2. ALGORITHM ANALYSIS

» asymptotic order of growth

\\ /~\Ig i Desion
‘\\ JON KLEINBERG - EVA TARDOS

SECTION 2.2

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants ¢>0 and n, = 0
such that0< f(n) < ¢-g() for all n = n,.
c-gn)
EX. f(n)=32n2+ 17n+ 1.
* f(n) Is O(n?). <—— choosec=50,n=1
* f(n) is neither O(n) nor O(n log n).

f(n)

no n

Typical usage. Insertion sort makes O(n2) compares to sort n elements.

12

Analysis of algorithms: quiz 1

Let f(n) = 3n2 + 17 n log2 n + 1000. Which of the following are true?

A. f(n)is O(n?).

B. f(n)is On3).

C. Both A and B.

D. Neither A nor B.

13

Big O notation: properties

Reflexivity. fis O(f).
Constants. If fis O(g) and ¢ >0, then cf is O(g).

Products. If f1is O(g1) and f> is O(g2), then fi f2 is O(gi1 g2).
Pf.
« 3¢,>0and n,= 0 such that0< fi(n) < c1-gi(n) forall n = n,.
« 3¢,>0and n,= 0 such that 0 < f2(n) < c2- g2(n) for all n = n,.
« Then, 0= fi(n) - f2(n) < c1-c2- g1(n) - go(n) for all n = max {n;, n,}. =

C no

Sums. If f1is O(g1) and f2 is O(g2), then fi + f2 is O(max {g1, g2}).

N

ignore lower-order terms
Transitivity. If fis O(g) and g is O(h), then fis O(h).

EX. f(n)=5n34+3n2+ n+ 1234 is O(n3).

15

Big Omega notation

Lower bounds. f(n) is Q(g(n)) if there exist constants ¢>0 and n, = 0

such that f(n) = ¢-gn) = 0 forall n = n,.

EX. f(n)=32n2+ 17n+ 1.
* f(n) is both Q(nZ) and Q(n) <«— choosec=32,n9=1
* f(n) Is not Q(n3).

Typical usage. Any compare-based sorting algorithm requires Q(n log n)

compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires

at least O(n log n) compares in the worst case.

J(n)

c-g(n)

16

Analysis of algorithms: quiz 2 >

Which is an equivalent definition of big Omega notation?

A. f(n)is Qgm) iff g(n) is O(f(n)).

B. f(n)is Q(g(n)) iff there exist constants ¢ >0 such that f(n) = ¢c-g(n) = 0
for infinitely many n.

C. Both A and B.

D. Neither A nor B.

17

Big Theta notation

Tight bounds. f(n) is O(g(n)) if there exist constants ¢; >0, c2>0, and n, = 0
such that0< c¢i-g(n) < f(n) < c2-g(n) forall n = n,.

c2- g(n)
f(n)
EX. f(n)=32n2+ 17n+ 1. e
* f(n) Is O(n2). <«— choose ci=32,c2=50,n9=1
* f(n) is neither ®(n) nor O(n3).

Typical usage. Mergesort makes ©(n log n) compares to sort n elements.

/

between % nlogy n
and n logx n

19

Analysis of algorithms: quiz 3

Which is an equivalent definition of big Theta notation?

A. f(n)is O(g(n)) iff f(n) is both O(g(n)) and Q(g(n)).

B. f(n)is O(gn)) iff lim fn) = ¢ for some constant0 < ¢ < .

n— 00 (n

C. Both A and B.

D. Neither A nor B.

20

Asymptotic bounds and limits

Proposition. If lim ()

Jm = c for some constant 0 < ¢ < « then f(n) is O(g(n)).

Pf.

- By definition of the limit, for any £ >0, there exists n, such that

e < 1

< c+He€
g(n)
for all n = n,.

* Choosee=%c > 0.

- Multiplying by g(n) yields 1/2c¢- g(n) < f(n) < 3/2c- g(n) for all n
* Thus, f(n) is ©(g(n)) by definition, with ci;=1/2cand c;=3/2c¢. =

> 1.

Proposition. If lim f(n)

ey o) , then f(n) is O(g(n)) but not Q(g(n))

Proposition. If lim fn)

Jim o5 = oo, then () is Q(g(n) but not O(g(n)

21

Asymptotic bounds for some common functions

Polynomials. Let f(n)=ay+a,n+ ... +a,n? with a, > 0. Then, f(n) is O(n9).
Pf.

, a0+a1n—|—...+adnd
lim - = aqg > 0
n—oo mn

Logarithms. log,n is ©(log, n) for every a >1 and every b > 1.
Pf. log,n _ 1 \ no need to specify base

(assuming it is a constant)

log,n log, a

Logarithms and polynomials. log,nis O(n?) for every a >1 and every d > 0.
Pf.

