/8 ——10/10 —>( t) valueof flow = 25
7, o
) D
E /\Q\
10/16

A. Artale

Algorithms for Data Processing



Flow value Lemma/3
Cuts provide very natural upper bounds on the values of flows.

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut.
Then, the value of the flow f equals the flow across the cut (S, T):

val(fy= > fle)— Y f(e)

e out of S e into S

net flow across cut = (10 + 10 +5+10+0+0)-(5+5+0+0) = 25

— 5/9
)' I\ edges from B to A

0/4
< T T_,o/m_) t) value of flow = 25
0/4\ 0/15
\* \*/

10/16

A. Artale Algorithms for Data Processing



Flow value Lemma — Proof

Flow value Lemma. Let f be any s-t flow and (S, T) be any s-t cut.
Then, the value of the flow f equals the flow across the cut (S, T):

val(fy = Y fle)— Y fle)

e out of S e into S
Proof.
vallfy= Y fleg= Y  fleg— > _ fle)=

e out of s e out of s e into s

= Z ( Z f(e) — Z f(e)) [all are 0 except for v=s]
veS e outof v e into v

= ) fle— ) flo
e out of S e into S

A. Artale Algorithms for Data Processing



Relationship between Flow and Capacity

Weak duality Lemma. Let f be any s-t flow, and (S, T) any s-t cut.
Then,
val(f) < c(S, T).

Proof.
val(fy= > fle)— Y  fle)<
e out of S e into S
< ) fle)<
e out of S
< Y cle=c(ST)
e out of S

A. Artale Algorithms for Data Processing



Relationship between Flow and Capacity/2

e The Weak duality Lemma abstracts from a partcular flow;

e The value of every flow is upper-bounded by the capacity of any
possible cut;

e Thus, if we exhibit an s-t cut in G of some value ¢(S, T) we know
that there cannot be an s-t flow in G of value greater than ¢(S, T).

e Viceversa, if we exhibit any s-t flow, f* in G, we know that there
cannot be an s-t cut in G with s-t capacity less than f*.

A. Artale Algorithms for Data Processing



Certificate of optimality

Corollary. Letf be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (4, B) is a min cut.

Pf.

* For any flow f': val(f")
* For any cut (A, B"): cap(A’, B')

A. Artale

8/9

-
%

8/8

6

13/16

value of flow = 28

weak duality

< cap(A, B) =val(f).

2
‘0

10/10

3

= val(f) = cap(A,B). =

weak duality

e
‘ imm/{
l W

= capacity of cut = 28
Algorithms for Data Processing

31



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

N

strong duality

wmnxmmmmmop’mqu
G. B. Dantzig ‘

D. R. Fulkerson ‘!
“Consider a rail network connecting two cities by way of a number of L é
intermediate cities, where each link of the network has a number assigned to

it representing its capacity. Assuming a steady state condition, find a maximal Apei1 15, 1055
flow from one given city to the other.” -

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, Jr. axp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

A Note on the Maximum Flow Through a Network”

P. ELIASt, A. FEINSTEIN}, AND C. E. SHANNON§

mmary —This note discusses the problem of mazinlsing the  from one terminal to the other in the original network
{:‘,,’R,Z“ o ;“f;:"?_“,‘,:,,,i ‘;‘;’E,,‘,,’,',h,';:ﬁ’mhmm Tana passes through at least one branch in the cut-set. Tn the
ity The main result i a theorem e flow from  network above, some examples of cut-sets are (d, ¢, f),
It o lght throngh 4 netwrk s sua o e mm;m\um vlue mong \ 1), (d, g, h, 7). By a simple cul-set we will
all simple cut-sets. This theorem is applied to solve a more general o e
problem, in which a number of input nodes and & number of output oy bratch e omittad it s o

4, 1) are simple

nodes are use




Analyzing the Ford-Fulkerson Algorithm

e Let 7 denote the flow that is returned by the Ford-Fulkerson
Algorithm. We want to prove that f is the maximum-flow by
showing that there is an (S, T) cut such that:

val(f) = c(S, T)

e The Ford-Fulkerson Algorithm terminates when for the flow f
there is no s — t path in the residual graph Gr.
This is the only property needed for proving its maximality.

A. Artale Algorithms for Data Processing



Correctness the Ford-Fulkerson Algorithm/1

Theorem 1. If f is an s-t flow such that there is no s-t path in the
residual graph Gr (Augmenting Path) then there is an s-t cut (A, B) in
G for which val(f) = c(A, B).
Proof.
e Let A be set of nodes reachable from s in the residual network Gr
and B = V'\ A. We show that (A, B) is an s-t cut:
> (A, B) is a partition of V, and s € A, and t ¢ A by the assumption
that there is no s-t path in G¢, hence t € B.
e Let e = (u,Vv) be an edge in G for which v € A and v € B, then
f(e) = c(e) — otherwise e would be a forward edge in Gr.

e Let ¢ = (v, V') be an edge in G for which ¢/ € B and v/ € A, then
f(e’') = 0 — otherwise € would give rise to a backward edge
e" = (V,U) in Gy

e So all edges out of A are completely saturated with flow, while all
edges into A are completely unused.

