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Summary. Many connections have been established in recent years between Chem-
istry and Computer Science, and very accurate systems, based on mathematical and
physical models, have been suggested for the analysis of chemical substances. How-
ever, such a systems suffer from the difficulties of processing large amount of data,
and their computational cost grows largely with the chemical and physical complex-
ity of the investigated chemical substances. This prevent such kind of systems from
their practical use in many applicative domain, where complex chemical compound
are involved. In this paper we proposed a formal model, based on qualitative chemi-
cal knowledge, whose aim is to overcome such computational difficulties. The model
is aimed at integrating ontological and causal knowledge about chemical compounds
and compound transformations. The model allowed the design and the implementa-
tion of a system, that is based on the well known Heuristic Search paradigm, devoted
to the automatically resolution of chemical formulation problems in the industrial
domain of rubber compounds.

1 Introduction

In recent years, many connections between Chemistry and Computer Science
have been established in the context of several research areas (e.g. computa-
tional representation of atoms and molecules, the storing and searching for
data on chemical entities, identification of the relationships between chemi-
cal structures and observable behaviors, theoretical elucidation of structures
based on the simulation of forces). Researchers in the area of Computational
Chemistry sought to develop theoretical and computational methods based
on mathematical models for describing and understanding the movement and
the function of electrons in molecules, and applied these methods to signifi-
cant problems of broad chemical interest [1]. Indeed, the term “computational
chemistry” is used when a mathematical method is sufficiently well developed
that it can be automated for implementation on a computer [2–8].

Although such mathematical methods are well-known and there are a num-
ber of systems based on them, their computational cost grows largely with the
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number of electrons [9] and, therefore, with the chemical and physical com-
plexity of the investigated chemical substance. Reasoning on the structural
and behavioral change dynamics of chemical compounds (i.e. of chemical sub-
stances formed from two or more elements, with a fixed ratio determining the
composition) is a hard combinatorial problem, even when a small number of
chemical elements are taken into account.

A crucial problem in applied chemistry, in which the physical and chemical
complexity of the involved substances can be extremely high is the chemical
Compounding Problem. The chemical compounding problem consists in the
task of generating in an automatic way new complex compound formulations
on the basis of a set of desired final behaviors in order to support industrial
production processes. The computational limitations of the actual compu-
tational chemistry systems suggest that we must rely on different modeling
techniques. In other words, as far as the problem of designing and imple-
menting systems that reason and drive transformations of complex chemical
substances is concerned, it is a challenging task to overcome the computational
intractability of the quantitative, mathematical, compound representations.

Now, two questions arise: (1) what does it mean to reason upon chemical
compounds taking advantage of a formal model representing non-quantitative
chemical knowledge (e.g. ontological and causal expert knowledge)? (2) What
is the kind of formal representation that allows to automatically transform
the formulation of compounds with respect to specific engineering objectives,
still preserving their identity as particular chemical compounds (e.g. drug
compounds or tyre rubber compounds)?

In the effort to answer these questions, our research led to an epistemolog-
ical investigation of the qualitative knowledge characterizing chemical com-
pounding problems, and to the definition of a formal representation of that
knowledge. A definition of the compound formulation problem (or, compound-
ing problem), stretching some characteristics that have a direct impact on
its computational tractability, is given in the next section. The section con-
tains also a brief review of two research areas that are strongly related to
the present work. Section 3 provides an introduction to the kinds of knowl-
edge that are involved into the chemical formulation activity, with a focus on
the formal ontological axioms defining integrity conditions for the chemical
rubber compounds. Section 4 concerns the representation of causal knowledge
together with its integration with ontological knowledge into the state space.
Concluding remarks end the paper.

2 A Computational Perspective on the Compounding
Problem

In industrial domains, the compounding problem, whether for agrochemicals,
pharmaceutical, or speciality chemicals areas, deals with the possibility of
modifying the formulation of some existing chemical compound, in order to
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gain new compound formulations showing final desired performances. New
desired performances for a compound can be originated by specific marketing
commitments, design and cost requirements, or by constraints induced by the
production process. Desired final performances are always expressed in terms
of performance variations with respect to the preexistent compound (e.g. the
increase of the Rolling Resistance of a tire, together with a reduction of the
Wet Handling, and the maintenance of all the remaining performances).

