
Algorithms for Data Processing
Lecture IV: Graph Algorithms – Shortest Path and

Dijkstra’s Algorithm

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/˜artale

artale@inf.unibz.it

2019/20 – First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Shortest Path

• While BFS is able to find the shortest s-t path when edges have
uniform cost, we need different algorithms when edges have a
distinct traversal cost.

• We consider here the following scenario:
I A directed graph G = (V ,E) with a designated start node s .
I We assume that s has a path to every other node in G .
I Each edge e has an associated traversal cost `e ≥ 0.
I For a path P , the length of P–denoted `(P)–is the sum of the

lengths of all edges e ∈ P .
• In 1959, Edsger Dijkstra proposed a very simple greedy algorithm

to solve the shortest-paths problem.

A. Artale Algorithms for Data Processing

Edsger Dijkstra

19

“ What’s the shortest way to travel from Rotterdam to Groningen?  
 It is the algorithm for the shortest path, which I designed in  
 about 20 minutes. One morning I was shopping in Amsterdam  
 with my young fiancée, and tired, we sat down on the café  
 terrace to drink a cup of coffee and I was just thinking about  
 whether I could do this, and I then designed the algorithm for  
 the shortest path. ” — Edsger Dijsktra

A. Artale Algorithms for Data Processing

Single-pair shortest path problem
Problem. Given a digraph G = (V ,E), edge lengths `e ≥ 0, source
s ∈ V , and destination t ∈ V , find a shortest directed path from s to t .

Single-pair shortest path problem

Problem. Given a digraph G = (V, E), edge lengths �e ≥ 0, source s ∈ V, 
and destination t ∈ V, find a shortest directed path from s to t.

3

7

1 3

source s

6

8

5

7

5
4

15

312

20

13

9

destination t

length of path = 9 + 4 + 1 + 11 = 25

0

4

5

2

6

9

4

1 11

A. Artale Algorithms for Data Processing

Single-source shortest path problem
Problem. Given a digraph G = (V ,E), edge lengths `e ≥ 0, source
s ∈ V , find a shortest directed path from s to every node.

Single-source shortest paths problem

Problem. Given a digraph G = (V, E), edge lengths �e ≥ 0, source s ∈ V, 
find a shortest directed path from s to every node.

 
Assumption. There exists a path from s to every node.

4

7

1 3

source s

6

8

5

7

5
4

15

312

20

13

9

shortest-paths tree

4

5

2

6

4

1 11
9

0

A. Artale Algorithms for Data Processing

A. Artale Algorithms for Data Processing

A. Artale Algorithms for Data Processing

Shortest Path: An Example from the book
Algorithm Design

Chapter 4 Greedy Algorithms 4.4 Shortest Paths in a Graph 139
138

d’(v) = mine=(a,v):a~s d(a) + ~e. We choose the node v e V-S for which t~s
quantity is minimized, add v to S, and define d(v) to be the value d’(v).

Dijkstra’s Algorithm (G, ~)

Let S be the set of explored nodes

For each ueS, we store a distsnce d(u)

Initially S = Is} and d(s) = 0

While S ~ V
Select a node u ~S with at least one edge from S for which

d’(u) = nfine=(u,v):u~s d(u) + ~-e is as small as possible

Add u to S and define d(u)=d’(u)

EndWhile

It is simple to produce the s-u paths corresponding to the distances found
by Dijkstra’s Algorithm. As each node v is added to the set S, we simply record
the edge (a, v) on which it achieved the value rnine=(a,v):ues d(u) + £e. The
path Pv is implicitly represented by these edges: if (u, v) is the edge we have
stored for v, then P~ is just (recursively) the path P~ followed by the single
edge (u, ~). In other words, to construct P~, we simply start at 12; follow the
edge we have stored for v in the reverse direction to a; then follow the edge we
have stored for a in the reverse direction to its predecessor; and so on until we

reach s. Note that s must be reached, since our backward walk from 12 visits
nodes that were added to S earlier and earlier.

To get a better sense of what the algorithm is doing, consider the snapshot
of its execution depicted in Figure 4.7. At the point the picture is drawn, two
iterations have been performed: the first added node u, and the second added
node 12. In the iteration that is about to be performed, the node x wil! be added
because it achieves the smallest value of d’(x); thanks to the edge (u, x), we
have d’(x) = d(a) + lax = 2. Note that attempting to add y or z to the set S at
this point would lead to an incorrect value for their shortest-path distances;
ultimately, they will be added because of their edges from x.

