Introduction
A knot-based Algorithm
An Algorithm for Horn-SHIQ

The combined complexity of query answering in expressive DLs

Magdalena Ortiz

Institute for Information Systems, Vienna University of Technology

November 2008
KRDB Seminar, Free University of Bozen-Bolzano
Outline

1. Introduction and background
2. Two algorithms for CQ Answering in expressive DLs
 1. A knot-based one
 - For $ALCH$, an $EXPTIME$ upper bound
 - For SH, a 2-$EXPTIME$ upper bound
 (AAAI 08/DL 08, joint work with Thomas Eiter and Mantas Šimkus)
 2. A domino-based one for Horn-$SHIQ$
 - An $EXPTIME$ upper bound
 (JELIA 08, joint work with Thomas Eiter, Georg Gottlob and Mantas Šimkus)

Informal discussion – what makes CQs hard?
Description Logics (DLs) are logics specifically tailored for Knowledge Representation.

- Most popular formalisms for writing ontologies.
- They underlie the Ontology Web Languages (OWL) proposed as Semantic Web standard.
- Typically, they consider a language comprising:
 - concepts: classes, unary predicates.
 - roles: relations between classes, binary predicates.
A DL knowledge base \mathcal{K} has two parts:

- The **terminological** knowledge is given by a set of axioms, called TBox:

 $$
 \begin{align*}
 \text{Man} & \sqsubseteq \text{Human} \\
 \text{Parent} & \equiv \exists \text{hasChild}.\text{Human} \\
 \text{Uncle} & \equiv \exists \text{hasSibling}.\text{Parent} \\
 \text{hasSibling} & \equiv \text{hasSibling}^{-}
 \end{align*}
 $$

 Men are human. A parent is someone that has a child. An uncle is someone that has a sibling who is a parent. Sibling is symmetric.

- The **assertional** knowledge is given by a set of ground facts, called ABox:

 $$
 \begin{align*}
 \text{Human(Sam)} & \\
 \text{Man(John)} & \\
 \text{Human(Bob)} & \\
 \text{hasChild(Bob, Sam)} & \\
 \text{hasSibling(Bob, John)} & \\
 \end{align*}
 $$

 The models of \mathcal{K} are the FOL-interpretations that satisfy both components.
A DL knowledge base \mathcal{K} has two parts:

- The **terminological** knowledge is given by a set of axioms, called TBox:
 \[
 \begin{align*}
 \text{Man} & \sqsubseteq \text{Human} \\
 \text{Parent} & \equiv \exists \text{hasChild}.\text{Human} \\
 \text{Uncle} & \equiv \exists \text{hasSibling}.\text{Parent} \\
 \text{hasSibling} & \equiv \text{hasSibling}^-
 \end{align*}
 \]

Men are human. A parent is someone that has a child. An uncle is someone that has a sibling who is a parent. Sibling is symmetric.

- The **assertional** knowledge is given by a set of ground facts, called ABox:
 \[
 \begin{align*}
 \text{Human(Sam)} & \quad \text{Man(John)} & \quad \text{Human(Bob)} \\
 \text{hasChild}(\text{Bob}, \text{Sam}) & \quad \text{hasSibling}(\text{Bob}, \text{John})
 \end{align*}
 \]

The models of \mathcal{K} are the FOL-interpretations that satisfy both components.
SHIQ is a Description Logic (underlying OWL-Lite) that:

- subsumes the basic DL *ALC*, and allows also for
- *(S)* transitive roles,
- *(H)* role hierarchies (inclusions),
- *(I)* inverse roles,
- *(Q)* qualified number restrictions.

We consider some fragments of **SHIQ**:

- *ALCH*, the ‘basic’ expressive DL *ALC* plus role hierarchies,
- *SH*, which adds transitive roles to *ALCH*, and
- Horn-**SHIQ**, the Horn (i.e., deterministic) fragment of **SHIQ**

Standard reasoning is **EXPTIME**-complete for all of them.
DL ontologies are increasingly seen as mechanisms to describe and access data repositories. E.g., in ontology-based data access, information integration, ... Research aiming at the use of database query languages to access DL ontologies.