]
08, _ |

lim -
n—soo N

Exponentials and polynomials. n9 is O(r") for every r >1 and every d > 0.
Pf. d

, n
im — = 0
n—oo 17"

Factorials. n! is 20#logn),
Pf. Stirling’s formula: n! ~ v2mn (ﬁ)n

22

Big O notation with multiple variables

Upper bounds. f(m,n) is O(g(m, n)) if there exist constants ¢>0, m, > 0,
and n,> 0 such that f(m,n) < ¢+ g(m,n) forall n = nyand m = m,,.

EX. f(m,n)=32mn2 + 17mn + 32n3.
* f(m,n) is both O(mn2 + n3) and O(mn3).
* f(m,n) is neither O(n3) nor O(mn?2).

Typical usage. Breadth-first search takes O(m + n) time to find a shortest
path from s to ¢ in a digraph with n nodes and m edges.

23

2. ALGORITHM ANALYSIS

» survey of common running times

\\ /~\Ig i Desion
‘\\ JON KLEINBERG - EVA TARDOS

SECTION 2.4

Constant time

Constant time. Running time is O(1).

bounded by a constant,

Examples. which does not depend on input size n

Conditional branch.

Arithmetic/logic operation.

Declare/initialize a variable.

Follow a link in a linked list.

Access element i in an array.
Compare/exchange two elements in an array.

31

Linear time

Linear time. Running time is O(n).

Merge two sorted lists. Combine two sorted linked lists A=a,,a,,...,a,and

B=b,b,,....b, into a sorted whole.

n

O(n) algorithm. Merge in mergesort.

Merged result

Anle A
™S

///b; B

I < 1;] < 1.

WHILE (both lists are nonempty)
IF (a; = bj) append a; to output list and increment i.
ELSE append b; to output list and increment ;.

Append remaining elements from nonempty list to output list.
32

Logarithmic time

Logarithmic time. Running time is O(log n).

Search in a sorted array. Given a sorted array A of n distinct integers and an
integer x, find index of x in array.

remaining elements

O(log n) algorithm. Binary search. /
* |Invariant: If x is in the array, then x is in A[lo .. hi].
 After k iterations of WHILE loop, (hi—lo+1) < n/2x = k < 1+log: n.

lo < 1;hi < n.

WHILE (lo < hi)
mid < |(lo + hi)/ 2].
IF (x < A[mid]) hi < mid - 1.
ELSE IF (x > A[mid]) lo < mid + 1.
ELSE RETURN mid.

RETURN -1.

35

Linearithmic time

Linearithmic time. Running time is O(n log n).

Sorting. Given an array of n elements, rearrange them in ascending order.

O(n log n) algorithm. Mergesort.

o))

00)

9 10 11 12 13 14 15

o
=
N
w
m| &

=
rm
~
()
(VaRNO, |

=< 0O
< A

—
~ O

~ A O

n X

= >

E

X A M P L E

A =< m

O

— 4 =m

X X ©™r

39

Quadratic time

Quadratic time. Running time is O(n?).

Closest pair of points. Given a list of n points in the plane (x;,y)), ..., (x,,y,),
find the pair that is closest to each other.

O(n2) algorithm. Enumerate all pairs of points (with i <)).

min <— o,
FOR i=1TOn
FOR j=i+1TOn
d < (xi—xj)? + (yi—yj)*.
IF (d < min)

min < d.

Remark. Q(n2) seems inevitable, but this is just an illusion. [see §5.4]

42

Cubic time

Cubic time. Running time is O#3).

3-SuM. Given an array of n distinct integers, find three that sum to O.

O(n3) algorithm. Enumerate all triples (with i <j < k).

FOR i =1 TO n
FOR j =i+ 1 TO n
FOR k= j+1 TO n
IF (ai + aj + ar= 0)

RETURN (ai, aj, ax).

Remark. Q(n3) seems inevitable, but O#2) is not hard

. [see next slide]

43

Polynomial time

Polynomial time. Running time is O(n¥) for some constant k > 0.

Independent set of size k. Given a graph, find kK nodes such that no two
are joined by an edge. AN

k is a constant

O(n¥) algorithm. Enumerate all subsets of k nodes.

FOREACH subset S of k nodes:
Check whether § 1s an independent set.
IF (S 1s an independent set)

RETURN S.

* Check whether S is an independent set of size k takes O(k2) time.
* Number of k-element subsets = (n> nn—1)(n—2)x-x(n—Fk+1) g nk

o O(k2 nk | k) = O(nk). k k(k—1)(k—2) x -~ x 1 ~ Kk
\

poly-time for k=17,
but not practical

46

Exponential time

Exponential time. Running time is 0(2") for some constant k > 0.
Independent set. Given a graph, find independent set of max cardinality.

O(n?2" algorithm. Enumerate all subsets.

§* «— .
FOREACH subset S of nodes:
Check whether § 1s an independent set.
IF (S is an independent set and | S| > | S*|)
§* < §.

RETURN S*.

47