Performances are observable behaviors of the chemical compound that are
evaluated by means of a specific set of laboratory tests (in which compound
behaviors are evaluated in isolation) and environmental tests (in which com-
pound behaviors are evaluated into the final using environment). The system
should find a compound structure, whose associated behaviors fit the require-
ments.

Compounding problem never coincides with a ex novo generation of com-
pounds: a problem begins with some form of product specification, together
with the specification of new desired performances, and ends with one or more
new product specifications that meet the requirements. Therefore, the prob-
lem concerns the discovery of a suitable set of transformations that can be
applied to the compound formulation in order to obtain a new compound with
a specific set of desired performances.

The hard combinatorial nature of the problem essentially depends on the
complexity caused by the effects of the application of transformations in com-
pound structures. According to an holistic perspective, a transformation in
quality/quantity of the elements of a chemical compound (no matter how
massive or tiny it is) implies a non-uniform rearrangement of all the values
of its associated properties, and this makes really problematic to find good
a sequence of transformations pointing to the final desired compound. For
example, it is usual that the effects of a structural transformation return a
compound performing only some of the requirements, and failing on the others;
obviously, this situation needs to find further transformations to bridge the
gap among the modified object and the desired goal, but there is no guarantee
that such transformations exist. This characteristic is common to a number of
formulation, design, configuration, or planning problems dealing with entities
(e.g. chemical mixtures, blends, and compounds, industrial plant, car engines,
rescue or process plans) whose inner structures can be articulated in parts.

Generally speaking, transformations on parts produce not uniform trans-
formations of all the wholes’ properties, and this makes the search of a
sequence of transformations pointing to the solution really problematic (for
example, it is usual that the effects of a transformation return a compound
performing only some of the requirements, and failing on the others; this situa-
tion needs to find further transformations to bring the gap among the modified
object and the desired goal, but there is no guarantee that such transforma-
tions exist). It is therefore a challenging objective from an AI computational
perspective to discover, represent, and exploit domain-specific knowledge with
the aim of reducing such an explicit combinatorial complexity.
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Since the application of a structural transformation must be evaluated
with respect to all the behaviors associated to the compound, a solution to a
compounding problem is necessarily a compromise solution. In other words, in
compounding the optimum does not exist. Specific ranges of tolerance have to
be defined together with compounding requirements in order to increase the
possibilities of bringing a solution. Therefore, the existence of a solution to an
instance of the compounding problem is guaranteed only by the accuracy of
the compounding expert requirements: if we are looking for an “extravagant”
set of performances for chemical compounds devoted to a specific marketplace,
there are no guarantees that the compounding will succeed.

2.1 Related Research Areas: Configuration and Planning

There are at least two well known research areas in Artificial Intelligence that
are strongly related to the proposed definition of the compounding problem:
the area of Automated Configuration and that of Automated Planning. Con-
figuration and Planning are very close to Compounding, although they have
characteristics that does not always perfectly match with our problem.

Configuration can be defined as the design of an individual product by
using a set of pre-defined components or component types. Configuration takes
into account a set of well-defined restrictions on how the components can
be combined together [10]. Planning was emerged as a specific sub-field of
Artificial Intelligence with the seminal work of Fikes and Nilsson [11] on the
Stanford Research Institute Problem Solver (STRIPS). Newell and Simon’s
work on GPS [12], Green’s QA3 [13, 14] and McCarthy’s situation calculus [15]
helped to define the classic planning problem and many of their assumptions
still influence planning research today. Very briefly, a planning problem is
described by a collection of actions, each characterized by their pre-conditions
(what must be true in order for the action to be executed) and their post-
conditions (which describe the effect of execution of the action), an initial
state of the world and a description of the goals to be achieved. The problem
is solved by finding actions that will transform the given initial state into a
state satisfying the given goals

Traditional researches in automated configuration and planning have relied
on simple and relatively unstructured models of the problem and have placed
the emphasis on the development of more efficient algorithms and powerful
heuristic control methods. Nevertheless, [16, 17] and others, have recognized
that a model typically contains hidden structure that can be exploited by
a planner and, under this assumption, several research communities have
focused on exploring more articulated modeling choices with the extent of
expediting the solution search (see, for example, [18, 19]). Closely related
to this perspective are: (i) the logical approach suggested by Kauz and Sel-
man, based on the notion of Satisfiability for propositional formulas [20];
(ii) the Lifschitz’s approach [21–23], grounded on the Answer Set Program-
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ming paradigm and related to the researches on Stable Models of Subrah-
manian and Zaniolo [24]; (iii) the Model-Checking approach of Giunchiglia
and Traverso [25, 26]; and (iv) the work of Eiter, Faber, Leone, Pfeifer, and
Polleres on the DLVk system [27].