A. Artale Algorithms for Data Processing



A. Artale

Correctness the Ford-Fulkerson Algorithm/2

(u, v) is saturated
Residual graph with flow.

(', v} carries
no flow.
A* / B*

Figure 7.5 The (A*, B¥) cut in the proof of (7.9).

Algorithms for Data Processing



Correctness the Ford-Fulkerson Algorithm/3

e We can now use the Flow value Lemma:

val(f) = Z fle) — Z fle) =

e out of A e into A
= Z c(le)—0

e out of A
= c(A B)

That proves the Theorem!

Theorem 2. The flow f returned by the Ford-Fulkerson Algorithm is a
maximum flow.

A. Artale Algorithms for Data Processing



Integer-Value Flows

When all capacities are integer values we can guarantee the existence
of a max-flow as expressed in the following Theorem.

Theorem [Integrality theorem.] If all capacities in the flow network are

integers, then there is a maximum flow f for which every flow value
f(e) is an integer.

A. Artale

Algorithms for Data Processing



Choosing Good Augmenting Paths

e We already saw that val(f) < Z c(e) is an upper bound to the

e out of s
number of iterations.

e The Ford-Fulkerson Algorithm can perform vary badly when

pathological augmenting paths are selected: Here we need 200
steps!!

A. Artale

Algorithms for Data Processing



Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

e |f we choose paths with large bottleneck capacity we will require
less iterations.

e A natural idea is to select at each iteration the path that has the
largest bottleneck capacity.

e Finding such paths can slow down each iteration.

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm
Main Idea: Choosing augmenting paths with large bottleneck capacity
though not necessarily the largest.

e Maintain a scaling parameter A;

e Let Gr(A) be the sub-graph of the residual network Gf containing
only those edges with residual capacity > A;

e Any augmenting path in G¢(A) has bottleneck capacity > A.

% %
o« ——» o »
./ \®/\

Gr Gr(A), A =100

Algorithms for Data Processing

A. Artale



Capacity-Scaling Algorithm/2

CAPACITY-SCALING(G,s,t)

f(e)=0forall e € G;

A = largest power of 2 < maxe ourors{Cc(€)};

Compute Go(A);

while A > 1 do

while there is an s-t path, P, in the residual graph G¢(A) do

if P is a simple s-t path then

f' = AUGMENT(f, P);
G¢(A) = UPDATE(Gr(A),P.f'); /* Update Gr(A) to Gp(A) */
ff,

L A=AJ2
return f

A. Artale Algorithms for Data Processing



Correctness of the Capacity-Scaling Algorithm

e The Capacity-Scaling Max-Flow Algorithm is just an optimized
implementation of the original Ford-Fulkerson Algorithm.

e The search in the restricted residual graph G¢(A) is used to guide
the selection of augmenting paths with large residual capacity.

Properties of Capacity-Scaling Algorithm. If the capacities are
integer-valued, then throughout the Capacity-Scaling Max-Flow
algorithm the flow and the residual capacities remain integer-valued.
This implies that when A =1, G¢(A) is the same as Gr and hence when
the algorithm terminates the flow, f, is of maximum value.

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis

e We call an iteration of the outside While loop, with a fixed value of
A, the A-scaling phase.

e We denote C = max.{c(e)}.

Lemma 1. There are 1 + [log, C| A-scaling phases.
Proof. Initially C/2 < A < C; A decreases by a factor of 2 in each
iteration.

Lemma 2. During the A-scaling phase each augmentation increases the
flow value by at least A.

Proof. During the A-scaling phase we only use edges with residual
capacity of at least A.

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/2//

(Proof Not Required)

Lemma 3. Let f be the flow at the end of a A-scaling phase. Then, the
max-flow value < val(f) + mA (where m is the number of edges).
Proof.

e We show there exists a cut (A, B) such that c(A, B) < val(f) + mA.

e Let A be the set of nodes reachable from s in Gf(A) and B = V' \ A
We show that (A, B) is an s-t cut:

» (A, B) is a partition of V, and s € A, and t ¢ A for otherwise there
is an s-t path in G¢(A), hence t € B.

e Let e = (u, v) be an edge in G for which v € A and v € B, then
c(e) — f(e) < A, otherwise e would be a forward edge in G¢(A),
contradicting v € B.

e Let ¢ = (v, V') be an edge in G for which v € B and v/ € A, then
f(e') < A, otherwise € would give rise to a backward edge
e’ = (V,U) in Ge(A).

e So all edges out of A are almost saturated (f(e) > c(e) — A), while

o A "
A. Artale Algorithms for Data Processing




Capacity-Scaling Algorithm: Run Time Analysis/3
(Proof Not Required)

edgee=(v,w) withvEB,wEA
must have f(e) < A
original flow network

A B

v 5

edgee=(v,w) withvEA,WwEB
must have f(e) > c(e) — A

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/4
(Proof Not Required)

Proof of Lemma 3 (cont.)

val(fy=" > f(e)— > _ f(e)> [By the Flow Value Lemma]

e out of A e into A

> Y (oA~ Y A=
e out of A e into A

= > cle— Y A- Y A>c(AB-—mA
e out of A e out of A e into A

Thus, c(A, B) < val(f) + mA, which proves Lemma 3.

