
Algorithms for Data Processing
Lecture III: Graph Algorithms – Undirected Graphs

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/˜artale

artale@inf.unibz.it

2019/20 – First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Graph Representation: Size of the Input

• A Graph G = (V , E) has two natural parametres:
I Number of nodes. n = |V |;
I Number of edges. m = |E |.

• Running time/Space required will be given in terms of both of
these two parameters.

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency Matrix

Adjacency Matrix. For a graph G with n vertices, is a n × n matrix with
A[u, v] = 1 if (u, v) is an edge.

• Each edge is mentioned twice in the matrix when G is undirected,
i.e., the matrix is symmetric.

Properties:

1 Search/Delete. Checking if (u, v) is an edge takes Θ(1) time.
2 Storage. Space required is Θ(n2)—when the G has many fewer

edges more compact representations are possible.
3 They are not efficient to check all incident edges which takes Θ(n)

time.

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency Matrix

8

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

・Two representations of each edge.

・Space proportional to n2.

・Checking if (u, v) is an edge takes Θ(1) time.

・Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency List

Adjacency list. Vertex-indexed array of lists.

• The array Adj when indexed with a vertex v , Adj[v], is a pointer to
the list of all vertices adjacent to v .

• Each edge is mentioned twice (when G is undirected).

Properties:

1 Search/Delete. Checking if (u, v) is an edge takes Θ(deg(u)) time.
2 Storage. Space is Θ(m + n): Since each edge appears twice, and

2·m ∈ O(m), and we need an array of n pointers to initialize Adj.
I Note. Since m ≤ n2, Θ(m + n) is O(n2), i.e., much better when G is

sparse.
3 Identifying all incident edges to v takes Θ(deg(v)) time better than

Θ(n).

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency List

9

Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.

・Two representations of each edge.

・Space is Θ(m + n).

・Checking if (u, v) is an edge takes O(degree(u)) time.

・Identifying all edges takes Θ(m + n) time.

1 3 2

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

2 1 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

A. Artale Algorithms for Data Processing

Breadth-First Search (BFS)
• s-t connectivity problem (Reachability). Given two nodes, s, t , is

there a path between s and t?
• BFS intuition. Explore outward from the vertex s in all possible

directions, adding vertices one layer at a time.

18

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding

nodes one “layer” at a time.

BFS algorithm.

・L0 = { s }.

・L1 = all neighbors of L0.

・L2 = all nodes that do not belong to L0 or L1, and that have an edge to a

node in L1.

・Li+1 = all nodes that do not belong to an earlier layer, and that have an

edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i 
from s. There is a path from s to t iff t appears in some layer.

s L1 L2 Ln–1

Layers L1, , L2, L3, . . . are constructed in the following way:

1 L1 consists of all vertices adjacent to s ;
2 Lj+1 consists of all vertices that: i) Do not belong to an earlier

layer, and ii) Are adjacent to a vertex in layer Lj .

A. Artale Algorithms for Data Processing

BFS — Spanning Tree
• BFS traverses a connected component of an undirected graph

containing s , and in doing so defines a spanning tree rooted at s .
• The path in the spanning tree from s to v , corresponds to a

shortest path in G .
Example of a spanning tree rooted at vertex 1.

19

Breadth-first search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. 
Then, the levels of x and y differ by at most 1.

L0

L1

L2

L3

A. Artale Algorithms for Data Processing

Breadth-First Search – Properties

Properties:

BFS/P1 For each j ≥ 1, layer Lj produced by BFS consists of all
nodes at distance exactly j from s .

BFS/P2 There is a path from s to t if and only if t appears in some
layer.

BFS/P3 Let T be a breadth-first spanning tree, let u, v be vertices
in T belonging to layers Li and Lj respectively, and let
(u, v) be an edge of G . Then i and j differ by at most 1.

A. Artale Algorithms for Data Processing

Implementing Breadth-First Search
Data Structures

• The adjacency list data structure is ideal for implementing a BFS
algorithm.

• The algorithm examines the edges incident on a given vertex u one
by one using its adjacency list Adj[u].

• Array Discovered of length n stores whether or not vertex u has
been previously discovered by the search.

• To maintain the vertices in a layer Li , we have a list L[i], for each
i = 0, 1, 2, . . . and i < n − 1.