It is beyond the scope of this article to furnish an extensive analysis of
the relationships between the compounding problem, on one hand, and con-
figuration and planning problems, on the other (further details can be found
in [28]). Nevertheless, we are convinced that most of researches on configura-
tion and planning can be grouped together under the following statements,
that actually represent also the background of our work: (i) the more human
knowledge and expertise are embedded in the domain model, the less discovery
has to be made by the planner, and (ii) the correctness of the reasoning system
fundamentally depends on the correctness of the model.

3 Compounding Knowledge

Once a qualitative perspective has been assumed on the compounding prob-
lem, two main kinds of knowledge must be considered and integrated: onto-
logical and causal knowledge. With ontological knowledge we refer to the
knowledge that specifies what entities have to be considered as admissible
compounds’ structures and behaviors (establishing their “integrity conditions”
with respect to a domain of interest). This knowledge concerns entities within
different perspectives (structural and behavioral), and it guarantees that
transformations applied to those entities preserve their ontological integrity.
With causal knowledge we refer to knowledge mapping compound transfor-
mations at the structural level (i.e. on the compound formulation) to trans-
formations at the behavioral one (i.e. on the tested performances). Causal
knowledge in compounding allows to expect the changes on compound behav-
iors, on the basis of transformations of its chemical formulation.

As for the chemical engineering domain, the automated discovery of onto-
logical and causal knowledge is a problem too hard due to the computa-
tional complexity issues (see Section 1). Nevertheless, this knowledge already
lives (expressed in qualitative terms) in the expert compounding practices
and communities, and it can be elicited and formally represented by means of
knowledge engineering techniques. Expert knowledge on compounding is often
not immediately quantifiable, not directly math-based, and not microscopic;
this knowledge has been worked out in chemical industrial context during all
the Twentieth Century, producing a number of results that have lead to the
success of several Chemical Engineering applications [29, 30].

In this paper, we propose a knowledge model to tackle a compound-
ing problem that is formally based on: (i) a description logic (DL) knowl-
edge base (in the language SHOIN ), describing ontological representations
of compounds’ structures and behaviors; (ii) a causal knowledge formal
representation, coded into morphisms that map structural and behavioral
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compound representations, at one hand, and structural and behavioral trans-
formations, at the other.

3.1 Mereological Axioms for Compounding

A rubber compound is usually viewed by chemical engineers as a “recipe”
or as a blend of atomic components composed in various proportions. Atomic
components are aggregated into several “systems”, in accordance with the
functional role they have to perform within the compound. Therefore, along
this perspective, chemical compounds can be observed as “aggregate objects”,
a notion for which a wide philosophical literature and different mereological
investigations exist (e.g. see [31–35]).

Compounding problems in industry are characterized by the presence
of many different formulations for a compound composition; nevertheless,
according to the final use of a compound, it is possible to identify a set of
necessary boundaries within which all the admissible compound formulations
must rely. These boundaries have been represented by means of a formal the-
ory, written in logical terms. Logically speaking, the models of this theory
are all those compound formulations that do not cross the chosen ontological
boundaries and consequently do not violate ontological integrity constraints.

The model of the ontological knowledge we propose is grounded on a “com-
posed” part-of relation ≺, in the sense of Sattler’s taxonomy [36] (i.e. a part-
of relation that is both integral and functional). In particular, ≺ is a finite,
irreflexive, asymmetric, and intransitive binary relation. The assumption on
functionality (and therefore, on the intransitivity of the part-of relation) is
justified by the specific domain we are interested in: all the chemical entities
into a compound play a specific functional role with respect to its constitu-
tion. DLs are a logic-based formalisms for the representation and reasoning
about conceptual knowledge.

In DL, concepts are used to describe classes of individuals sharing common
properties, and roles are used to represent binary relations.

Therefore, let ≺ be a primitive role of a DL language standing for “is
a functional part of”; it is also useful to introduce the inverse role “has a
functional part of” (or �) as � .=≺−1. Since functional part-of relation is
“integral”, for an entity to be part of another simply means that the entity
must satisfy integrity conditions associated to the relation. Functional part-of
is constrained to hold only among entities of a certain predefined kind. Here,
the integrity conditions are simply expressed by means of different concept
names and value restrictions of the form ∀R.C.

