Specification and Verification of
Security Policy Design based on
Petri Nets

Hejiao Huang
W
@Aﬁ H 2% kS mmmss

Harb Institute of Technology Shenzhen Graduate School

(v Introduction

€ intoduton .

’l v Petri Nets and Colored Timed Petr| Nets
A

’ v PPPA and Its Application to Pollcy Design

¢ Conclusion and Future Work
5

(» Properties in Security Polic
3 y Policy

(v Conclusion and Future Work
5

Firing t,t,

Pe

CPN=(N, M,, C)

(a)
Me=M0+pe
MX=M0+pX

Pe

CPN=(N, My, C)

CPN=(N, My, C)

(b)

1) Uniqueness of the entry place and exit place: by defini-

tion, a CPNP has only one entry place and one exit
place. This uniqueness assumption is mainly for the
consistency in modeling and convenience in creating
composite processes under the various operators. For
modeling real-life problems, the case of multiple entries
(resp., exits) can be easily converted to the case of single
entry (resp., exit) by creating a super entry (resp., exit)
place and controlling the firing of its output (resp., input)
places.

2) Role of the exit place p,: in a Petri net model like CPNP,

P, 1s simply a sink place, indicating the location where
the control flow may leave the process after one cycle
of executions.

pe
3) M, represents a token distribution assigned to the set of

places P before execution of process B starts. Those
places having tokens serve certain ‘controlling’ pur-
poses. For example, they may represent some system
resources that are available before B starts its execution.
CPN=(N, M,, C) The association of a static marking My with B, where
My # 0. is a special assumption of CPNP. It greatly
enlarges the scope of application of CPNP.

4) Proper itiation: it is not guaranteed that (B,M,) can
always be executed. However, if B can ever start firing,
it must start at M, and not at any other marking.

Pe

5) Deadness of Static Marking: tog;ather with the ;')revious
condition, this assumption implies that given a static
marking, a process can only be initiated as follows:

« A process can start execution only after some tokens

CPN=(N, My, C) have been deposited into its entry place p,.

« Without this deposit of tokens, (B, My) cannot ‘self-
start’. This reflects the realistic requirement that a
process cannot start by itself. In order to start, it
must be called by another process or by itself (ie.
recursively).

(y Properties in Security Polic
© por y Policy

(v Conclusion and Future Work
5

Definition 8 (Completeness). Suppose a security policy is
specified with a CPNP B = (CPN,p,,p.). The policy B is

complete if for any initial marking M., there exists a marking
M, = M + p, which is reachable from M.,.

A security policy is decision complete (or simply complete)
if it computes at least one decision for every incoming
request. This property is called totality in [25] and [26].

Definition 9 (Termination). Suppose a security policy is
specified with a CPNP B = (CPN,p.,p.). The policy B is
terminating (or strongly terminating) iff B has no infinite
firing sequences for any initial marking. B is said weakly
terminating iff for any initial marking, B has at least one finite
firing sequence. If B terminates with an exit marking
M, = My + p,, B is called properly terminating.

If B is weakly terminating, it may have infinite firing
sequence(s) but must terminate in some cases

Strong termination requires that the policy always
terminates with a finite number of firing steps

While properly terminating requires the policy to
terminate (strongly or weakly) and to reach a special
exit state.

In general, proper termination by itself does not guarantee that a process can
always terminate. It just requires a process to be at the exit state M, = M, + p,
whenever a token has been deposited into p,. Proper termination models the
well-known "memory less' property of a software process that it should return
to its initial ‘ready’' state after having completed a cycle of execution.

Together with the Deadness of Static Marking condition, proper termination
guarantees that no transition can be fired when p, gets a token. This follows from
the fact, whenever p, gets a token, the system reaches a dead marking because M,
in the internal CPN is dead.

The Deadness of Static Marking condition, together with the properties of Proper
Initiation and proper termination, guarantee that a CPNP is non-reenterable. This
means that, once having been initiated, a CPNP cannot be initiated again until its
previous execution cycle has been completed. In general, to avoid mixing two
independent execution cycles of a PNP, one either has to use colored Petri nets or
control the procedure of entering into the process.

Proposition 1. Suppose a security policy is specified with a
CPNP B = (CPN, p.,p.). The following properties are true:

1. If Bis almost live, B is complete;

2. If B terminates properly, B is complete;

3. If B can terminate from any reachable marking and is
deadlock-free, then B is complete;

4. If B is complete and almost bounded, then it is
(strongly or weakly) terminating.

5. If Bis almost live and bounded, then it is terminating.

6. If B is almost live and reversible, then it is properly
terminating.

Definition 10 (Consistency). Suppose a security policy is
specified witha CPNP B = (CPN, p., p..). Then the policy B is
consistent iff for any request M, = My + p., all reachable

markings M; satisfy that |M;(p.)| <1 and for any exit
markings M; and My, M;(p.) = Mi(p2).