~ Analyzing the Algorithm
We see in this example that Dijkstra’s Algorithm is doing the fight thing and
avoiding recurring pitfalls: growing the set S by the wrong node can lead to an
overestimate of the shortest-path distance to that node. The question becomes:
Is it always true that when Dijkstra’s Algorithm adds a node v, we get the true
shortest-path distance to 127.

We now answer this by proving the correctness of the algorithm, showing
that the paths Pa really are shortest paths. Dijkstra’s Algorithm is greedy in

3

Set S: ~
nodes already
explored

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will
be added to the set S is x, due to the path through u.

the sense that we always form the shortest new s-12 path we can make from a
path in S followed by a single edge. We prove its correctness using a variant of
our first style of analysis: we show that it "stays ahead" of all other solutions
by establishing, inductively, that each time it selects a path to a node 12, that
path is shorter than every other possible path to v.

(4.14) Consider the set S at any point in the algorithm’s execution. For each
u ~ S, the path Pu is a shortest s-u path. :~

Note that this fact immediately establishes the correctness of Dijkstra’s
Mgofithm, since we can apply it when the algorithm terminates, at which
point S includes all nodes.

Proof. We prove this by induction on the size of S. The case IS] = 1 is easy,
since then we have S = {s] and d(s) = 0. Suppose the claim holds when IS] = k
for some value of k > 1; we now grow S to size k + 1 by adding the node 12.
Let (u, 12) be the final edge on our s-12 path P~.

By induction hypothesis, Pu is the shortest s-u path for each u ~ S. Now
consider any other s-12 path P; we wish to show that it is at least as long as P~.
In order to reach ~, this path P must leave the set S sornetuhere; let y be the
first node on P that is not in S, and let x ~ S be the node just before y.

The situation is now as depicted in Figure 4.8, and the crux of the proof
is very simple: P cannot be shorter than P~ because it is already at least as

A. Artale Algorithms for Data Processing

Invariant. For each node u ∈ S : d[u] = length of a shortest s↝u path.

Pf. [by induction on ⎜S⎟]
Base case: ⎜S⎟ = 1 is easy since S = { s } and d[s] = 0.

Inductive hypothesis: Assume true for ⎜S⎟ ≥ 1.

独Let v be next node added to S, and let (u, v) be the final edge.

独A shortest s↝u path plus (u, v) is an s↝v path of length π(v).
独Consider any other s↝v path P. We show that it is no shorter than π(v).

独Let e = (x, y) be the first edge in P that leaves S, 
and let P ʹ be the subpath from s to x.

独The length of P is already ≥ π (v) as soon 
as it reaches y:

S

s

Dijkstra′s algorithm: proof of correctness

10

 �(P) ≥ �(Pʹ) + �e

non-negative 
lengths

v

u

y

P

x

Dijkstra chose v 
instead of y

 ≥ π (v)

definition
of π(y)

≥ π (y)

inductive 
hypothesis

 ≥ d[x] + �e ▪

P ʹ e

A. Artale Algorithms for Data Processing

Dijkstra Algorithm
We assume that G = (V ,E ,L), where L contains the cost for each edge.

Dijkstra(G,s)
Let S be the set of explored nodes, and;
π an array of n elements such that π[u] is the shortest s-u path;
S = {s}; π[s] = 0; pred[s] = null;
while S 6= V do

min-dist = ∞;
for each v ∈ V \ S with (u, v) ∈ E and u ∈ S do

for each (u, v) ∈ E with u ∈ S do
if (π[u] + `(u, v) < min-dist) then

min-dist = π[u] + `(u, v);
node = v; pred[node] = u

S = S ∪ {node}; π[node] = min-dist.

A. Artale Algorithms for Data Processing

Dijkstra Algorithm – Complexity

• Each While iteration adds a new node v to the set S .
• Then, there are n − 1 iterations of the While-loop for a graph with

n nodes.
• Each iteration considers each node v 6∈ S , and goes through all

the edges between S and v to determine the minimum distance
vertex. This takes O(m).

• Thus, the Algorithm runs in O(m · n).

A. Artale Algorithms for Data Processing

Dijkstra′s algorithm: efficient implementation

Critical optimization 1. For each unexplored node v ∉ S :
explicitly maintain π[v] insted of recomputing them in each iteration

独For each v ∉ S : π(v) can only decrease (because set S increases). 

