Identifying and Visualising Dependability Concerns:
Results from a Requirements Project
with Applications to Business Process Work

Andreas L Opdahl
University of Bergen, Norway

My research interests

- Enterprise and IS Modelling
- Practice of Modelling
 - Enterprise architecture models
 - Process-modelling practice
 - Requirements modelling
 - Security/safety requirements

- Theory of Modelling
 - Semantics
 - Ontology
 - Multiple perspectives
 - Interoperability
The **ReqSec** project!

Methods and tools for security requirements engineering:
- involve non-experts
- visualisation for inclusion
- lightweight, integrated
- industrially evaluated

Funded by the Norwegian Research Council (NFR), 2008-2012

Avoiding unwanted behaviours → dependability requirements

The **ReqSec** people!

Guttorm Sindre
Andreas L Opdahl
Christian Raspotnig
Peter Karpati
Vikash Katta
(sup. Tor Stålhane)
What is dependability?

Dependability
- ability to deliver a service that can be justifiably trusted *(J.C. Laprie)*
- traditionally: availability, reliability and maintainability
- more recently: safety, security and privacy
- common theme: what we do *not* want to happen

Our focus:
- *security* – resilience to *intended* threats
- *safety* – resilience to *unintended* hazards

The importance of dependability

Several related developments:
- pervasive IS (and crucial parts of business processes)
- tightly integrated IS (and business processes)
- more complex intertwined business processes
 - parallelism, interactions, stakeholders, boundaries
- digitalisation and standardisation
- many types of dependability for same IS
- interactions between dependability types
Working with dependability requirements

Started with Misuse Cases (MUC)

- ...from 1999 (Sindre & Opdahl, REJ 10, 2005)
 - initial focus on security
 - Negating constructs from Use Case diagrams
 - visual notation for abuse cases (McDermott & Fox)

Related work:

- experiments
- case studies, design research
- tools (NTNU)
- methods (e.g., CORAS)
- uses for safety (Stålhane, Sindre, ...)

Misuse Case diagram example

[Diagram from owasp.org]
Anti-behaviours in other notations

i* extensions *(Liu, Yu, Mylopoulos) (Elahi)*
Secure Tropos *(Mouratidis, Giorgini)*
Secure KAOS *(van Lamsweerde, ...)*
Abuse frames *(Lin, Nuseibeh, Ince, Jackson, Moffett)*
Mal-Activity Diagrams *(Sindre)*

Less focus on:

requirements and architecture
detailed analysis of attack sequence
integrated dependability method

Dependability requirements and architecture

System security models:
 focus on single, monolithic systems
 similar for safety
Security architecture frameworks (SABSA, TOGAF):
 high-level views, enterprise security architecture
 not a focus for safety
Need for intermediate solutions:
 architectural security modelling, e.g., for SOA

*Could we build on Use Case Maps *(Buhr, Aymot, ...)*?*

Joint work with *Peter Karpati and Guttorm Sindre*
Use Case Map example

components, scenario paths, responsibilities

Diagram from www.softwarepractice.org

Misuse Case Maps (MUCM)

Misuse Case Maps:
- vulnerabilities, exploit paths, vulnerable responsibility
- anti-behaviour in red, rather than negated
Misuse Case Maps (MUCM)

Research approach:
- working out cases (Mitnick's «The Art of Intrusion»)
- several experiments
- tool development (NTNU)

Conclusions:
- facilitates better understanding
- somewhat more productive than separate diagrams
- not clearly better liked

Also usable for safety?! *(Wu, Kelly)*
- guiding words?
- multiple failure modes?

Dependability requirements and sequence

Existing notations:
- few visualise *attack/failure sequence* in detail
- Mal-Activity Diagrams are an exception...

