Algorithms for Data Processing
Lecture Ill: Graph Algorithms — Undirected Graphs

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/"artale

artale@inf.unibz.it

2019/20 — First Semester
MSc in Computational Data Science — UNIBZ

A. Artale Algorithms for Data Processing

Graph Representation: Size of the Input

e A Graph G = (V, E) has two natural parametres:

» Number of nodes. n=|V|;
» Number of edges. m = |E|.

¢ Running time/Space required will be given in terms of both of
these two parameters.

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency Matrix

Adjacency Matrix. For a graph G with n vertices, is a n x n matrix with
Au,vl=11if (u,v) is an edge.

e Each edge is mentioned twice in the matrix when G is undirected,
i.e, the matrix is symmetric.
Properties:
@ Search/Delete. Checking if (u, v) is an edge takes O(1) time.

@® Storage. Space required is ©(n°)—when the G has many fewer
edges more compact representations are possible.

©® They are not efficient to check all incident edges which takes O(n)
time.

A. Artale

Algorithms for Data Processing

Graph Representation: Adjacency Matrix

12345678
0 ° 101100000
‘ 210111000

e e 311001011
401001000

" 501110100
° o @ 600001000
7l00100001

8/00100010

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency List

Adjacency list. Vertex-indexed array of lists.

e The array Adj when indexed with a vertex v, Adj[v], is a pointer to
the list of all vertices adjacent to v.

e Each edge is mentioned twice (when G is undirected).
Properties:
@ Search/Delete. Checking if (u, v) is an edge takes O(deg(u)) time.

@® Storage. Space is ©(m + n): Since each edge appears twice, and

2-m € O(m), and we need an array of n pointers to initialize Adj.

» Note. Since m < n?, ©(m + n) is O(n?), i.e., much better when G is
sparse.

© Identifying all incident edges to v takes O(deg(v)) time better than
O(n).

A. Artale Algorithms for Data Processing

Graph Representation: Adjacency List

-
BEICp Bl
[-{- E&

EB -
bbb

11111111

5
<
0
n
o
1“3
=4

o
]

g
©

o

2
@
£

&=

=
S

=y
<

Breadth-First Search (BFS)

e s-t connectivity problem (Reachability). Given two nodes, s, t, is
there a path between s and t?

e BFS intuition. Explore outward from the vertex s in all possible
directions, adding vertices one layer at a time.

W -
S < L, —— L, — e e Lo
Layers Ly,,L2, L3, ... are constructed in the following way:

@ L; consists of all vertices adjacent to s;

@® ;.1 consists of all vertices that: /) Do not belong to an earlier
layer, and /i) Are adjacent to a vertex in layer L;.

A. Artale Algorithms for Data Processing

BFS — Spanning Tree
e BFS traverses a connected component of an undirected graph
containing s, and in doing so defines a spanning tree rooted at s.
e The path in the spanning tree from s to v, corresponds to a
shortest path in G.

Example of a spanning tree rooted at vertex 1.

s

Algorithms for Data Processing

A. Artale

Breadth-First Search — Properties

Properties:
BFS/P1 For each j > 1, layer L; produced by BFS consists of all
nodes at distance exactly j from s.
BFS/P2 There is a path from s to t if and only if ¢t appears in some
layer.
BFS/P3 Let T be a breadth-first spanning tree, let u, v be vertices

in T belonging to layers L; and L; respectively, and let
(u, v) be an edge of G. Then / and j differ by at most 1.

A. Artale Algorithms for Data Processing

Implementing Breadth-First Search
Data Structures

e The adjacency list data structure is ideal for implementing a BFS
algorithm.

e The algorithm examines the edges incident on a given vertex u one
by one using its adjacency list Adj[ul.

e Array Discovered of length n stores whether or not vertex u has
been previously discovered by the search.

e To maintain the vertices in a layer L;, we have a list L[i], for each
1=0,1,2,...and i< n—1.

A. Artale Algorithms for Data Processing

Implementing Breadth-First Search/2

BFS(G,s)
Discovered[s]=true;
Discovered[u]l=false, for all other u € V;
L[0]=s; layer counter i=0; spanning tree T=s;
While L[i]l# §
Initialize an empty list L[i+1]
For each node u € L[i]
For each edge (u,v) incident to u;
If Discovered[v]=false then
Discovered[v]=true;
Add edge (u,v) to tree T;
Add v to the list L[i+1]
EndIf
EndFor
EndFor
i=i+1;

Endwhile

A. Artale Algorithms for Data Processing

BFS Complexity

The inner For-Loop takes O(deg(u)) time for each vertex u;

Thus, in total we need O(Z,cydeg(u));

From graph properties, ¥ ,cvdeg(u) = 2-m;
Thus, O(X,cvdeg(u)) = O(m);

We need O(n) additional time to set up lists and manage the array
Discovered;

Finally, the BFS runs in O(m + n).

A. Artale Algorithms for Data Processing

Depth-First Search (DFYS)

e BFS visits vertices at increasing distances: starts with distance 1
from s, then those at distance 2, and so on.

e Depth-First Search (DFS): follows some path as deeply as
possible into the graph before it is forced to backtrack.

e BFS and DFS both build the connected component containing s
with a similar complexity.