As far as compounding is concerned, we know that whatever is the com-
pound of interest, its direct parts must be of type System, and that whatever
is the system, its direct parts must be of type GroundElement. This means
to assume in our ontological knowledge representation the following General
Concept Inclusion (CGI) axioms:
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(I1) System � ∀ ≺ .Compound

(I2) GroundElement � ∀ ≺ .System

Intuitively, the axioms say that a system may be only a part of a compound
and a ground element may be only a part of a system. A so rigid hierarchy
is coherent with the abstract representation of compounds as in real problem
solving contexts (e.g. [30, 37]).

Ground Elements. Ground elements are the “atomic” entities living in the
compounding domain (i.e. they have no parts). It seems reasonable to think
that ground elements represent “minimal manageable quantities” of chemical
substances: each of them represent a fixed quantity of a given substance, char-
acterized by different chemical and physical properties. In concrete domains,
ground elements are obviously chosen in accordance with chemical and phys-
ical properties.

Attributes. Attributes and properties of a ground element may be repre-
sented by introducing in the language specific DL roles, named functional
roles. A role R is said to be a functional role if and only if {(a, b), (a, c)} ⊆ R
implies b = c. Each concept is characterized by a suitable set of those func-
tional roles. We indicated with NumericalValue a generic filler for functional
roles (instances of this generic concept may be integer or real numbers, in
accordance with the employed physical measurements). One can formally
represent attributes of ground elements by instantiating the following axiom
schema:

GroundElement � f1.NumericalValue � · · · � fn.NumericalValue

where f1, . . . , fn are n generic functional roles.

Exclusive Parts. Close to the axioms (I1) and (I2), it is useful to represent
also exclusive relationships among these concepts. In general, a part is said
to be “exclusive” if and only if there exists at most one whole containing
it. Such feature expresses a kind of interdependence among whole and part.
In compounding, the introduction of expressions about exclusivity of parts,
forces models in having ground elements of certain kind (e.g. NaturalRubber,
CarbonBlack) only as constituent parts of specific systems. Exclusive parts
are formally represented in DL as particular instances of number restrictions.
Number restrictions are concepts of the form (≥ nr.C) (at-least restriction) or
(≤ nr.C) (at-most restrictions), where n is a non-negative integer, r is a role,
C is a concept. In order to represent exclusive parts of a whole, it is possible
to specialize number restrictions by means of the equality symbol =, stating
that each GroundElement (System) is part-of exactly one System (Compound),
as follows:

GroundElement �(= 1 ≺ .System)

System �(= 1 ≺ .Compound)
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Upper and Lower Bounds. Systems may contain ground elements with
different quantities. Ontological compounding knowledge provides upper and
lower bounds of quantity of a ground element a system may contain. To rep-
resent the admissible range of quantity of an element is necessary to preserve
the integrity of the compound during the formulation activity. The number
restriction constructor allows to impose different range of quantities of an ele-
ment: the (≥ nr.C) and (≤ nr.C) concept constructors can be combined in
order to set upper and lower bounds, as follows:

System � (≥ 1 	) � (≤ n 	)

where n is an integer that will be instantiated according to concrete appli-
cations. Technically, the quantity of a substance in a system corresponds to
the cardinality of the set of has-part-of -fillers of this system. From (I2) one
can say that these fillers are all from the category of GroundElement. A system
must have at least one ground element as its part, that is, a lower bound not
inferior to 1. If we consider the relationships between Compound and System,
the same situation arises: compounds may contain a number of systems, but
at least one system must be contained. Therefore, ground elements must be
considered as essential parts of systems, and systems as essential parts of
compounds [38].

Atomicity. Atomicity immediately follows from the introduction of the
ground elements. We resort to translate atomicity into the non-existence of
fillers of the part-of relation in correspondence to ground elements. On the
other hand, we can state that compounds cannot be part of any other entity.

GroundElement �∀ 	 .⊥
Compound �∀ ≺ .⊥

In the rest of the paper, we present “tread tire compounds” as a paradig-
matic example of chemical compound. The formulae we will introduce have
to be understood as a specialization of the mereological theory introduced
so far and, as a consequence, the involved concepts respect the ontological
constraints.

