Algorithms for Data Processing
Lecture Ill: Graph Algorithms — Directed Graphs

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/"artale

artale@inf.unibz.it

2018/19 — First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Directed Graphs

e The general definition of directed graph is similar to the definition
of graph, except that one associates an ordered pair of vertices
with each edge.

e Thus each edge of a directed graph can be drawn as an arrow
going from the first vertex to the second vertex of the ordered pair.

{5

A. Artale

Algorithms for Data Processing

Representing Directed Graphs: Adjacency List

Each vertex has two lists associated with it:
e Direct List consists of vertices to which it has edges, and

e Reverse List (G™") consists of vertices from which it has edges.

A. Artale Algorithms for Data Processing

Search in Directed Graphs
Directed Reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t, what is
the length of a shortest directed path from s to t?

Graph search algorithms. BFS/DFS extend naturally to directed
graphs to compute Directed reachability and Directed s-t shortest path
using the Direct List.

Computing 7. Given a vertex s, and the Reverse List, G™, BFS and
DFS compute the set of nodes with paths pointing to s.

A. Artale Algorithms for Data Processing

Strong Connectivity

Def. Vertices u and v are mutually reachable if there is both a path
from u to v and also a path from v to u.

Def. A graph G is strongly connected if every pair of nodes is mutually
reachable.

VAVANERVAVAN

strongly connected not strongly connected

A. Artale Algorithms for Data Processing

Strong Connectivity/2

Property. Let s be any vertex. G is strongly connected iff
e every vertex is reachable from s, and
e s is reachable from every vertex.
Proof.
(=) By definition.

(<) Path from u to v: concatenate u — s path with s — v path.
Path from v to u: concatenate v — s path with s — u path.

e

Algorithms for Data Processing

A. Artale

Strong Connectivity: Algorithm

Pick any node s.

Run BFS from s using the Direct List to compute set Discovered.

Run BFS from s using the Reverse List to compute set
Discovered-Rev.

Return true iff |Discovered|=|Discovered-Rev|=|V/|.

Complexity of Strong Connectivity: O(m + n).

VAVANERNAVAN

strongly connected not strongly connected

A. Artale Algorithms for Data Processing

Strong Components

By analogy with connected components in an undirected graph, we can
define:

e Strong component of a graph as a maximal subset of mutually
reachable vertices.

A. Artale Algorithms for Data Processing

Strong Components/2

Property. For any two nodes s and t in a directed graph, their strong
components are either identical or disjoint.

A. Artale Algorithms for Data Processing

Strong Components — Tarjan's Algorithm

e Tarjan’s algorithm (1972, from the name of it's inventor) is based on
depth first search (DFS).

e The vertices are increasingly indexed as they are traversed by the
DFS procedure.

e While returning from the recursion of DFS, every vertex v gets
assigned a vertex Vg as a representative.

e Vg is a vertex with the least index that can be reached from v.

e Vertices with the same representative are located in the same
strongly connected component.

A. Artale Algorithms for Data Processing

Strong Components — Tarjan’s Algorithm/2

Strong-Components(G)

index=1; v.index=0, for all v € V; /* index set to 1 and vertex index set to 0 */
S=|} /* The stack is initialized empty */
for eachv € V /* depth-first search for each vertex */ do
L if vindex=0 then Tarjan(v) /* that was not already visited */
Tarjan(v);

v.iindex = index; v.min-index = index; /* set vertex indices to the current index */

index = index + 1; S.push(v);
for each edge (v, V') incident to v /* checks all vertices adjacent to v */ do
if viindex=0 then /* vertex not already visited */
Tarjan(v'); /* DFS Recursion */

L v.min-index = min(v.min-index, v.min-index)

else if v’ is inside S then
‘ v.min-index = min(v.min-index, v.min-index); /* v/ has a path to v */

f vmin-index = vindex; /* v is a representative vertex and an SCC has been found */

then
repeat
v’ = S.pop();
output v'; /* output SCC */
until (V' I=v);

A. Artale Algorithms for Data Processing

Tarjan Complexity

e The For-Loop takes O(deg(v)) time for each vertex v;
e Thus, in total we need O(Z,cvdeg(v));

e From graph properties, £,cvdeg(v) =2m;

e Thus, O(Z,cvdeg(v)) = O(m);

e We need O(n) additional time to check whether a vertex has been
already visited and to keep the information on whether a vertex is
currently inside the stack (e.g., using a boolean array
IsInsideStackn]);

e Finally, Tarjan runs in O(m + n).