We consider the popular Conjunctive Queries (CQs):

- Conjunction of atoms, variables are existentially quantified

 \[\text{hasUncle}(x, z) :\neg \text{hasParent}(x, y), \text{hasSibling}(y, z), \text{Man}(z) \]

- Equivalent to ‘basic’ SQL
- Popular in many other fields
DL ontologies are increasingly seen as mechanisms to describe and access **data repositories**. E.g., in ontology-based data access, information integration, . . .

Research aiming at the use of **database query languages** to access DL ontologies.

We consider the popular **Conjunctive Queries (CQs)**:

- Conjunction of atoms, variables are existentially quantified

 \[
 \text{hasUncle}(x, z) :\neg \text{hasParent}(x, y), \text{hasSibling}(y, z), \text{Man}(z)
 \]

- Equivalent to ‘basic’ SQL
- Popular in many other fields
Conjunctive queries

The **CQ answering** problem over a KB \mathcal{K} is to decide whether there is a mapping for the query variables in every model of \mathcal{K}.

- More powerful data access than traditional DL reasoning, *individuals may be related in arbitrary ways*
- and than querying standard DBs. *variables can be mapped to unnamed individuals*

Many algorithms developed recently for CQ answering in DLs around \mathcal{SHIQ}. We discuss two of them.
Conjunctive queries

The CQ answering problem over a KB \mathcal{K} is to decide whether there is a mapping for the query variables in every model of \mathcal{K}.

- More powerful data access than traditional DL reasoning, *individuals may be related in arbitrary ways*
- and than querying standard DBs, *variables can be mapped to unnamed individuals*

Many algorithms developed recently for CQ answering in DLs around \textit{SHIQ}. We discuss two of them.
Conjunctive queries

The CQ answering problem over a KB \mathcal{K} is to decide whether there is a mapping for the query variables in every model of \mathcal{K}.

- More powerful data access than traditional DL reasoning, *individuals may be related in arbitrary ways*
- and than querying standard DBs, *variables can be mapped to unnamed individuals*

Many algorithms developed recently for CQ answering in DLs around SHIQ. We discuss two of them.
An \textit{ALCH} KB $\mathcal{K}=\langle T, A \rangle$ is in \textbf{normal form} if all the axioms in T are of the forms:

\begin{itemize}
 \item[(E)] $A_0 \sqsubseteq \exists R.B_0$,
 \item[(U)] $A_0 \sqsubseteq \forall R.B_0$,
 \item[(D)] $A_0 \sqcap \ldots \sqcap A_n \sqsubseteq B_0 \sqcup \ldots \sqcup B_m$.
\end{itemize}

where A_i, B_j are concept names.
For query answering, we know that we only need to consider **canonical models**.
(minimal Herbrand models of the skolemized FO translation of the normalized KB)

These models are **forest-shaped**:
- TBoxes have **tree** shaped models,
- but the models of ABoxes are arbitrary **graphs**.
 (they can impose arbitrary relations, but only between the named individuals)

Each canonical model is composed of a **graph part** and a **set of trees**.
Knots

The trees can be represented using knots.

- Labeled trees of depth at most 1.
- Can be ‘instantiated’ with any domain element.
- They satisfy simple local conditions:
 - Propositional axioms satisfied at each node.
 - The root has the necessary successors.

They are the pieces that compose the tree shaped models of a TBox.

\[\alpha_0 = D \sqsubseteq A \sqcup B \]
\[\alpha_1 = B \sqsubseteq \exists P.A \]
\[\alpha_2 = B \sqsubseteq \exists P.C \]
\[\alpha_3 = A \sqsubseteq \exists Q.E \]
\[\alpha_4 = C \sqsubseteq \exists P.D \]
To construct a model, we need:

- A labeled graph that contains the ABox and where each node satisfies the propositional axioms (a min-graph).
- For each node, a knot that can be ‘plugged in’, i.e., whose root has the same label.
Knots and Canonical Models

\[\mathcal{K}_1 = \langle A_1, T_1 \rangle, \ A_1 = \{D(a)\}, \ T_1 \text{ contains:} \]

\[\alpha_0 = D \sqsubseteq A \sqcup B \quad \alpha_3 = A \sqsubseteq \exists Q.E \]
\[\alpha_1 = B \sqsubseteq \exists P.A \quad \alpha_4 = C \sqsubseteq \exists P.D \]
\[\alpha_2 = B \sqsubseteq \exists P.C \]

We can build models for \(\mathcal{K}_1 \) from the min-graphs \(\{D(a), B(a)\} \) and \(\{D(a), A(a)\} \), and the knots:
Finite Representation of Models

Theorem

There is a unique set $\mathbf{K}_\mathcal{K}$ of knots that, together with the min-graphs, captures all the canonical models of \mathcal{K}. This set can be computed in single exponential time.

This provides a (new) worst-case optimal decision procedure for KB satisfiability.
We use this set of knots $\mathcal{K}_\mathcal{K}$ to answer a CQ q in the models of \mathcal{K} that L represents.

- We concentrate on the tree-shaped parts of the models.
- Each such part starts with a knot K from $\mathcal{K}_\mathcal{K}$.
- We consider subqueries ρ of q whose match can occur inside these trees.

We compute all the pairs (K, ρ) such that $K \models \rho$, i.e., there is a match for ρ in each tree that starts with K.
Deciding Subquery Entailment

We do this inductively, by considering the depth of the mappings in the trees.

- We start with mappings of depth 0.
- At each step, we compute mappings starting at K composed of:
 - mappings of smaller depth for the knots that can follow K in a tree construction, and
 - a partial embedding of q into K extending them.
- We continue until we reach a fix-point $\Gamma(K, q)$.

Magdalena Ortiz
The combined complexity of query answering in expressive DLs
Computing the set $\Gamma(K, q)$

$K \models^0_K q$

Magdalena Ortiz

The combined complexity of query answering in expressive DLs
Computing the set $\Gamma(\mathcal{K}, q)$

$K \models_{\mathcal{K}}^1 \rho$

Magdalena Ortiz

The combined complexity of query answering in expressive DLs
Computing the set $\Gamma(K, q)$

$K \models^2 K, q$

Magdalena Ortiz
The combined complexity of query answering in expressive DLs
Computing the set $\Gamma(K_K, q)$

$K \models^3_{K_K} \rho$

Magdalena Ortiz

The combined complexity of query answering in expressive DLs
Evaluating the full query

In a final step, we take the graph-part of the models into account:

- A min-graph extended with a knot that can start the tree construction for each constant is seen as a super-knot.
- Query matches can be found by computing (a generalization of) the inductive step above.
\(\mathcal{A}_1 = \{a : D\} \), \(\mathcal{T}_1 \) contains:

\[
\begin{align*}
\alpha_0 &= D \sqsubseteq A \cup B \\
\alpha_1 &= B \sqsubseteq \exists P.A \\
\alpha_2 &= B \sqsubseteq \exists P.C \\
\alpha_3 &= A \sqsubseteq \exists Q.E \\
\alpha_4 &= C \sqsubseteq \exists P.D
\end{align*}
\]

There is a match in every model that starts with \(\{D(a), B(a)\} \), but no match in the ones starting with \(\{D(a), A(a)\} \).
For \mathcal{ALCH}, the algorithm has \textbf{EXPTIME} combined complexity.
- The set $\Gamma(K, q)$ is polynomial in $|K|$, and single exponential in $|\mathcal{K}| + |q|$.

This holds because only polynomially many subqueries must be considered:

\begin{itemize}
 \item For \mathcal{ALCH}, the algorithm has \textbf{EXPTIME} combined complexity.
 \item The set $\Gamma(K, q)$ is polynomial in $|K|$ and single exponential in $|\mathcal{K}| + |q|$.
 \item This holds because only polynomially many subqueries must be considered.
\end{itemize}
This would not hold, e.g., if P was transitive.

The algorithm works also for SH, but it is double exponential in general.

