

SECTION 2.2

2. ALGORITHM ANALYSIS

- computational tractability
- asymptotic order of growth
- ▶ implementing Gale-Shapley
- survey of common running times

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Ex.
$$f(n) = 32n^2 + 17n + 1$$
.

- f(n) is neither O(n) nor $O(n \log n)$.

Typical usage. Insertion sort makes $O(n^2)$ compares to sort n elements.

Analysis of algorithms: quiz 1

Let $f(n) = 3n^2 + 17 n \log_2 n + 1000$. Which of the following are true?

- A. f(n) is $O(n^2)$.
- **B.** f(n) is $O(n^3)$.
- C. Both A and B.
- D. Neither A nor B.

Big O notation: properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then cf is O(g).

Products. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$. Pf.

- $\exists c_1 > 0$ and $n_1 \ge 0$ such that $0 \le f_1(n) \le c_1 \cdot g_1(n)$ for all $n \ge n_1$.
- $\exists c_2 > 0$ and $n_2 \ge 0$ such that $0 \le f_2(n) \le c_2 \cdot g_2(n)$ for all $n \ge n_2$.
- Then, $0 \le f_1(n) \cdot f_2(n) \le \frac{c_1 \cdot c_2}{c} \cdot g_1(n) \cdot g_2(n)$ for all $n \ge \max_{n_0} \{ n_1, n_2 \}$.

Sums. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$.

ignore lower-order terms

Transitivity. If f is O(g) and g is O(h), then f is O(h).

Ex. $f(n) = 5n^3 + 3n^2 + n + 1234$ is $O(n^3)$.

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n) \ge 0$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$. \longleftarrow choose $c = 32, n_0 = 1$
- f(n) is not $\Omega(n^3)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

Analysis of algorithms: quiz 2

Which is an equivalent definition of big Omega notation?

- A. f(n) is $\Omega(g(n))$ iff g(n) is O(f(n)).
- **B.** f(n) is $\Omega(g(n))$ iff there exist constants c > 0 such that $f(n) \ge c \cdot g(n) \ge 0$ for infinitely many n.
- C. Both A and B.
- D. Neither A nor B.

Big Theta notation

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Theta(n \log n)$ compares to sort n elements.

Analysis of algorithms: quiz 3

Which is an equivalent definition of big Theta notation?

- **A.** f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$.
- **B.** f(n) is $\Theta(g(n))$ iff $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some constant $0 < c < \infty$.
- C. Both A and B.
- D. Neither A nor B.

Asymptotic bounds and limits

Proposition. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some constant $0 < c < \infty$ then f(n) is $\Theta(g(n))$.

Pf.

• By definition of the limit, for any $\varepsilon > 0$, there exists n_0 such that

$$c - \epsilon \le \frac{f(n)}{g(n)} \le c + \epsilon$$

for all $n \ge n_0$.

- Choose $\varepsilon = \frac{1}{2} c > 0$.
- Multiplying by g(n) yields $1/2 c \cdot g(n) \le f(n) \le 3/2 c \cdot g(n)$ for all $n \ge n_0$.
- Thus, f(n) is $\Theta(g(n))$ by definition, with $c_1 = 1/2$ c and $c_2 = 3/2$ c.

Proposition. If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$
, then $f(n)$ is $O(g(n))$ but not $\Omega(g(n))$.

Proposition. If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$
, then $f(n)$ is $\Omega(g(n))$ but not $O(g(n))$.

Asymptotic bounds for some common functions

Polynomials. Let $f(n) = a_0 + a_1 n + ... + a_d n^d$ with $a_d > 0$. Then, f(n) is $\Theta(n^d)$. Pf.

$$\lim_{n \to \infty} \frac{a_0 + a_1 n + \dots + a_d n^d}{n^d} = a_d > 0$$

Logarithms. $\log_a n$ is $\Theta(\log_b n)$ for every a > 1 and every b > 1.

$$\frac{\log_a n}{\log_b n} = \frac{1}{\log_b a}$$
 no need to specify base (assuming it is a constant)

Logarithms and polynomials. $\log_a n$ is $O(n^d)$ for every a > 1 and every d > 0.

Pf.
$$\lim_{n \to \infty} \frac{\log_a n}{n^d} = 0$$

Exponentials and polynomials. n^d is $O(r^n)$ for every r > 1 and every d > 0.

Pf.
$$\lim_{n \to \infty} \frac{n^d}{r^n} = 0$$

Factorials. n! is $2^{\Theta(n \log n)}$.