3.2 The Case of Rubber Compounds for Tread Tire

The “tread” is the part of the tire in contact with the road. The profile
and rubber compound are chosen on the basis of the use of the tire. The
following logical formulae are a fragment of our mereology for compounding; in
particular, the introduced formulae show some key elements of the ontological
theory for tread rubber compound formulation (in what follows we grouped
together entities that agree on the same mereological level). The set of axioms
guarantees that if a model of these statements exists, then this model describes
a compound for the production of tread tire in the industrial field of interest.
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TreadCompound ≡ Compound  (= 1 � .PolymericMatrix)

 (= 1 � .Vulcanization)

 (= 1 � .ProcessAid)  (= 1 � .Antidegradant)

 (= 1 � .ReinforcingFiller)

 ((≥ 0 � .Softener)  (≤ 1 � .Softener))

It is standard that a rubber compound devoted to tread tire production is
made of at least five essential systems [6, 37, 39, 40]: (1) the PolymericMatrix
is the system that contains polymers (e.g. Natural rubber, Butadiene rubber,
Styrenebutadiene rubber) and it plays a decisive functional role in tread com-
pound. The final tread compound formulation will contain a suitable subset
of discrete amounts of those polymers. (2) The Vulcanization system pro-
vides suitable chemicals for the compound vulcanization process. The system
is made of “vulcanization chemicals” (e.g. Sulphur, Peroxides, Urethane),
“vulcanization accelerators” (e.g. Guanidines, Thiazoles), “activators” (e.g.
MetalOxides, FattyAcids, SaltFattyAcids), and “vulcanization inhibitors”
(chemicals based on phthalimide sulfenamides). (3) The ProcessAid system,
whose aim is to enable a rubber compound to be fabricated with less energy,
is made of “peptizers” (e.g. Renacit) and “plasticizers” (e.g. oil); (4) the
Antidegradant system is made of “antioxidants” and “antiozonats” that have
been developed to inhibit the action of oxygen and ozone. Finally, (5) the
ReinforcingFiller is defined as the ability of fillers to increase the stiffness
of unvulcanized compounds, and the reinforcement effect of a filler shows up
specially in its ability to change the viscosity of a compound; reinforcing fillers
are CarbonBlack and Silica. Further systems may be present in a tread tire
compound, such as the Softener, the Extenders, and the Tackifier systems,
depending on the application context.

PolymericMatrix ≡ System  (= 100 � .(NaturalRubber � ButadieneRubber))

Vulcanization ≡ System  ((≥ 1 � .Sulphur)  (≤ n � .Sulphur))

 ((≥ 1 � .hasFamilyName.Accellerant)

 (≤ m ≺ .hasFamilyName.Accellerant))

 ((≥ 2 � .ZincOxide)  (≤ p � .ZincOxide))

 ((≥ 2 � .StearicAcid)  (≤ p � .StearicAcid))

ProcessAid ≡ System  ((≥ 1 � .hasFamilyName.Peptizer)

 (≤ z � .hasFamilyName.Peptizer))

 (= z � .hasFamilyName.Plasticizer)

ReinforcingFiller ≡ System  ((≥ 1 � .CarbonBlack)  (≤ n � .CarbonBlack))

 ((≥ 1 � .Silica)  (≤
n

2
≺ .Silica))

The PolymericMatrix, the Vulcanization, the ProcessAid, and the
ReinforcingFiller are systems. The polymeric matrix has 100 parts as a
blend of natural and synthetic rubber or, alternatively, 100 parts of natural
or synthetic rubber alone. Parts of the vulcanization system are the Sulphur,
the Oxide Zinc and the Stearic Acid in a predefined quantity. The possi-
bility of selecting parts by their membership to specific chemical families is
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exploited in the definition of the vulcanization system. A vulcanization sys-
tem contains some quantity of a (not further specified) element in the family
of the Accellerant, while a process aid system takes part from the Peptizer
and Plasticizer family. A reinforcing filler contains Carbon Black and Silica
in a predefined ratio. The possibility of representing two quantities in a cer-
tain ratio is crucial in compounding: the presence of a ground element often
asks for the presence of another one (e.g. the “activator-activated” couples of
chemicals)1.