Single exponential cases (i.e. with only polynomially many relevant subqueries) have been identified.
Other Features of our Algorithm

- It has coNP data complexity:
 - K_K and $\Gamma(K_K, q)$ can be precomputed,
 - we can guess a min-graph and check in polynomial time whether it entails q.
- Provides a modular knowledge compilation technique.
- Everything can be easily encoded into a Datalog program.
- Answers non-Boolean queries.
The complexity of Query Answering

- For both $ALCH$ and SH, the algorithm is worst-case optimal.
- For $ALCH$ and $ALCHQ$ [Lutz, DL’07] query answering is in $\text{EXP\text{-TIME}}$. (Apparently, also for S and SQ.)
- CQs are $2\text{EXP\text{-TIME\text{-hard}}}$ already for:
 - $ALCI$ [Lutz, DL’07]
 - SH [E.L.O.Š., 08]

How can we lower the complexity within the SHI fragment?
A possible answer: disallow disjunction.

Horn-$SHIQ$ is the Horn fragment of $SHIQ$ [Hustadt et al., IJCAI’2005].
 - Consistency testing Horn-$SHIQ$ is P-complete w.r.t. data complexity.
 - This is lower compared to coNP-completeness in $SHIQ$.
 - It’s EXPTIME-complete in combined complexity, i.e. no easier than full $SHIQ$.

We now discuss the complexity of CQ answering:
 - it is EXPTIME-complete w.r.t. combined complexity, and
 - P-complete w.r.t. data complexity.

In Horn-$SHIQ$ CQ answering is not harder that satisfiability testing and easier than in $SHIQ$.
A possible answer: **disallow disjunction.**

Horn-$SHIQ$ is the Horn fragment of $SHIQ$ [Hustadt et al., IJCAI’2005].

- Consistency testing Horn-$SHIQ$ is P-complete w.r.t. data complexity.
- This is lower compared to coNP-completeness in $SHIQ$.
- It’s EXPTIME-complete in combined complexity, i.e. no easier than full $SHIQ$.

We now discuss the complexity of **CQ answering**:

- it is EXPTIME-complete w.r.t. combined complexity, and
- P-complete w.r.t. data complexity.

In Horn-$SHIQ$ CQ answering is **not harder that satisfiability testing and easier than in $SHIQ$**.
We work on KBs in the following normal form:

\[
A \sqcap B \sqsubseteq C \quad A \sqsubseteq \forall R.B \quad A \sqsubseteq \geq m S.B \\
\exists R.A \sqsubseteq B \quad A \sqsubseteq \exists R.B \quad A \sqsubseteq \leq 1 S.B
\]

- Role hierarchies and transitivity axioms are allowed.
- ABoxes are allowed.
- Only disjunctive axioms \(A \sqcap B \sqsubseteq C \sqcup D\) are not allowed.

As usual, we only need to consider forest-shaped models. We focus on the tree part for now.
Universal Models in Horn-$SHIQ$

- For DLs with disjunction, query answering inherently implies quantification over many models.
- Since Horn-$SHIQ$ disallows disjunction, we can obtain *universal models*.
 - A model of \mathcal{K} is universal iff it can be homomorphically embedded into each model of \mathcal{K}.

Lemma

Existence of a query mapping in a universal model is equivalent to existence in all the models of a KB.

NOTE: There can be several universal models for a KB, but they are bisimilar.
(A) We define domino systems.
 - Each domino system captures a possibly infinite tree-shaped interpretation.

(B) We define a procedure for CQs over domino systems.
 - Allows to test if a query has a match in the tree represented by a domino system.

(C) We give an EXPTIME tableau procedure for Horn-SHIQ.
 - Finite representation of a universal model.

(D) The output of the tableau procedure is transformed into a domino system, which is then used to answer CQs over the initial KB.
Dominoes are similar to knots.

- A **domino** is a tuple $\langle c, r, c' \rangle$, where
 - c, c' are sets of concept names, and
 - r is a set of roles.