独More specifically, suppose u is added to S and there is an edge e = (u, v)
leaving u. Then, it suffices to update: 

Critical optimization 2. Use a priority queue (PQ)

 to choose an unexplored node that minimizes π[v].

11

π [v] ← min { π[v], π [u] + �e) }

�(v) = min
e = (u,v) : u�S

d[u] + �e

recall: for each u ∈ S,
π [u] = d [u] = length of shortest s↝u path

A. Artale Algorithms for Data Processing

Brief Introduction to Priority Queues

• Priority Queue (PQ). Data Structure where elements have a
priority value, or key, and we access just the element with highest
priority.

• Data Structure. Balanced Binary Tree, where the root contains the
element with highest priority.
I Heap Order. The key of any element is at least as large as the key

of its parent node.
• Cost of managing a PQ.

I Extraction. O(1), since we can access only the root element, which
has the highest priority.

I Addition and Deletion: O(log n).

A. Artale Algorithms for Data Processing

From the Book: Chapter 26O Chapter 2 Basics of Algorithm Analysis

~aEaCh node’s key is at least~
s large as its parent’s.

1 2 5 10 3 7 11 15 17 20 9 15 8 16 X

Figure 2.3 Values in a heap shown as a binaD, tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i) = 2i and
rightChild(f) = 2i + 1. So the two children of the root are at positions 2 and
3, and the parent of a node at position i is at position parent(f) =/i/2J. If
the heap has n < N elements at some time, we will use the first rt positions
of the array to store the n heap elements, and use lenggh(H) to denote the
number of elements in H. This representation keeps the heap balanced at all
times. See the right-hand side of Figure 2.3 for the array representation of the
heap on the left-hand side.

Implementing the Heap Operations
The heap element with smallest key is at the root, so it takes O(1) time to
identify the minimal element. How do we add or delete heap elements? First
conside~ adding a new heap element v, and assume that our heap H has n < N
elements so far. Now it will have n + 1 elements. To start with, we can add the
new element v to the final position i = n + 1, by setting H[i] = v. Unfortunately,
this does not maintain the heap property, as the key of element v may be
smaller than the key of its parent. So we now have something that is almost-a
heap, except for a small "damaged" part where v was pasted on at the end.

We will use the procedure Heap±f y-up to fix our heap. Letj = parent(i) =
L//2] be the parent of the node i, and assume H[j] = w. If key[v] < key[w],
then we will simply swap the positions of v and w. This wil! fix the heap
property at position i, but the resulting structure will possibly fail to satisfy
the heap property at position j--in other words, the site of the "damage" has
moved upward from i to j. We thus call the process recursively from position

2.5 A More Complex Data Structure: Priority Queues

The H e a p i fy - u p process is movingIelement v toward the root.

Figure 2.4 The Heapify-up process. Key 3 (at position 16) is too small (on the left).
After swapping keys 3 and 11, the heap xdolation moves one step closer to the root of
the tree (on the right).

] = parent(i) to continue fixing the heap by pushing the damaged part upward.
Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up (H, i) :

If i> 1 then

let] = parent(i) = Lil2J

If key[H[i]]<key[H[j]] then

swap the array entries H[i] mad H[j]

Heapify-up (H, j)

Endif

Endif

To see why Heapify-up wOrks, eventually restoring the heap order, it
helps to understand more fully the structure of our slightly damaged heap in
the middle of this process. Assume that H is an array, and v is the element in
position i. We say that H is almost a heap with the key of H[i] too small, if there
is a value ~ _> key(v) such that raising the value of key(v) to c~ would make
the resulting array satisfy the heap property. (In other words, element v in H[i]
is too small, but raising it to cz would fix the problem.) One important point
to note is that if H is almost a heap with the key of the root (i.e., H[1]) too
small, then in fact it is a~heap. To see why this is true, consider that if raising
the value of H[1] to c~ would make H a heap, then the value of H[!] must
also be smaller than both its children, and hence it already has the heap-order
property.

61

6O Chapter 2 Basics of Algorithm Analysis

~aEaCh node’s key is at least~
s large as its parent’s.

