
Specification and Verification of
Security Policy Design based on

Petri Nets

Hejiao Huang

黄荷姣

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

Policy Composition

! Multi-domain Cooperation
Policy

Composition ？

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

Colored Petri Net

Firing t1t2

Petri Net Process

M e = M0 + pe

M x = M0 + px

Discussion on PNP

Discussion on PNP

Discussion on PNP

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

Completeness

Termination

Discussion on Termination

Strong termination requires that the policy always
terminates with a finite number of firing steps

While properly terminating requires the policy to
terminate (strongly or weakly) and to reach a special
exit state.

If B is weakly terminating, it may have infinite firing
sequence(s) but must terminate in some cases

Discussion on Proper Termination

In general, proper termination by itself does not guarantee that a process can
always terminate. It just requires a process to be at the exit state Mx = M0 + px
whenever a token has been deposited into px. Proper termination models the
well-known `memory less' property of a software process that it should return
to its initial `ready' state after having completed a cycle of execution.

Together with the Deadness of Static Marking condition, proper termination
guarantees that no transition can be fired when px gets a token. This follows from
the fact, whenever px gets a token, the system reaches a dead marking because M0
in the internal CPN is dead.

The Deadness of Static Marking condition, together with the properties of Proper
Initiation and proper termination, guarantee that a CPNP is non-reenterable. This
means that, once having been initiated, a CPNP cannot be initiated again until its
previous execution cycle has been completed. In general, to avoid mixing two
independent execution cycles of a PNP, one either has to use colored Petri nets or
control the procedure of entering into the process.

Consistency

Consistency

Confluence

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

PPPA-Enable

Proposition for Enable

PPPA-Choice

Proposition for Choice

PPPA-Interleave

PPPA-Disable

PPPA-Disable

Proposition for Disable

An Example for Illustration

Chinese Wall Policy

Chinese Wall Policy

PPPA –based Specification

CWC: XACML Combiner
For a security system, in particular an
access control system, the same resource
may be requested by different policies and
their respective decisions may be
different.

XACML is a policy for conflict
resolution.

It is easy to verify that both COI1 and
COI2 are almost live, not almost
bounded, deadlock free and strongly
terminating. Similar to Proposition 9,
CWC is complete, strongly terminating,
consistent and confluent. Denoting the
Chinese wall policy specification model
as B = (B1 [>B2>> CWC, we conclude
that B is complete, strongly terminating,
consistent but not confluent.

Contents

Introduction 1

Petri Nets and Colored Timed Petri Nets 2

Properties in Security Policy3

PPPA and Its Application to Policy Design4

Conclusion and Future Work5

Conclusion and Future Direction

It is flexible because any module (no matter whether or not it is
obtained by composition of other sub-modules) can be safely replaced
with an alternative design without reanalysis of the overall system
architecture. Since each module is designed as a correct CPNP with a
specific architecture, the replacement has the same interface and
satisfies the same constraints. This feature is especially useful when
we design different security policies with the same CPNP architectures

It is scalable because it allows us to analyze overall composition
without the interference of internal details of the module design.
Verification is done separately by checking whether each sub-module
satisfies the constraints of property preservation. This significantly
reduces the computing complexity and can be processed in parallel.
Furthermore, our methodology is general and can be applied to a large
range of security policies design, especially to a complex policy
composed of some logic-related components, e.g., role-bases access
control policy, task-based access control policy and rule-based
policies, etc.

Conclusion and Future Direction

! Designing new combiners for restoring the
unpreserved properties is another interesting future
research topic.

! Specify some new specific security Properties with
CPNP.

! Enhance PPPA by adding more property-preserving
operators.