A. Artale Algorithms for Data Processing

Implementing Breadth-First Search/2

BFS(G,s)
Discovered[s]=true;
Discovered[u]=false, for all other u ∈ V ;
L[0]=s; layer counter i=0; spanning tree T=s;
While L[i]6= ∅

Initialize an empty list L[i+1]
For each node u ∈ L[i]

For each edge (u,v) incident to u;
If Discovered[v]=false then

Discovered[v]=true;
Add edge (u,v) to tree T;
Add v to the list L[i+1]

EndIf
EndFor

EndFor
i=i+1;

Endwhile

A. Artale Algorithms for Data Processing

BFS Complexity

• The inner For-Loop takes O(deg(u)) time for each vertex u;
• Thus, in total we need O(Σu∈V deg(u));
• From graph properties, Σu∈V deg(u) = 2·m;
• Thus, O(Σu∈V deg(u)) = O(m);
• We need O(n) additional time to set up lists and manage the array
Discovered;

• Finally, the BFS runs in O(m + n).

A. Artale Algorithms for Data Processing

Depth-First Search (DFS)

• BFS visits vertices at increasing distances: starts with distance 1
from s , then those at distance 2, and so on.

• Depth-First Search (DFS): follows some path as deeply as
possible into the graph before it is forced to backtrack.

• BFS and DFS both build the connected component containing s
with a similar complexity.

A. Artale Algorithms for Data Processing

DFS — Recursive version

DFS(G,u)
Explored[u]=true;
If u 6= s add edge (parent[u],u) to T ;
for each edge (u, v) incident to u do

if Explored[v]=false then
parent[v] = u;
DFS(G,v)

To apply this to s-t connectivity, we:
• Declare all vertices initially to be not explored;
• Initialize T to be a tree with root s ;
• Invoke DFS(G,s).

A. Artale Algorithms for Data Processing

Depth-First Search Tree
84 Chapter 3 Graphs

DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,u) incident to u

If v is not marked "Explored" then
Recursively invoke DFS(u)

Endif
Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not
explored, and invoke DFS(s).

There are some fundamental similarities and some fundamental differ-
ences between DFS and BFS. The similarities are based on the fact that they
both build the connected component containing s, and we will see in the next
section that they achieve qualitatively similar levels of efficiency.

While DFS ultimately visits exactly the same set of nodes as BFS, it typically "

does so in a very different order; it probes its way down long paths, potentially
getting very far from s, before backing up to try nearer unexplored nodes. We
can see a reflection of this difference in the fact that, like BFS, the DFS algorithm
yields a natural rooted tree T on the component containing s, but the tree will
generally have a very different structure. We make s the root of the tree T,
and make u the parent of v when u is responsible for the discovery of v. That
is, whenever DFS(v) is invoked directly during the ca!l to DFS(u), we add the
edge (u, v) to T. The resulting tree is called a depth-first search tree of the
component R.

Figure 3.5 depicts the construction of a DFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of DFS begins by building a
path on nodes 1, 2, 3, 5, 4. The execution reaches a dead.end at 4, since there
are no new nodes to find, and so it "backs up" to 5, finds node 6, backs up
again to 3, and finds nodes 7 and 8. At this point there are no new nodes to find
in the connected component, so all the pending recursive DFS calls terminate,

. one by one, and the execution comes to an end. The full DFS tree is depicted
in Figure 3.5(g).

This example suggests the characteristic way in which DFS trees look
different from BFS trees. Rather than having root-to-leaf paths that are as short
as possible, they tend to be quite narrow and deep. However, as in the case
of BFS, we can say something quite strong about the way in which nontree
edges of G must be arranged relative to the edges of a DFS tree T: as in the
figure, nontree edges can only connect ancestors of T to descendants.

3.2 Graph Connectivity and Graph Traversal

Ca) (d)

(g)

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2,
with (a) through (g) depicting the nodes as they are discovered in sequence. The solid
edges are the edges of T; the dotted edges are edges of G that do not belong to T.

To establish this, we first observe the following property of the DFS
algorithm and the tree that it produces.

(3.6) For a given recursive call DFS(u), all nodes that are marked "Explored"
between the invocation and end of this recursive call are descendants of u
in T.

Using (3.6), we prove

(3,7) Let T be a depth-first search tree, let x and y be nodes in T, and let
(x, y) be an edge of G that is not an edge of T. Then one of x ory is an ancestor
of the other.

85

A. Artale Algorithms for Data Processing

Depth-First Search Tree/2

• The spanning tree, also called depth-first search tree, generated
by the DFS has a very different structure.

• The starting vertex s is the root of T ;
• A vertex v is a child of u in T if DFS(G,v) is called directly during

the call DFS(G,u).

A. Artale Algorithms for Data Processing

DFS — Properties

DFS/P1 For a given recursive call DFS(G,u), all nodes that are
marked "Explored" between the invocation and the end of
this recursive call are descendants of u in T .

DFS/P2 Let T be a depth-first search tree, let u and v be two
nodes in T , and let (u, v) be an edge of G that is not an
edge of T . Then one of u or v is an ancestor of the other.

