
Algorithms for Data Processing
Lecture III: Graph Algorithms – Directed Graphs

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/˜artale

artale@inf.unibz.it

2018/19 – First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Directed Graphs

• The general definition of directed graph is similar to the definition
of graph, except that one associates an ordered pair of vertices
with each edge.

• Thus each edge of a directed graph can be drawn as an arrow
going from the first vertex to the second vertex of the ordered pair.

Michael BöhlenDAS05 2

Graphs – Definition
● A graph G = (V,E) is composed of:

– V: set of vertices
– E⊂ V× V: set of edges connecting the vertices

● An edge e = (u,v) is a pair of vertices
● We assume directed graphs.

– If a graph is undirected, we represent an edge
between u and v by having (u,v) ∈ E and (v,u) ∈ E

V = {A, B, C, D}

E = {(A,B), (B,A), (A,C), (C,A),
 (C,D), (D,C), (B,C), (C,B)}

A B

DC

A B

DC

34

Directed graphs

Notation. G = (V, E).

・Edge (u, v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

・Orientation of edges is crucial.

・Modern web search engines exploit hyperlink structure to rank web

pages by importance.

A. Artale Algorithms for Data Processing

Representing Directed Graphs: Adjacency List

Each vertex has two lists associated with it:
• Direct List consists of vertices to which it has edges, and
• Reverse List (G rev) consists of vertices from which it has edges.

A. Artale Algorithms for Data Processing

Search in Directed Graphs

Directed Reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t, what is
the length of a shortest directed path from s to t?

Graph search algorithms. BFS/DFS extend naturally to directed
graphs to compute Directed reachability and Directed s-t shortest path
using the Direct List.

Computing T rev . Given a vertex s, and the Reverse List, G rev , BFS and
DFS compute the set of nodes with paths pointing to s.

A. Artale Algorithms for Data Processing

Strong Connectivity

Def. Vertices u and v are mutually reachable if there is both a path
from u to v and also a path from v to u.

Def. A graph G is strongly connected if every pair of nodes is mutually
reachable.

42

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.

Pf.

・Pick any node s.

・Run BFS from s in G.

・Run BFS from s in Greverse.

・Return true iff all nodes reached in both BFS executions.

・Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

A. Artale Algorithms for Data Processing

Strong Connectivity/2

Property. Let s be any vertex. G is strongly connected iff
• every vertex is reachable from s, and
• s is reachable from every vertex.

Proof.
(⇒) By definition.
(⇐) Path from u to v : concatenate u → s path with s → v path.

Path from v to u: concatenate v → s path with s → u path.

41

Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually

reachable.

Lemma. Let s be any node. G is strongly connected iff every node is

reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.

Pf. ⇐ Path from u to v: concatenate u↝s path with s↝v path. 
 Path from v to u: concatenate v↝s path with s↝u path. ▪

s

v

u

ok if paths overlap

A. Artale Algorithms for Data Processing

Strong Connectivity: Algorithm
• Pick any node s .
• Run BFS from s using the Direct List to compute set Discovered.
• Run BFS from s using the Reverse List to compute set
Discovered-Rev.

• Return true iff |Discovered |=|Discovered-Rev |=|V |.

Complexity of Strong Connectivity: O(m + n).

42

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.

Pf.

・Pick any node s.

・Run BFS from s in G.

・Run BFS from s in Greverse.

・Return true iff all nodes reached in both BFS executions.

・Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

A. Artale Algorithms for Data Processing

Strong Components
By analogy with connected components in an undirected graph, we can
define:
• Strong component of a graph as a maximal subset of mutually

reachable vertices.

43

Strong components

Def. A strong component is a maximal subset of mutually reachable

nodes.

 
 
 
 
 
 
 
 
Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

A digraph and its strong components

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146

A. Artale Algorithms for Data Processing

Strong Components/2

Property. For any two nodes s and t in a directed graph, their strong
components are either identical or disjoint.

43

Strong components

Def. A strong component is a maximal subset of mutually reachable

nodes.

 
 
 
 
 
 
 
 
Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

A digraph and its strong components

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146

A. Artale Algorithms for Data Processing

Strong Components – Tarjan’s Algorithm

• Tarjan’s algorithm (1972, from the name of it’s inventor) is based on
depth first search (DFS).

• The vertices are increasingly indexed as they are traversed by the
DFS procedure.

• While returning from the recursion of DFS, every vertex v gets
assigned a vertex vR as a representative.

• vR is a vertex with the least index that can be reached from v .
• Vertices with the same representative are located in the same

strongly connected component.