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/5
(Proof Not Required)

Lemma 4. The number of augmentations in each scaling phase is < 2m.
Proof.
e True in the first scaling phase: we can have as many augmenting
paths as many edges out of s (note that by Lemma 2, each
augmenting phase increases the flow by at least A);

¢ In any later A-scaling phase, let 7, the flow at the end of the
previous scaling phase;

e In the previous scaling phase we had A, = 2A;
e By Lemma 3, val(fnax) < val(fp) + mA, = val(f,) + 2mA;

e In the current A-scaling phase, by Lemma 2, each augmentation
increases the flow by at least A, and hence there can be at most
2m augmentations.

A. Artale Algorithms for Data Processing



Capacity-Scaling Algorithm: Run Time Analysis/6
(Proof Not Required)

Theorem. The Scaling Max-Flow algorithm in a graph with m edges
and integer capacities finds a maximum flow in at most
2m(1 + [log, C|) augmentations. It can be implemented to run in at
most O(m? log, C) time.
Proof.
e By Lemmas 1 and 4, we can have at most 2m(1 + |log, C|)
augmentations, i.e.,, O(mlog, C);

e Each augmentation takes O(m) including the time to find a path
(BFS/DFS) and to generate the new residual graph.

A. Artale

Algorithms for Data Processing



Considerations on Running Time

e When C is large, the scaling algorithm, O(m?log, C), outperforms
the generic implementation of the Ford-Fulkerson Algorithm,
O(mnC).

A. Artale Algorithms for Data Processing



Considerations on Running Time

e When C is large, the scaling algorithm, O(m?log, C), outperforms
the generic implementation of the Ford-Fulkerson Algorithm,
O(mnC).

e The generic Ford-Fulkerson algorithm requires time proportional
to the magnitude of the capacities, while the scaling algorithm
only requires time proportional to the number of bits needed to
specify the capacities in the input.

A. Artale Algorithms for Data Processing



Considerations on Running Time

e When C is large, the scaling algorithm, O(m?log, C), outperforms
the generic implementation of the Ford-Fulkerson Algorithm,
O(mnC).

e The generic Ford-Fulkerson algorithm requires time proportional
to the magnitude of the capacities, while the scaling algorithm
only requires time proportional to the number of bits needed to
specify the capacities in the input.

e When the generic Ford-Fulkerson algorithm chooses patological
paths could require C iterations, i.e., exponential time in the size
of the bit representation of the input.

A. Artale Algorithms for Data Processing



Considerations on Running Time

e When C is large, the scaling algorithm, O(m?log, C), outperforms
the generic implementation of the Ford-Fulkerson Algorithm,
O(mnC).

e The generic Ford-Fulkerson algorithm requires time proportional
to the magnitude of the capacities, while the scaling algorithm
only requires time proportional to the number of bits needed to
specify the capacities in the input.

e When the generic Ford-Fulkerson algorithm chooses patological
paths could require C iterations, i.e., exponential time in the size
of the bit representation of the input.

e The scaling algorithm is running in time polynomial in the size of
the input, i.e., the number of edges and the bit representation of
the capacities.

A. Artale Algorithms for Data Processing



Augmenting Path Algorithms: Summary

“ # augmentations m

1955 augmenting path O@mn C)

1972 fattest path m log (mC) O(m? log n log (mC))

1972 capacity scaling mlog C O(m? log C) Bleaths
1985 improved capacity scaling mlog C O(mnlog C)

1970 shortest augmenting path mn O(m?n)

1970 level graph mn O(mn?) shortest paths
1983 dynamic trees mn O(mnlogn)

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

A. Artale Algorithms for Data Processing



Max-Flow Algorithms: Summary

1951 simplex O(m n® C) Dantzig
1955 augmenting paths O(mn C) Ford-Fulkerson
1970 shortest augmenting paths O(mn?) Edmonds—Karp, Dinitz
1974 blocking flows o) Karzanov
1983 dynamic trees O(m n log n) Sleator-Tarjan
1985 improved capacity scaling O(m nlog C) Gabow
1988 push-relabel O(m n'log (n*/ m)) Goldberg-Tarjan
1998 binary blocking flows O(m*? log (n* / m) log C) Coldberg-Rao
2013 compact networks O(m n) Orlin
2014 interior-point methods O(mm' log C) Lee-Sidford
2016 electrical flows Om'" 'y Madry
20xx Q@Q

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

A. Artale ithms for Data Processi



Thank You!

Algorithms for Data Processi