Consistency implies that for any request, the policy returns
at most one decision. According to the above definition, all
reachable markings can have at most one token (|M;(p,)| < 1)
with a unique identical color in place p, (since M;(p,;) =
M.(p,)). Note that when the CPNP does not terminate, the
decision place p, will not be marked, so the consistency
property is trivially satisfied.

Proposition 2. Suppose a security policy is specified with a
CPNP B. Then, B is consistent if
at most one of the following state equations is satisfied:
M; = M, + V u;, where |M;(p;)| =1,i=1,2,...
and none of the following state equations is satisfied:
M; = M, + Vu;, where |M;(p,)| >1,i=1,2,....

Definition 11 (Confluence). Suppose a security policy is
specified with a CPNP B = (CPN,pe,p:). The policy B is
confluent iff for any initial marking M, = M, + p. and any
two reachable markings M;, M; € R(B, M,), there exists a
reachable marking M. in B such that M. e R(B,M;) N
R(B, M;).

A home space of B, denoted by HS, is a set of markings,
such that forany M;, M; € R(B, M,), there exists at least one
marking M, in HS reachable from both M; and M,.Ifa HS
contains only a single element M., then M. is called a home
marking of B. In other words, a home marking is reachable
from any marking M € R(B,M.).

Proposition 3. Suppose a security policy is specified with a
CPNP B. Then

1. If a Petri net has a home marking, then it is confluent.

2. A safe Petri net (i.e., a PN which satisfies that the
number of tokens in any place cannot exceed one for
any reachable marking) has a home marking iff it is
confluent.

3. Any confluent and strongly terminating Petri net has
a unique home marking.

Proposition 4. Suppose a security policy is specified with a
CPNP B. If B is consistent and properly terminating, then B
is confluent and has a unique home marking.

9/ Petri Nets and Colored Timed P?tl"l Nets

(» Properties in Security Polic
3 y Policy

(v Conclusion and Future Work
5

Definition 12 (Enable (Fig. 4)). For two processes B; = (P,
T, F,, Wi, My, C;, P, P;)(i=1,2), their composition by
Enable, denoted by B, => B,, is defined as the process
B=(P,T,F.W,M,,C,p,.,p,), where P=P,UP,, p,.=
Pies Pr = Doy and py. is merged with py,; T =T, UTy: F =
FLUF,;, W=W,UW,y My =M,y UMy; C=C,UC,.

The Enable composition B, => B, models the sequential
execution of two processes B; and B,. That is, B, is first
executed and B, is executed after the successful termination
of B,. However, if B, does not exit successfully, B, will
never be activated.

Proposition 5. Let B be the policy obtained from two subpolicies
By and Bs by applying the composition operator Enable. Then:

1. B is complete iff By and By are complete.

2. B is strongly (resp., properly) terminating iff B, and
By are strongly (resp., properly) terminating; B is
weakly terminating iff B, and B, are weakly
terminating, or B, is complete and B, is weakly
terminating.

If both By and Bs are consistent, then B is consistent.
4. If both B, and B, are confluent, then B is confluent.

g

Definition 13 (Choice (Fig. 4)). For two processes B; =
(P, T;, F;, Wi, My, C;, pie, piz) (i=1,2), their composition
by Choice, denoted by B,[|B,, is defined as the process
B=(P,T,F,W,M,,C,p,.,p,), where P = P, UP,,p, is the
place merging p1. and pa., p- is the place merging p1» and pax;
T=TUT,, F=FRUF, W=WUWy M;= MU
ﬂ‘{g]; C=Cu C_)_.

The Choice composition B,;[|B, models the arbitrary
selection for execution between two processes By and Bs.

By[]B;

Proposition 6. Let the policy B be obtained from two sub-policies
By and By by applying the composition operator Choice. Then:

1. B is complete iff By and B, are complete.

2. B is strongly (resp., weakly, properly) terminating iff
By and Bj are strongly (resp., weakly, properly)
terminating.

3. Bis consistent if By and B, are consistent and output
the same colored token in the exit places.

4. B is not always confluent even if both By and B
are confluent. B is confluent if B, and B, are
properly terminating and output the same token in
their exit place.

Definition 14 (Interleave (Fig. 5)). For two processes B; =
(P, T, F,W;, My, C;, P, P;;) (i =1,2), their composition
by Interleave, denoted by Bi|||B., is defined as the process
B=(P.,T.F,W,M,.C,p.,p:), where P=P;UP,U {p,
P2}, Pe,pz are the newly added entry place and exit place,
respectively; T =T, UT, U{t,.t.}, where t,,t. are newly
added transitions;

F=FRUFBU{(p.t). (to.me), (to.p2). (P12 12,
(pazte), (te,pz)) W = Wi UWa U {W(pe, to),
W (to, p1e), W(to, p2e), W(prz. te), W(pez. tc),
W (te.pz)},
where W(t.,p,;) is a 2D wvector (W(py,t.), W(p2s.t.));
My = My, UM,;; C =C,UCh.