Pf. Stirling's formula:
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Big O notation with multiple variables

Upper bounds. f(m, n) is O(g(m, n)) if there exist constants c > 0, $m_0 \ge 0$, and $n_0 \ge 0$ such that $f(m, n) \le c \cdot g(m, n)$ for all $n \ge n_0$ and $m \ge m_0$.

Ex. $f(m, n) = 32mn^2 + 17mn + 32n^3$.

- f(m, n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- f(m, n) is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. Breadth-first search takes O(m + n) time to find a shortest path from s to t in a digraph with n nodes and m edges.

SECTION 2.4

2. ALGORITHM ANALYSIS

- computational tractability
- asymptotic order of growth
- ▶ implementing Gale-Shapley
- survey of common running times

Constant time

Constant time. Running time is O(1).

Examples.

bounded by a constant, which does not depend on input size n

- · Conditional branch.
- Arithmetic/logic operation.
- Declare/initialize a variable.
- Follow a link in a linked list.
- Access element i in an array.
- Compare/exchange two elements in an array.
- ...

Linear time

Linear time. Running time is O(n).

Merge two sorted lists. Combine two sorted linked lists $A = a_1, a_2, ..., a_n$ and $B = b_1, b_2, ..., b_n$ into a sorted whole.

O(n) algorithm. Merge in mergesort.

 $i \leftarrow 1; j \leftarrow 1.$

WHILE (both lists are nonempty)

IF $(a_i \le b_j)$ append a_i to output list and increment i.

ELSE append b_j to output list and increment j.

Append remaining elements from nonempty list to output list.

Logarithmic time

Logarithmic time. Running time is $O(\log n)$.

Search in a sorted array. Given a sorted array A of n distinct integers and an integer x, find index of x in array.

 $O(\log n)$ algorithm. Binary search.

- remaining elements
- Invariant: If x is in the array, then x is in A[lo ... hi].
- After *k* iterations of WHILE loop, $(hi lo + 1) \le n/2^k \implies k \le 1 + \log_2 n$.

$$lo \leftarrow 1; hi \leftarrow n.$$

WHILE $(lo \leq hi)$
 $mid \leftarrow \lfloor (lo + hi) / 2 \rfloor.$

IF $(x < A[mid]) \ hi \leftarrow mid - 1.$

ELSE IF $(x > A[mid]) \ lo \leftarrow mid + 1.$

ELSE RETURN $mid.$

RETURN $-1.$

Linearithmic time

Linearithmic time. Running time is $O(n \log n)$.

Sorting. Given an array of n elements, rearrange them in ascending order.

 $O(n \log n)$ algorithm. Mergesort.

Quadratic time

Quadratic time. Running time is $O(n^2)$.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest to each other.

 $O(n^2)$ algorithm. Enumerate all pairs of points (with i < j).

```
min \leftarrow \infty.

FOR i = 1 TO n

FOR j = i + 1 TO n

d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2.

IF (d < min)

min \leftarrow d.
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion. [see §5.4]

Cubic time

Cubic time. Running time is $O(n^3)$.

3-SUM. Given an array of n distinct integers, find three that sum to 0.

 $O(n^3)$ algorithm. Enumerate all triples (with i < j < k).

FOR
$$i = 1$$
 TO n

FOR $j = i + 1$ TO n

FOR $k = j + 1$ TO n

IF $(a_i + a_j + a_k = 0)$

RETURN (a_i, a_j, a_k) .

Remark. $\Omega(n^3)$ seems inevitable, but $O(n^2)$ is not hard. [see next slide]

Polynomial time

Polynomial time. Running time is $O(n^k)$ for some constant k > 0.

Independent set of size k. Given a graph, find k nodes such that no two are joined by an edge.

k is a constant

 $O(n^k)$ algorithm. Enumerate all subsets of k nodes.

FOREACH subset *S* of *k* nodes:

Check whether S is an independent set.

IF (S is an independent set)

RETURN S.

- Check whether S is an independent set of size k takes $O(k^2)$ time.
- Number of k-element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2) \times \cdots \times (n-k+1)}{k(k-1)(k-2) \times \cdots \times 1} \le \frac{n^k}{k!}$

Exponential time

Exponential time. Running time is $O(2^{n^k})$ for some constant k > 0.

Independent set. Given a graph, find independent set of max cardinality.

 $O(n^2 2^n)$ algorithm. Enumerate all subsets.

RETURN S^* .

$$S^* \leftarrow \emptyset$$
.

FOREACH subset S of nodes:

Check whether S is an independent set.

IF $(S \text{ is an independent set and } |S| > |S^*|)$
 $S^* \leftarrow S$.