CarbonBlack ≡GroundElement  (= 1 ≺ .ReinforcingFiller)

 hasSurfaceArea.NumericalValue

 hasPorosity.NumericalValue

 hasTortuosity.NumericalValue

Renacit ≡GroundElement  (= 1 ≺ .ProcessAid)

 hasDensity.NumericalValue  hasFamilyName.Peptizer

NaturalRubber ≡GroundElement  (= 1 ≺ .PolymericMatrix)  hasStructure.CIS

 hasMolecularWeight.NumericalValue  hasFamilyName.Polymer

StyrenebutadieneRubber ≡GroundElement  (= 1 ≺ .PolymericMatrix)

 hasMolecularWeight.Value  hasFamilyName.Polymer

ButadieneRubber ≡GroundElement  (= 1 ≺ .PolymericMatrix)

 hasStructure.CIS  hasFamilyName.Polymer

 hasMolecularWeight.Value

Carbon Black, Renacit, Natural rubber, Butadiene rubber, and Styrene buta-
diene rubber are ground elements and exclusive parts of the reinforcing filler
system, the process aid system, and the polymeric matrix system, respec-
tively. Carbon black is characterized by a specific value of “surface area”, and
by a specific “microstructure” (represented in term of its porosity and tortu-
osity). The Renacit is characterized by a specific value of “density”, and by
its membership to the family of Peptizers, while the Natural, Butadiene and
the Styrene butadiene rubber by a “CIS” configuration, a specific molecular
density and by their membership to the family of Polymers.

4 Causal and Ontological Knowledge
into the State Space

As mentioned in the introduction, causal knowledge provides necessary infor-
mation to compute (and, forecast) the application of compound structural
transformations, on one side, and the effects these structural transformations
have in behavioral terms (e.g. it is known that an increase of the amount

1 Since the syntax of the SHOIN description logic does not allow to express indi-
vidual variables, the m, n, p, z symbols need to be instantiated with appropriate
integers once the axioms are taken to represent ontological knowledge in a specific
compounding domain.
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of Silica worsens abrasive and resistance behaviors of a tread rubber com-
pound), on the other. Causal knowledge has been formally represented within
the search paradigm [41–43], by means of a set of transitions of the state
space, and a set of morphisms linking the different dimensions of which the
space is made.

More precisely, the state space has been finally defined as the product
of three different labeled transition systems, corresponding to three different
levels of abstraction. The first one of these systems represents compound for-
mulations: states are logical descriptions of concrete compound formulations,
as introduced in Section 3.2, while transitions are transformations of these
formulations (i.e. discrete increases, discrete reductions, and substitutions of
ground elements). Transitions of this system can be formally represented as a
set of functions from compound formulations to compound formulations, with
(i) domain dependent pre-conditions, listing prerequisites that must be satis-
fied by the compound mereological structure, and (ii) post-conditions, which
specify precisely how the structure must be transformed. For example, in what
follows we sketch the definition of a transition representing an instance of the
substitution class:

fNR
cis+

(r) → r′,

The function fNR
cis+

returns a compound r′, that is equal to r, except for
the natural rubber of r, that has been substituted with an alternative nat-
ural rubber with a greater cis value (where “cis” refers to a basic property
of polymers coming from the specific geometrical atoms arrangement). The
satisfiability of the pre-conditions and the consistency of the application of the
recipe transformations essentially depend on the mereological structure of the
involved compound. In particular, a quantity increase of a part e cannot be
applied to a given compound: (i) if some pre-conditions on its applicability are
not satisfied (observe that these integrity constraints, rising from the seman-
tics of the logical formulae introduced in Section 3.2, are imposed in order
to discard the computation of usefulness compounds during the formulation
activity), and (ii) if the effects of this application produce a new compound
containing an amount of e that turn out to be outside its admitted range.

The second and the third labeled system represent the synthesis of two
levels of behavioral evaluation of the compound. On one hand, a compound is
evaluated by means of a specific set of mechanical laboratory tests that return
quantifiable properties. On the other one, the final performances evaluation is
provided by means of tests studying the interactions of the compound within
its application environment and under different conditions (the final perfor-
mances of a tread rubber compound, as an example, are evaluated under
wet and dry road conditions, irregular terrains, extreme temperatures, and so
on). The formulation expert knowledge has specific heuristics to trace back
the qualitative results of these tests to the behaviors of a single compound
or of an identified aggregate of compounds. Qualitative information about
final performances of a compound can be thus inferred and computationally
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managed, once a suitable metric has been provided with the help of expert
chemical engineers.