- A **domino system** is a tuple $\langle D, \triangleright, \mathcal{R} \rangle$ such that
 - D is a set of dominoes,
 - $\triangleright \subseteq D \times D$ is a **direct successor** relation with $c'_1 = c_2$ whenever $\langle c_1, r_1, c'_1 \rangle \triangleright \langle c_2, r_2, c'_2 \rangle$,
 - \mathcal{R} a set of role inclusions and transitivity axioms,
 - D contains one distinguished initial tile t_0.

- Each domino system represents one (possibly infinite) tree-shaped interpretation.
Finite representation using Domino Trees: Example

Domino system \mathcal{D}

Domino tree \mathcal{T}_D

The combined complexity of query answering in expressive DLs
Conjunctive Queries over Domino Trees

Technique: we treeify the query

Definition

A query graph \(q^G \) for a query \(q \) is a directed graph over variables of \(q \) with an edge from \(x \) to \(y \) iff \(R(x, y) \in q \) for some \(R \).

Definition

A query \(q \) is tree-shaped if its query graph \(q^G \) is a tree.

Lemma

For any \(q \), we can obtain a set \(T(q) \) of tree-shaped queries s.t.: \(\mathcal{D} \models q \) iff \(\mathcal{D} \models q' \) for some \(q' \in T(q) \).
Queries over Domino Trees (Example)
Tree-Shaped queries over Domino Trees

- Existence of matches in the domino tree can be decided without constructing it explicitly.
- The procedure works on the underlying domino system.
- We search for a suitable association of each variable x of q with a domino t_x in \mathcal{D}.
- An association must witness a match:
 - the domino t_x associated with variable x must encode the concept names needed to satisfy each unary atom $A(x) \in tq$,
 - for each role atom $R(x, y) \in tq$, the domino t_x must ‘reach’ the domino t_y via an R-path.
Obtaining Domino Systems for Horn-$SHIQ$ KBs

1. We build a **tableau algorithm** for consistency testing in $SHIQ$:
 - For a consistent KB \mathcal{K}, it returns a **complete and clash-free completion forest** that represents a model \mathcal{I} of \mathcal{KB}.
 - The represented model \mathcal{I} is **universal**, i.e., it suffices for query answering.

2. The completion forest is **decomposed into dominoes**, and the domino set is obtained.
 - The domino tree and the model \mathcal{I} correspond.

3. A query over a KB can then be answered by posing tree-shaped queries over the resulting domino tree.
Computational Complexity

We analyze the combined complexity:

- The tableau algorithm runs in exponential time.
- The extracted domino system is of exponential size.
- There are exponentially many treeifications tq of the initial query q.
- For each treeification tq of q, there are exponentially many candidate domino-associations and each can be verified in exponential time.

Theorem

CQ answering in Horn-$SHIQ$ is \textsc{ExpTime}-complete in combined complexity, i.e., in the size of the query and the knowledge base.
Dealing with ABoxes: Data Complexity

- The method extends to arbitrary ABoxes.
- Models obtained by the tableau procedure are forest-shaped.
- They are encoded in domino systems using an artificial root:
 - ABox individuals are coded in the level 2 of domino trees.
- The possible links between individuals are taken into account by additional query rewriting.
- This does not alter the combined complexity, and allows to characterize the data complexity.

Theorem

*CQ answering in Horn-*SHIQ* is P-complete in data complexity, i.e., in the size of the ABox.*
Other Features of the Algorithm

- The algorithm and complexity results extend to Unions of Conjunctive Queries and Positive Queries.
- Domino systems enable Knowledge Compilation.
 - Once the domino system for a KB is obtained, it can be used for answering all queries.
- A suitable restriction on Horn-$SHIQ$ lowers the combined complexity to PSPACE.
 - This involves removing inverse roles and exitentials on the l.h.s. of axioms.
A suitable representation of the models of a KB enables optimal algorithms for CQ answering.

The combined complexity of CQ answering is, in general, provably harder than consistency testing:
- To show non-entailment, exponentially many ‘treeifications’ of the query must be avoided at each node of each model.

This blow-up can be avoided by:
- Restricting the number of possible treeifications by disallowing suitable DL constructors.
- Making the DL deterministic, so that only one model must be considered.