1 2 5 10 3 7 11 15 17 20 9 15 8 16 X

Figure 2.3 Values in a heap shown as a binaD, tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i) = 2i and
rightChild(f) = 2i + 1. So the two children of the root are at positions 2 and
3, and the parent of a node at position i is at position parent(f) =/i/2J. If
the heap has n < N elements at some time, we will use the first rt positions
of the array to store the n heap elements, and use lenggh(H) to denote the
number of elements in H. This representation keeps the heap balanced at all
times. See the right-hand side of Figure 2.3 for the array representation of the
heap on the left-hand side.

Implementing the Heap Operations
The heap element with smallest key is at the root, so it takes O(1) time to
identify the minimal element. How do we add or delete heap elements? First
conside~ adding a new heap element v, and assume that our heap H has n < N
elements so far. Now it will have n + 1 elements. To start with, we can add the
new element v to the final position i = n + 1, by setting H[i] = v. Unfortunately,
this does not maintain the heap property, as the key of element v may be
smaller than the key of its parent. So we now have something that is almost-a
heap, except for a small "damaged" part where v was pasted on at the end.

We will use the procedure Heap±f y-up to fix our heap. Letj = parent(i) =
L//2] be the parent of the node i, and assume H[j] = w. If key[v] < key[w],
then we will simply swap the positions of v and w. This wil! fix the heap
property at position i, but the resulting structure will possibly fail to satisfy
the heap property at position j--in other words, the site of the "damage" has
moved upward from i to j. We thus call the process recursively from position

2.5 A More Complex Data Structure: Priority Queues

The H e a p i fy - u p process is movingIelement v toward the root.

Figure 2.4 The Heapify-up process. Key 3 (at position 16) is too small (on the left).
After swapping keys 3 and 11, the heap xdolation moves one step closer to the root of
the tree (on the right).

] = parent(i) to continue fixing the heap by pushing the damaged part upward.
Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up (H, i) :

If i> 1 then

let] = parent(i) = Lil2J

If key[H[i]]<key[H[j]] then

swap the array entries H[i] mad H[j]

Heapify-up (H, j)

Endif

Endif

To see why Heapify-up wOrks, eventually restoring the heap order, it
helps to understand more fully the structure of our slightly damaged heap in
the middle of this process. Assume that H is an array, and v is the element in
position i. We say that H is almost a heap with the key of H[i] too small, if there
is a value ~ _> key(v) such that raising the value of key(v) to c~ would make
the resulting array satisfy the heap property. (In other words, element v in H[i]
is too small, but raising it to cz would fix the problem.) One important point
to note is that if H is almost a heap with the key of the root (i.e., H[1]) too
small, then in fact it is a~heap. To see why this is true, consider that if raising
the value of H[1] to c~ would make H a heap, then the value of H[!] must
also be smaller than both its children, and hence it already has the heap-order
property.

61

A. Artale Algorithms for Data Processing

Dijkstra’s algorithm: efficient implementation

Implementation.

独Algorithm maintains π [v] for each node v.

独Priority queue stores unexplored nodes, using π [⋅] as priorities.

独Once u is deleted from the PQ, π [u] = length of a shortest s↝u path.

12

DIJKSTRA (V, E, �, s)

pred[s] ← null; π[s] ← 0
FOREACH v ≠ s : π[v] ← ∞, pred[v] ← null;

Create an empty priority queue pq.
FOREACH v ∈ V : INSERT(pq, v, π[v]).

WHILE (IS-NOT-EMPTY(pq))
u ← DEL-MIN(pq).
FOREACH edge e = (u, v) ∈ E leaving u:

IF (π[v] > π[u] + �e)
π[v] ← π[u] + le;
DECREASE-KEY(pq, v, π[v]).
pred[v] ← u.

A. Artale Algorithms for Data Processing

Dijkstra′s algorithm: which priority queue?

Performance. Depends on PQ: n INSERT, n DELETE-MIN, ≤ m DECREASE-KEY.

独Array implementation optimal for dense graphs.

独Binary heap much faster for sparse graphs.

独4-way heap worth the trouble in performance-critical situations.

13

priority queue INSERT DELETE-MIN DECREASE-KEY total

unordered array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-way heap 
(Johnson 1975) O(d logd n) O(d logd n) O(logd n) O(m logm/n n)

Fibonacci heap 
(Fredman–Tarjan 1984) O(1) O(log n) † O(1) † O(m + n log n)

integer priority queue 
(Thorup 2004) O(1) O(log log n) O(1) O(m + n log log n)

† amortized

Θ(n2) edges

Θ(n) edges

A. Artale Algorithms for Data Processing

Thank You!

A. Artale Algorithms for Data Processing