The knowledge on how a chemical compound need to be modified in order
to obtain a new compound with final desired properties essentially concerns
the applicability of transformations at the structural level, and the effects
they have on the associated behavioral levels. Once the three labeled tran-
sition systems have been defined, the problem solving knowledge can thus
be understood and formally represented by means of a couple of morphisms,
mapping states to states and transitions to transitions of the different systems.

A morphism Γ → Γ ′ between transition systems can be intuitively intro-
duced as a pair (σ, λ), where σ is a function on states, preserving initial states,
and λ is a partial function λ on the transition labels. The morphism maps
a transition of Γ to a transition of Γ ′, whenever this makes sense; in other
words, if (p, α, q) is a transition in Γ then (σ(p), λ(α), σ(q)) is a transition in
Γ ′ provided that λ(α) is defined.

The role we assign to morphisms here is strongly connected to the task
of relating transformations at one representation level with transformations
at the other ones. Morphisms carry expert causal knowledge linking struc-
tural transformations on the compound to behavioral ones and, therefore,
they allow to forecast behavioral changes of a chemical compound during the
searching activity of new formulation (e.g. morphisms represent the fact that
an increase of the amount of Silica worsens abrasive and resistance behaviors,
by appropriately mapping the structural transformation “Silica Increase” to
“Abrasive Decrease” and “Resistance Decrease” behavioral transformations).
Observe that the definition of these compounding morphisms depends exactly
on the acquired expert problem-solving causal knowledge.

We omit here the formal definition of the product of labeled transition
systems [28], but we furnish a diagrammatic representation of it in the fig-
ure below. Figure 1 shows the structure we obtained by connecting the three
systems we mentioned above, and the resulting state space in which our com-
pounding system operates.

The states s = 〈c, l, h〉 and s′ = 〈c′, l′, h′〉, for which the three dimen-
sions are represented in Figure 1, are elements of the state space (c stands
for compound structure, l for low-level behaviors and h for high-level behav-
iors or compound performances). τ, τ ′ are compounding morphisms such that
τ(sc) = sl and τ ′(sl) = sh; these morphisms represent that a specific com-
pound formulation sc is associated to compound behaviors sl and compound
performances sh. Note that the association is plainly given at the beginning
of the compounding problem, where a compound structure together with its
associated behavioral evaluations is given as input of the problem. On the
other hand, the association must be computed during the solution searching
process, on the basis of the structural transformations the initial compound is
subject step by step. In fact, the existence of morphisms representing causal
knowledge in compounding is mandatory for the construction of new states
and transitions in the structure of the state space.
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Fig. 1. Diagrammatic representation of the state space.

In Figure 1, an illustration of the compounding morphisms is given, with
respect to projection morphisms of the product. The application of the transi-
tion λ to s, returning a new state s′, is generated first of all by the application
of a compound structural modification:

λC : SC → SC

such that λC(sc) = s′c. The application of λC leads to a partial state 〈c′, l, h〉,
that it is not well defined, because it does not respect the constraints com-
ing from causal knowledge and coded into the inter-dimensional morphisms.
Therefore, in order to obtain a new correct state s′, representing a feasible
solution of the compounding problem, the transformations associated to λC

have to be applied in the remanent behavioral dimensions. We can say that
(s, λi, s

′) is a transition of the state space, written,

(s, λ, s′) ∈→

if and only if s′ = 〈c′, l′, h′〉, and τ(s′c) = s′l and τ ′(s′l) = s′h. Given by
the introduced morphisms, the state components l′ and h′ are obtained by
mapping the transition λC to transitions λL and λH .

5 A System for the Rubber Compound Formulation

Heuristic search algorithms occupy a fundamental place among all the artifi-
cial intelligence problem solving methods; these algorithms explore a solution
space, in order to find optimal solutions to a given problem [42]. They require
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a representation of (1) a state space, and (2) the choice of a search algorithm,
possibly relying on good heuristic functions; moreover, their efficiency strongly
depends on the involved formal representations.

The model we introduced combines ontological and causal knowledge in
order to compute feasible solutions to the compounding problem. In this direc-
tion, a compounding problem is an instance of the state space introduced in
Section 4, together with an initial state and a goal state. In the case of chemical
compound formulation, the initial state would be any triple 〈c, l, h〉, provided
that τ(c) = l and τ ′(l) = h. The goal state is partially specified in terms
of required compound behaviors and performances: no information about the
compound formulation performing these behaviors and performances is avail-
able as a component of the goal state.

