Algorithms for Data Processing
Lecture IV: Graph Algorithms — Shortest Path and
Dijkstra’s Algorithm

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/~artale

artale@inf.unibz.it

2019/20 — First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Shortest Path

e While BFS is able to find the shortest s-t path when edges have
uniform cost, we need different algorithms when edges have a
distinct traversal cost.

e We consider here the following scenario:

A directed graph G = (V, E) with a designated start node s.
We assume that s has a path to every other node in G.

Each edge e has an associated traversal cost ¢ > 0.

For a path P, the length of P—denoted ¢(P)-is the sum of the
lengths of all edges e € P.

vV VvV VY

e In 1959, Edsger Dijkstra proposed a very simple greedy algorithm
to solve the shortest-paths problem.

A. Artale Algorithms for Data Processing

Edsger Dijkstra

“ What's the shortest way to travel from Rotterdam to Groningen?
It is the algorithm for the shortest path, which I designed in
about 20 minutes. One morning I was shopping in Amsterdam

with my young fiancée, and tired, we sat down on the café

terrace to drink a cup of coffee and I was just thinking about
whether I could do this, and I then designed the algorithm for
the shortest path.” — Edsger Dijsktra

Bielefeld
Mufster

A. Artale ithms for Data Processi

Single-pair shortest path problem

Problem. Given a digraph G = (V, E), edge lengths £, > 0, source
s € V, and destination t € V, find a shortest directed path from s to t.

@ ——@

9 @®/1®\ 9
<!>/ L \‘@

source s

20
destination t

length of path =9 + 4 + 1 + 11 = 25

A. Artale Algorithms for Data Processing

Single-source shortest path problem

Problem. Given a digraph G = (V, E), edge lengths £, > 0, source
s € V, find a shortest directed path from s to every node.

15 @
source s le Sf
‘@ - ’ 9

e L
o A

. @

A. Artale Algorithms for Data Processing

A. Artale

Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes § for which
algorithm has determined d[u] = length of a shortest s~u path.

+ Initialize S < {s}, d[s] < 0.

» Repeatedly choose unexplored node v & S which minimizes

w(v) = min dlu] + 2.

e=(u,v) : u€S \ the length of a shortest path from s
to some node u in explored part S,
followed by a single edge ¢ = (u, v)
£,
dlu]

O\O—O/O

Algorithms for Data Processing

A. Artale

Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes § for which
algorithm has determined d[u] = length of a shortest s~u path.

+ Initialize S < {s}, d[s] < 0.

» Repeatedly choose unexplored node v & S which minimizes

w(v) = min dlu] + 2.

e=(u,v) : u€S \ the length of a shortest path from s
to some node u in explored part S,
add v to S, and set d[v] < m(v). followed by a single edge e = (u, v)

* To recover path, set pred|v] < e that achieves min.

Algorithms for Data Processing

Shortest Path: An Example from the book
Algorithm Design

Set St
nodes already
. explored

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will
be added to the set S is x, due to the path through u.

A. Artale Algorithms for Data Processing

Dijkstra’s algorithm: proof of correciness

Invariant. For each node u €S: d[u] = length of a shortest s~u path.
Pf. [by induction on |S|]
Base case: |S|=1is easy since S={s} and d[s] =0.
Inductive hypothesis: Assume true for |S| > 1.
* Let v be next node added to S, and let (u,v) be the final edge.
* A shortest s~u path plus (x,v) is an s~v path of length m(v).
* Consider any other s~v path P. We show that it is no shorter than m(v).
* Let e=(x,y) be the first edge in P that leaves S,
and let P’ be the subpath from s to x.

P’ e

* The length of P is already > m(v) as soon ® @

as it reaches y: S

S
UP) = LP)Y+Le = dx]+L = WY = T(V) » @
1)) 1
non-negative inductive definition Dijkstra chose v
lengths hypothesis of m(y) instead of y

A. Artale Algorithms for Data Processing

Dijkstra Algorithm

We assume that G = (V/, E, L), where L contains the cost for each edge.