A. Artale Algorithms for Data Processing

Depth-First Search – Iterative Algorithm
• Maintain the vertices to be processed in a stack: The recursive

calls of DFS can be viewed as pushing vertices into a stack for
later processing.

DFS(G,s)
Initialize S to be a stack with one element s ;
Initialize T to be a tree with root s ;
Initialize Explored[u] = false, for all v ∈ V ;
while S 6= ∅ do

Pop a node u from S;
if Explored[u] = false then

Explored[u] = true;
If u 6= s add edge (parent[u],u) to T;
for each edge (u, v) incident to u do

Push v to the stack S;
parent[v] = u

A. Artale Algorithms for Data Processing

DFS Complexity

• The main step in the algorithm is to push and pop vertices to and
from the stack S ;

• How many elements ever get pushed (and thus popped) to S?
• Vertex v will be pushed to the stack S every time one of its deg(v)

adjacent vertices is explored.
• Thus, in total we need O(Σu∈V deg(u)) = O(m);
• We need O(n) additional time to manage the array Explored;
• Finally, the DFS runs in O(m + n).

A. Artale Algorithms for Data Processing

The Set of All Connected Components

Property: For any two nodes s and t in a graph, their connected
components are either identical or disjoint.

To compute all connected components of a graph G :
1 Start with an arbitrary node s , and, using BFS or DFS, generate

its connected component;
2 Find a node v (if any) that was not visited by the previous search,

and generate its connected component–which will be disjoint from
the previous components.

3 Continue till all vertices have been visited.

A. Artale Algorithms for Data Processing

Bipartite Graphs – 2-Colorability
Bipartite Graph: An undirected graph G = (V , E) is Bipartite (or,
2-Colorable) if the vertices can be colored blue or white such that
every edge has one white and one blue end.
• Applications.

Matching: residents = blue, hospitals = white;
Scheduling: machines = blue, jobs = white.

26

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored

blue or white such that every edge has one white and one blue end.

Applications.

・Stable matching: med-school residents = blue, hospitals = white.

・Scheduling: machines = blue, jobs = white.

a bipartite graph

A. Artale Algorithms for Data Processing

Bipartite Graphs – 2-Colorability/2

What can be an obstacle for a graph not to be bipartite?

• For example, a triangle is not bipartite.
• Property. If a graph G is bipartite, it cannot contain an odd-length

cycle.

28

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite 
(2-colorable)

not bipartite 
(not 2-colorable)

A. Artale Algorithms for Data Processing

Bipartite Graphs – Property
Lemma. Let G be a connected graph, and let L0, . . . , Lk be the layers
produced by BFS starting at vertex s . Exactly one of the following
holds.

1 No edge of G connects two vertices of the same layer, and G is
bipartite.

2 An edge of G connects two vertices of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

29

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced

by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an  
 odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

A. Artale Algorithms for Data Processing

Bipartite Graphs – Property/2
1 No edge of G connects two vertices of the same layer, and G is

bipartite.
Proof of (1).
• Suppose no edge connects two vertices in same layer.
• By [BFS/P3] property, each edge of the Graph connects two

vertices in adjacent levels.
• Bipartition (2-Coloring): blue = vertices on even levels, white =

vertices on odd levels.

30

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced

by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an  
 odd-length cycle (and hence is not bipartite).

Pf. (i)

・Suppose no edge joins two nodes in same layer.

・By BFS property, each edge joins two nodes in adjacent levels.

・Bipartition: white = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

A. Artale Algorithms for Data Processing

Bipartite Graphs – Property/3
1 No edge of G connects two vertices of the same layer, and G is

bipartite.
2 An edge of G connects two vertices of the same layer, and G

contains an odd-length cycle (and hence is not bipartite).

31

Bipartite graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced

by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an 
 odd-length cycle (and hence is not bipartite).

Pf. (ii)

・Suppose (x, y) is an edge with x, y in same level Lj.

・Let z = lca(x, y) = lowest common ancestor.

・Let Li be level containing z.

・Consider cycle that takes edge from x to y, 
then path from y to z, then path from z to x.

・Its length is 1 + (j – i) + (j – i), which is odd. ▪

z = lca(x, y)

(x, y) path from 
y to z

path from 
z to x

A. Artale Algorithms for Data Processing

The Only Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycles.

32

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

5-cycle C

bipartite 
(2-colorable)

not bipartite 
(not 2-colorable)

Complexity of Bipartiteness: O(m + n).

What about the Algorithm?

A. Artale Algorithms for Data Processing

Thank You!

A. Artale Algorithms for Data Processing