From our computational perspective, if no ontological information on the
states had been provided, every state in the state space would be generated
and explored by the search algorithm as a feasible solution of the problem.
On the contrary, with the support of the ontological representation, a state s′

representing a compound formulation that resolves to be ontologically incon-
sistent (i.e. a formulation that is inconsistent with the ontological axioms
of Section 3) is discarded by the system (i.e. pruned from the search tree).
Since efficiency constraints do not allow to exploit an automated DL rea-
soner for checking the consistency of a compound formulation with respect
to the axioms, compound formulations have been coded in an object-oriented
data structure and the ontological constraints have been coded as pre- and
post-conditions of the transition operators.

The proposed knowledge model, not only provides a sound representa-
tional framework for the state space, but it also allows to reduce the complex-
ity of the solution space, exploiting the integration of ontological and causal
knowledge. In fact, following both the constraints coming from the ontolog-
ical representation of the chemical compounds, and the mapping between
structural and behavioral transformations, the expansion of the search tree
is exempted from computing useless ontologically inconsistent chemical com-
pounds. In other words, all the possible expansions for the tree must respect
the ontological consistency requirements of the involved compounds (e.g. if
the given compounding problem concerns rubber compounds for tyre indus-
try, a chewing gum must not be computed as “feasible solution” in the search
tree). This reduces the combinatory of the searching process and minimize
the computational effort of the implemented system.

The above computational model has been already exploited in solving the
Chemical Formulation Problem in the domain of “rubber compound” pro-
duction for tire industry [28] (this work has been part of the larger project
“P-Truck”, made in collaboration with the Business Unit Truck of Pirelli Tire
S.p.A. [44]). In this context, a specific experimental campaign has been devised
and encouraging experimental results have been obtained from the applica-
tion of several search algorithms (namely A*, IDA*, Iterative Expansion and
Branch and Bound) to a state space defined and implemented according to
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the present knowledge model [45]. The IDA* algorithm has proved to be suit-
able for solving this kind of problem and, actually, more efficient and faster
than the other experimented techniques. The results obtained by means of
this algorithm have actually enabled the construction of new and performing
rubber compounds. In particular, an automatic system has been developed
and successfully tested on a significant number of prototypical chemical com-
pounding problems (e.g. the problem of increasing the Tread Tear Resistance
or, in a slightly more elaborate case, the problem of increasing the Rolling
Resistance, together with a reduction of the Wet Handling, and the mainte-
nance of all the remaining performances).

6 Concluding Remarks

Our research has been addressed to exploit a knowledge model in order to
design and implement a system based on the Search paradigm. The system is
devoted to perform searching in the chemical engineering area, improving its
efficiency by suitable knowledge-based heuristics. This means that the inte-
gration between ontological and causal knowledge into our model produces
immediate effects on the expansion rate of the search tree, with a consider-
able reduction in the time and space consumption for the system.

Recently, we are also engaged in investigating the use of Genetic Algo-
rithms (GAs) [46, 47] to solve this kind of formulation problem. Compared
to the other techniques that have been presented in this paper, GAs have the
advantage that they enable to navigate even huge state spaces in an intelligent
and efficient way, by means of a set of stochastic operators based on the Dar-
winian principles of biological evolution applied to a population of potential
solutions. Compared to deterministic algorithms such as A*, IDA*, Iterative
Expansion and Branch and Bound, GAs usually don’t consider a large number
of possible solutions, which are cut off the search process by means of a selec-
tion strategy which emulates natural selection. Several possibilities exist to
apply GAs on the compounding problem, depending on which structures are
chosen as the potential solutions to be evolved (or individuals, according to
the GAs terminology). The use of Genetic Algorithms for the Compounding
Problem is also motivated by the fact that classical AI algorithms generally
work on decision tree structures and cut off the search process some subtrees,
depending on some conditions. The eventuality that one of that subtrees con-
tains one optimal solution is not remote, especially when large search spaces
are considered. Working with a population of potential solutions, and being
based on stochastic operators, GAs should enable an intelligent exploration
of larger regions of the search space. In other words, the advantage of GAs
for formulation problems using large quantities of data should not only be a
lower computational effort, but also a higher quality of the solutions found.
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