A. Artale Algorithms for Data Processing

Directed acyclic graphs

A DAG is a directed graph that contains no directed cycles

e DAGs can be used to encode precedence relations or
dependencies.

» Suppose we have a set of tasks labeled T, T>... T, that need to be
performed, and an edge (/,j) means that T; must be performed
before T; (Job Scheduling).

e Given a set of tasks with dependencies, it would be natural to seek
a valid order in which the tasks could be performed, so that all
dependencies are respected.

A. Artale Algorithms for Data Processing

Topological Order

A topological order of a directed graph G = (V/, E) is an ordering of its
nodes as vi, Vo, ..., V, so that for every edge (v;, v;) we have i < J.

1\

Q C—0—E—0—0

a DAG a topological ordering

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order
Property/1. If a directed G has a topological order, then G is a DAG.

Proof by Contradiction.
e Suppose that G has a topological order v, v, ..., v, and that G
also has a directed cycle C.
e Let v; be the lowest-indexed node in C, and let v; be the node just
before vj; thus (v}, v;) is an edge, and / < J.
e On the other hand, since (v, v;) is an edge and vy, vs,..., v, is a
topological order, we must have j < /, a contradiction.

® O @0 O @) © @

the supposed topological order: vy, ..., v,

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order/2
Also the vice-versa holds: If G is a DAG then G has a topological
order. We first show the following:

Property/2. If G is a DAG, then G has a node with no entering edges.

Proof by Contradiction.

e Let G be a DAG and every node has at least one entering edge.

e Pick a node v, and follow an edge backward from v. Since v has at
least one entering edge (u, v) we can walk backward to u.

e Since u has at least one entering edge (x, u), we can walk
backward to x.

e Repeat until we visit a node, say w, twice.

e Let C denote the sequence of nodes encountered hetween
successive visits to w. C is a cycle.

S

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order/3

Property/3. If G is a DAG, then G has a topological ordering.

Proof by Induction on the number of vertices.

e Base case: true if n = 1.

Given DAG with n > 1 nodes, find a node v with no entering edges.

G \ {v} is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G \ {v} has a topological ordering, say
TOG\{V}'

Let TOg = v, TO(;\{V}, this is valid since v has no entering edges.

A. Artale Algorithms for Data Processing

Topological Order — Algorithm in O(n?)
The following Algorithm applies Property/3 to a DAG to obtain its
topological order.
e To find a node with no incoming edges the Reverse List, G, is
used. This search costs O(n).
e Repeting this step n-times we obtain a final cost of O(n?).

i=1; /* Initialize i and call Topological-Order(G) */
Topological-Order(G);
Find a node v in G with no incoming edges;

if v does not exists then
L return

else
TO[i] = v;
i=i+1;
Topological-Order(G \ {v})

A. Artale Algorithms for Data Processing

Topological Order — Algorithm in O(m + n)

To achieve a running time of O(m + n) we do the following:

e Maintain the following information with an initialization cost of
O(m + n):
» count[w] Array counting the number of incoming edges to each

node w;
» S: set of nodes with no incoming edges (can be implemented as a

stack or a queue);
e Before each recursive call (the following costs O(deg(v)) time for
each vertex v):
» remove v from S (e.g., pop v from S);
» decrement count|[w] for all edges from v to w, and add w to S if
count[w] = 0;

Exercise: Pseudo-code for the Algorithm.

A. Artale Algorithms for Data Processing

Thank You!

Algorithms for Data Processi