Could we build on *sequence diagrams*?
- from: actor, object/component, action, event/message
- to: *attacker, vulnerability, exploit action/event/message*
- anti-behaviour again in *red*

Joint work with Vikash Katta, Peter Karpati, Christian Raspotnig and Guttorm Sindre
Misuse Sequence Diagrams (MUSD)

Research approach:
- working out cases
- experiments

Conclusions:
- complements MUCMs for understanding
- similarly effective to MUCMs
- better liked than MUCMs
Failure Sequence Diagrams (FSD)

The “safety variant” of MUSD
 similar notation, but safety terms
Used in air-traffic control:
 sequence of real live workshops
 combined with Failure Mode and Effect Analysis (FMEA)

Do FSD and FMEA combine well?

Conclusions:
 more interactive analysis
 good for understanding propagation
 but the FSDs get complex
 – may not work for multiple failures

Joint work with Christian Raspotnig

Comparison of techniques

Around 5 safety and 5 security techniques
Systematic comparison through a framework:
 stakeholders, timing, type of system, application area,
 process, scalability, interoperability...
Systematic differences:
 maturity, visual notation,
 integration with development,
 structured method, cue words
Towards an integrated
 conceptual model
 …and a method

Joint work with Christian Raspotnig
Integrated safety and security method

CHASSIS: Combined Harm Assessment of Safety and Security for Information Systems

Diagram from (Raspotnig, Karpati & Katta)

HAZOP: NOT, MORE, LESS, AS WELL AS, PART OF, REVERSE, OTHER THAN…
Applications to process work

Business processes are closely intertwined with the information systems that support them

The ideas behind and results from ReqSec should be readily transferred to business process work

Consider dependability early

no learning the hard way
avoid costly rework
control project risk
the best solutions may involve functional or architectural trade-offs
Involve many competencies

Safety, security, privacy etc. is not (only) an expert matter
...and not only a technical matter

Customers, suppliers, process owners and participants, systems users, developers etc. know the assets, hazards and threats best
...and understand the possible trade-offs better

Use visualisations

Central to involve multiple stakeholders
Central in the early development stages
Architecture/organisational structure and sequences
Broad, integrated handling of dependability

Dependability issues are becoming more important
More types of dependability are becoming important for the same systems
The different types interact – they must be investigated together
Using closely related (or the same) techniques and tools will make things simpler

Integrate risk assessment

The dependability types interact so their risks are dependent on one another
Integrated risk assessment is made easier when similar techniques and tools are used for different dependability types
Using boundaries

Look for vulnerabilities, threats and hazards where ever a scenario path crosses a component boundary.

In business processes, organisational units are similar to components.

Hence pools and swimlanes are similar to components in UCMs and MUCMs.

Can be combined with guiding words (Ubayashi & Kamei).

Guiding words

Guiding words are central in safety.

HAZOP: NOT, MORE, LESS, AS WELL AS, PART OF, REVERSE, OTHER THAN...

underused in security (Srivatanakul, Winther et al.)?

...and in process work?

A driving process that is both structured and encourages creativity.

Use the semantics of process modelling constructs:

dedicated guiding words, e.g., for actors and roles, swimlanes, actions, message flows, sequence flows, timers, alarms...
Remedies are potential vulnerabilities

Every mitigation must be analysed for dependability issues of its own
(Alexander)

Main points

Dependability is becoming more important
Many similarities between the dependability types
…but the fields are (largely) unrelated
We need new integrated techniques and methods
Empirical grounding through
real textbook cases, experiments with students and industry, industrial cases, design research

THANK YOU! :-}
Selected papers

Karpati, Peter; Opdahl, Andreas Lothe; Sindre, Guttorm: Experimental evaluation of misuse case maps for eliciting security requirements. 1st Security Conf. Europe 2010.

Karpati, Peter; Sindre, Guttorm; Opdahl, Andreas Lothe: Visualizing Cyber Attacks with Misuse Case Maps. LNCS 6182, Springer 2010.

Karpati, Peter; Sindre, Guttorm; Opdahl, Andreas Lothe: Towards a hacker attack representation method. Proc. Fifth Int. Conf. on Software and Data Technologies. INSTICC Press 2010.

Katta, Vikash; Karpati, Peter; Opdahl, Andreas Lothe; Raspotnig, Christian; Sindre, Guttorm: Comparing two techniques for intrusion visualization. LNBIP 68, Springer 2010.