A. Artale Algorithms for Data Processing

Strong Components – Tarjan’s Algorithm/2
Strong-Components(G)
index=1; v.index=0, for all v ∈ V ; /* index set to 1 and vertex index set to 0 */
S = []; /* The stack is initialized empty */
for each v ∈ V /* depth-first search for each vertex */ do

if v.index=0 then Tarjan(v) /* that was not already visited */

Tarjan(v);
v.index = index; v.min-index = index; /* set vertex indices to the current index */
index = index + 1; S.push(v);
for each edge (v, v’) incident to v /* checks all vertices adjacent to v */ do

if v’.index=0 then /* vertex not already visited */
Tarjan(v ′); /* DFS Recursion */
v.min-index = min(v.min-index, v’.min-index)

else if v’ is inside S then
v.min-index = min(v.min-index, v’.min-index); /* v′ has a path to v */

if v.min-index = v.index; /* v is a representative vertex and an SCC has been found */
then

repeat
v’ = S.pop();
output v’; /* output SCC */

until (v’ != v);

A. Artale Algorithms for Data Processing

Tarjan Complexity

• The For-Loop takes O(deg(v)) time for each vertex v ;
• Thus, in total we need O(Σv∈V deg(v));
• From graph properties, Σv∈V deg(v) = 2m;
• Thus, O(Σv∈V deg(v)) = O(m);
• We need O(n) additional time to check whether a vertex has been

already visited and to keep the information on whether a vertex is
currently inside the stack (e.g., using a boolean array
IsInsideStack[n]);

• Finally, Tarjan runs in O(m + n).

A. Artale Algorithms for Data Processing

Directed acyclic graphs

A DAG is a directed graph that contains no directed cycles
• DAGs can be used to encode precedence relations or

dependencies.
I Suppose we have a set of tasks labeled T1, T2 . . . Tn that need to be

performed, and an edge (i , j) means that Ti must be performed
before Tj (Job Scheduling).

• Given a set of tasks with dependencies, it would be natural to seek
a valid order in which the tasks could be performed, so that all
dependencies are respected.

A. Artale Algorithms for Data Processing

Topological Order

A topological order of a directed graph G = (V , E) is an ordering of its
nodes as v1, v2, . . . , vn so that for every edge (vi , vj) we have i < j .

45

Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its

nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order
Property/1. If a directed G has a topological order, then G is a DAG.

Proof by Contradiction.
• Suppose that G has a topological order v1, v2, . . . , vn and that G

also has a directed cycle C .
• Let vi be the lowest-indexed node in C , and let vj be the node just

before vi ; thus (vj , vi) is an edge, and i < j .
• On the other hand, since (vj , vi) is an edge and v1, v2, . . . , vn is a

topological order, we must have j < i , a contradiction.

47

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

・Suppose that G has a topological order v1, v2, …, vn and that G also has a

directed cycle C. Let’s see what happens.

・Let vi be the lowest-indexed node in C, and let vj be the node just 
before vi; thus (vj, vi) is an edge.

・By our choice of i, we have i < j.

・On the other hand, since (vj, vi) is an edge and v1, v2, …, vn is a topological

order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order/2
Also the vice-versa holds: If G is a DAG then G has a topological
order. We first show the following:

Property/2. If G is a DAG, then G has a node with no entering edges.

Proof by Contradiction.
• Let G be a DAG and every node has at least one entering edge.
• Pick a node v , and follow an edge backward from v . Since v has at

least one entering edge (u, v) we can walk backward to u.
• Since u has at least one entering edge (x , u), we can walk

backward to x .
• Repeat until we visit a node, say w , twice.
• Let C denote the sequence of nodes encountered between

successive visits to w . C is a cycle.

49

Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

・Suppose that G is a DAG and every node has at least one entering edge.

Let’s see what happens.

・Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u, v) we can walk backward to u.

・Then, since u has at least one entering edge (x, u), we can walk

backward to x.

・Repeat until we visit a node, say w, twice.

・Let C denote the sequence of nodes encountered between successive

visits to w. C is a cycle. ▪

w x u v

A. Artale Algorithms for Data Processing

Directed Acyclic Graphs and Topological Order/3

Property/3. If G is a DAG, then G has a topological ordering.

Proof by Induction on the number of vertices.
• Base case: true if n = 1.
• Given DAG with n > 1 nodes, find a node v with no entering edges.
• G \ {v} is a DAG, since deleting v cannot create cycles.
• By inductive hypothesis, G \ {v} has a topological ordering, say

TOG\{v}.
• Let TOG = v , TOG\{v}, this is valid since v has no entering edges.

A. Artale Algorithms for Data Processing

Topological Order – Algorithm in O(n2)
The following Algorithm applies Property/3 to a DAG to obtain its
topological order.
• To find a node with no incoming edges the Reverse List, G rev , is

used. This search costs O(n).
• Repeting this step n-times we obtain a final cost of O(n2).

i=1; /* Initialize i and call Topological-Order(G) */

Topological-Order(G);
Find a node v in G with no incoming edges;
if v does not exists then

return
else

TO[i] = v;
i=i+1;
Topological-Order(G \ {v})

A. Artale Algorithms for Data Processing

Topological Order – Algorithm in O(m + n)

To achieve a running time of O(m + n) we do the following:
• Maintain the following information with an initialization cost of

O(m + n):
I count[w]: Array counting the number of incoming edges to each

node w ;
I S : set of nodes with no incoming edges (can be implemented as a

stack or a queue);
• Before each recursive call (the following costs O(deg(v)) time for

each vertex v):
I remove v from S (e.g., pop v from S);
I decrement count[w] for all edges from v to w , and add w to S if
count[w] = 0;

Exercise: Pseudo-code for the Algorithm.

A. Artale Algorithms for Data Processing

Thank You!

A. Artale Algorithms for Data Processing