A. Artale Algorithms for Data Processing

DFS — Recursive version

DFS(G,u)
Explored[ul =true;
If u+# s add edge (parent[u]u) to 7T;
for each edge (u,v) incident to u do
if Explored[v]=false then
L parent|v] = u;
DFS(G,v)

To apply this to s-t connectivity, we:

e Declare all vertices initially to be not explored;
e Initialize 7 to be a tree with root s;
e |nvoke DFS(G,s).

A. Artale

Algorithms for Data Processing

Depth-First Search Tree

Figure 3.5 The construction of a depth-first search tree T for the graph in Figure 3.2,
with (a) through (g) depicting the nodes as they are discovered in sequence. The solid
edges are the edges of T; the dotted edges are edges of G that do not belong to T.

Algorithms for Data Process

Depth-First Search Tree/2

e The spanning tree, also called depth-first search tree, generated
by the DFS has a very different structure.

e The starting vertex s is the root of T;

e Avertex v is a child of v in T if DFS(G,v) is called directly during
the call DFS(G,u).

A. Artale Algorithms for Data Processing

DFS — Properties

DFS/P1 For a given recursive call DFS(G,u), all nodes that are
marked "Explored" between the invocation and the end of
this recursive call are descendants of v in T.

DFS/P2 Let T be a depth-first search tree, let v and v be two
nodes in T, and let (u, v) be an edge of G that is not an
edge of T. Then one of u or v is an ancestor of the other.

A. Artale Algorithms for Data Processing

Depth-First Search — Iterative Algorithm

e Maintain the vertices to be processed in a stack: The recursive
calls of DFS can be viewed as pushing vertices into a stack for
later processing.

DFS(G,s)
Initialize S to be a stack with one element s;
Initialize T to be a tree with root s;

Initialize Explored[u] = false, for all v € V;
while S # (do

Pop a node u from S;

if Explored[u] = false then
Explored[u] = true;
If u# s add edge (parent|uu) to T;
for each edge (u, v) incident to u do

Push v to the stack S;
parent[v] = u

A. Artale

Algorithms for Data Processing

DFS Complexity

e The main step in the algorithm is to push and pop vertices to and
from the stack S;

e How many elements ever get pushed (and thus popped) to 5?

e Vertex v will be pushed to the stack S every time one of its deg(v)
adjacent vertices is explored.

e Thus, in total we need O(X,cvdeg(u)) = O(m);
e We need O(n) additional time to manage the array Explored;
e Finally, the DFS runs in O(m + n).

A. Artale Algorithms for Data Processing

The Set of All Connected Components

Property: For any two nodes s and t in a graph, their connected
components are either identical or disjoint.

To compute all connected components of a graph G:

@ Start with an arbitrary node s, and, using BFS or DFS, generate
its connected component;

® Find a node v (if any) that was not visited by the previous search,
and generate its connected component—which will be disjoint from
the previous components.

® Continue till all vertices have been visited.

A. Artale Algorithms for Data Processing

Bipartite Graphs — 2-Colorability
Bipartite Graph: An undirected graph G = (V, E) is Bipartite (or,
2-Colorable) if the vertices can be colored blue or white such that
every edge has one white and one blue end.

e Applications.
Matching: residents = blue, hospitals = white;
Scheduling: machines = blue, jobs = white.

a bipartite graph

A. Artale Algorithms for Data Processing

Bipartite Graphs — 2-Colorability/2

What can be an obstacle for a graph not to be bipartite?

e For example, a triangle is not bipartite.

e Property. If a graph G is bipartite, it cannot contain an odd-length
cycle.

bipartite not bipartite
(2-colorable) (not 2-colorable)

A. Artale Algorithms for Data Processing

Bipartite Graphs — Property

Lemma. Let G be a connected graph, and let Lo, ..., Lx be the layers
produced by BFS starting at vertex s. Exactly one of the following
holds.

® No edge of G connects two vertices of the same layer, and G is
bipartite.

® An edge of G connects two vertices of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

L L L3 L L, L3

Case (i) Case (ii)

A. Artale Algorithms for Data Processing

Bipartite Graphs — Property/2
@ No edge of G connects two vertices of the same layer, and G is
bipartite.
Proof of (1).
e Suppose no edge connects two vertices in same layer.
e By [BFS/P3] property, each edge of the Graph connects two
vertices in adjacent levels.

e Bipartition (2-Coloring): blue = vertices on even levels, white =
vertices on odd levels.

L, L, L3

A. Artale Algorithms for Data Processing

Bipartite Graphs — Property/3
@ No edge of G connects two vertices of the same layer, and G is
bipartite.

® An edge of G connects two vertices of the same layer, and G
contains an odd-length cycle (and hence is not bhipartite).

Pf. (ii)
+ Suppose (x,y) is an edge with x, y in same level L,
* Let z=lca(x,y) = lowest common ancestor.
+ Let L, be level containing z.

z = lca(x, y)

» Consider cycle that takes edge from x to y, Layer L;
then path from y to z, then path from z to x.

* Its lengthis 1 + (j—i) + (j—i), whichis odd. =

(x,y) path from path from Layer L; °
ytoz Zto x

A. Artale

Algorithms for Data Processing

The Only Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycles.

<«—— 5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

Complexity of Bipartiteness: O(m + n).

What about the Algorithm?

A. Artale Algorithms for Data Processing

Thank You!

Algorithms for Data Processi