Dijkstra(G,s)
Let S be the set of explored nodes, and,;
st an array of n elements such that s[u] is the shortest s-u path;
S = {s}; n[s] = 0; pred[s] = null;
while S # V do
min-dist = oo;
for each v € V\ S with (u,v) € E and u € S do
for each (u,v) € E withu € S do
if (m[u] + 4(u, v) < min-dist) then
min-dist = s[u] + €(u, v);
L node = v; pred[node] = u

| S =SU{node}; m[node]= min-dist.

A. Artale Algorithms for Data Processing

Dijkstra Algorithm — Complexity

Each While iteration adds a new node v to the set S.

Then, there are n — 1 iterations of the While-loop for a graph with
n nodes.

Each iteration considers each node v ¢ S, and goes through all
the edges between S and v to determine the minimum distance
vertex. This takes O(m).

Thus, the Algorithm runs in O(m - n).

A. Artale Algorithms for Data Processing

A. Artale

Dijkstra’s algorithm: efficient implementation

Critical optimization 1. For each unexplored node vé&S :
explicitly maintain afv] insted of recomputing them in each iteration

= i d Le
o) = _ i A+l

* For each vé& S : n(v) can only decrease (because set S increases).

* More specifically, suppose u is added to S and there is an edge e = (u,v)
leaving u. Then, it suffices to update:

st[v] < min { w[v], 7[u] + L) }

recall: for each u € S,
mt[u] = d[u] = length of shortest s~u path

Critical optimization 2. Use a priority queue (PQ)
to choose an unexplored node that minimizes afv].

Algorithms for Data Processing

Brief Introduction to Priority Queues

e Priority Queue (PQ). Data Structure where elements have a
priority value, or key, and we access just the element with highest
priority.

e Data Structure. Balanced Binary Tree, where the root contains the
element with highest priority.

» Heap Order. The key of any element is at least as large as the key
of its parent node.

e Cost of managing a PQ.

» Extraction. O(1), since we can access only the root element, which

has the highest priority.
» Addition and Deletion: O(log n).

A. Artale Algorithms for Data Processing

From the Book: Chapter 2

Each node’s key is at least
as large as its parent’s.
e

10 3|7‘11I15‘17L20|9Ji5_|s 16] x
~—"7 N

Figure 2.3 Values in a heap shown as a binary tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

Figure 2.4 The Heapify-up process. Key 3 (at positio s too small (o)
3 position 16) i (on the left).
After swapping keys 3 and 11, the heap violation mov tep closer to the of
. 07
: ; ‘es one st to the root

Dijkstra’s algorithm: efficient implementation

Implementation.
+ Algorithm maintains z[v] for each node v.
* Priority queue stores unexplored nodes, using x[-] as priorities.
* Once u is deleted from the PQ, x[u] = length of a shortest s~u path.

DUKSTRA (V, E, £, 5)
pred[s] <= null; n[s] < 0
FOREACH vV # s : qt[v] < o, pred[v] < null;
Create an empty priority queue pq.
FOREACH v € V : INSERT(pg, v, 7i[v]).
WHILE (IS-NOT-EMPTY(pg))

u < DEL-MIN(pq).

FOREACH edge e = (u, v) € E leaving u:

IF ({v] > mfu] + L)

afv] < mfu] +1;
DECREASE-KEY(pg, v, 7v]).

pred[v] < u.

Algorithms for Data Processing

A. Artale

A. Artale

Dijkstra’s algorithm: which priority queue?

Performance. Depends on PQ: n INSERT, n DELETE-MIN, < m DECREASE-KEY.
« Array implementation optimal for dense graphs. «— o) edges
+ Binary heap much faster for sparse graphs. «<— o) edges
+ 4-way heap worth the trouble in performance-critical situations.

unordered array o(1) o(n) o(l) O(n?)
binary heap O(log n) O(log n) O(log n) O(m log n)
d-way heap o1 o1 o om1
(Johnson 1975) (d loga n) (d loga n) (loga n) (m logmn n)
Fibonacci heap .
(Fredman-Tarjan 1984) om Olog n) om OGn + nlog 1)
integer priority queue
(Thorup 2004) o(1) O(log log n) o(1) O(m + n log log n)
+ amortized 13

Algorithms for Data Processing

Thank You!

Algorithms for Data Processi