The Interleave composition Bi|||B: models the concur-
rent but independent execution of two processes B; and B»
with synchronized exit.

to Definition 15 (Disable (Fig. 6)). For two processes B; =
(P.T,,F,,W;, M}, C;, P, P.;) (i = 1,2), their composition
by Disable, denoted by B,[> B,, is defined as the process

P P B=(P,T,F,W,M,,C.p,.p,), where P=P,UP,U {py,,
Do}, Pe.ps are the newly added entry place and exit place,
respectively;

T=T1UT:U{ty.t.}; F = FL UFU{(pe, t),
(tﬂ:ple)ﬂ (tﬂep‘.Ze)e (Pr2s tc), (P22 t‘-), (tcepr)}
U {(Pd, Td), (Tdrp‘lr)}a
where

Py C Py, Ta C Ty W = Wi UWa U{W (pe o),
"V(t(h ple)e ‘/V(t(h p‘.’t)e “/(plzr tc)) "/'(p‘ln tC)T
Wite,pz)} U{W(Pa, Ta), W(Ts,p22) },

where W(t.,pz) is a 2D wvector (W (piz,tc), W(paz.tc));
My = MyyU My, C = Cy U Ca.

B, [> B,

to

The Disable composition is similar to Interleave. The
difference is that there exist some places P; in B, which are
connected to some transitions 7; in B, such that once T are
fired, B, is dead and cannot output decisions normally.
According to the policy requirement, we may add an
additional arc (T p2.) for specifying the decisions of
subpolicy B, if it is disabled.

Proposition 8. Let the policy B be induced from two subpolicies
By and Bs by applying the composition operator Disable. The
following results are true:

1.

Bank COI class Other COI classes Car company COI clas

Suppose the transitions in T, are never fired in B.
Then the property preservation results are the same as
those for the Interleave operator in Proposition 7.
Suppose some transitions in Ty are fired and all the
transitions in Bs are disabled in B. Then:

e B s complete if By is complete.

e B is strongly terminating if By is strongly
terminating; B is weakly terminating if B, is
weakly terminating.

e B s consistent if By is consistent.

e Bis confluent if B, is confluent.

If B, and B, are both complete (resp., terminating), B

is complete (resp., terminating), but, in general,

confluence and consistency are not preserved.

Suppose B, satisfies the following conditions:

.(Pc;) = {pd}/ P:; = .p2zl and W(Pdv.sz) =

W(Pd, Td), W(.pzr,p-h) = W(Td,ph). Then B is

consistent (resp., confluent) iff By and By are consistent
(resp., confluent).

Set of all objects

N O

Read policy: a subject s € S can read an object 0o € O
provided that, either there is an objecto’ € O such that
s has accessed o and CD(o') = CD(o), or for all
objects 0,0 € PR(s) = COI(d") # COI(0), where
PR(s)is a set of objects that s has accessed previously.

In words, a subject s is permitted to read an object
o provided that, either s reads the objects all in the
same CD, or reads the objects in different COlIs. In
the same COI, the subject cannot read objects in

different CDs.

Write policy: a subject s € S may write to an object
o € O provided that s is permitted to read o, and for
all the objects o', s can read o' = CD(0") = CD(o0).

In words, a subject s is permitted to write an
object 0 only when s can read o and other objects
accessible by s are in the same CD with o.

In the Petri net model of Fig. 11, places p. and p, are the
entry and exit interface places, respectively; place r is a
record place for storing the users’ previous records; place d
is a place for specifying the newly requested object.
Transitions read and write are operations for processing
“reading” and “writing” requests, respectively. Transitions
t; and t, specify “Accept” and “Reject” decisions, respec-
tively. The detailed specification is as follows:

CWC: XACML Combiner
For a security system, in particular an
access control system, the same resource
may be requested by different policies and
their respective decisions may be
different.

XACML is a policy for conflict
resolution.

It is easy to verify that both COI, and
COlI, are almost live, not almost
bounded, deadlock free and strongly
terminating. Similar to Proposition 9,
CWC is complete, strongly terminating,
consistent and confluent. Denoting the
Chinese wall policy specification model
as B = (B, [»B,>> CWC, we conclude
that B is complete, strongly terminating,
consistent but not confluent.

It is flexible because any module (no matter whether or not it is
obtained by composition of other sub-modules) can be safely replaced
with an alternative design without reanalysis of the overall system
architecture. Since each module is designed as a correct CPNP with a
specific architecture, the replacement has the same interface and
satisfies the same constraints. This feature is especially useful when
we design different security policies with the same CPNP architectures

It is scalable because it allows us to analyze overall composition
without the interference of internal details of the module design.
Verification is done separately by checking whether each sub-module
satisfies the constraints of property preservation. This significantly
reduces the computing complexity and can be processed in parallel.
Furthermore, our methodology is general and can be applied to a large
range of security policies design, especially to a complex policy
composed of some logic-related components, e.g., role-bases access
control policy, task-based access control policy and rule-based
policies, etc.

+» Designing new combiners for restoring the
unpreserved properties is another interesting future
research topic.

«» Specify some new specific security Properties with
CPNP.

“» Enhance PPPA by adding more property-preserving
operators.

Thank you !

