Answering Queries Using Views in Description Logics

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
lastname@dis.uniroma1.it
http://www.dis.uniroma1.it/~lastname

Abstract

Answering queries using views amounts to computing the answer to a query having information only on the extension of a set of views. This problem is relevant in several fields, such as information integration, data warehousing, query optimization, etc. In this paper we address the problem of query answering using views for nonrecursive datalog queries embedded in a Description Logics (equipped with n-ary relations) knowledge base. We present the following results. Query answering using views is decidable in all cases. Specifically, if the set of all objects in the knowledge base coincides with the set of objects stored in the views (closed domain assumption), the problem is coNP complete, whereas if the knowledge base may contain additional objects (open domain assumption) it is solvable in double exponential time.

1 Introduction

Answering queries using views amounts to computing the answer to a query having information only on the extension of a set of views. This problem is relevant in several fields, such as information integration [Ullman, 1997], data warehousing [Widom, 1995], query optimization [Chaudhuri et al., 1995], etc. Data integration is perhaps the obvious setting where query answering using views is important: a typical integration process results in a set of precomputed views, and the query evaluation mechanism can only rely on such views in order to derive correct answers to queries.

In this paper we address the problem of query answering using views for nonrecursive datalog queries embedded in a Description Logics (equipped with n-ary relations) knowledge base. Our goal is to study the computational complexity of the problem, under different assumptions, namely, closed and open domain, and sound, complete, and exact information on view extensions. Such assumptions have been used in data integration with the following meaning. The closed domain assumption states that the set of all objects in the knowledge base coincides with the set of objects stored in the views. On the contrary, the open domain assumption leaves the possibility open that other objects besides those stored in the views exist in the knowledge base. With regard to the assumptions on views, a sound view corresponds to an information source which is known to produce only, but not necessarily all, the answers to the associated query. A complete view models a source which is known to produce all answers to the associated query, and maybe more. Finally, an exact view is known to produce exactly the answers to the associated query.

In this paper we consider a framework where we have a knowledge base formulated in an expressive Description Logic [Calvanese et al., 1998a], and a set of views defined as non-recursive datalog programs, and we want to answer a query, again expressed as a non-recursive datalog program. Moreover, the framework allows the specification of which assumption to adopt for the domain, and of which one to adopt for each of the available views.

We present the following results for the described setting: Query answering using views is decidable in all cases. Moreover, under the closed domain assumption, the problem is coNP complete, whereas under the open domain assumption it is solvable in double exponential time.

Our investigation is similar in spirit to the one presented in [Abiteboul and Duschka, 1998; Calvanese et al., 1999a], where the decidability and the complexity of the problem is studied when the views and the queries are expressed in terms of various languages (conjunctive queries, datalog, first-order queries, regular path queries, etc.). It is worth noticing that ABox reasoning in DLs [Donini et al., 1994] can be considered as a special form of query answering using views, in particular for the case where all views are assumed to be sound.

2 The Description Logic \(\mathcal{DLR}\)

We use the DL \(\mathcal{DLR}\) [Calvanese et al., 1998a] to specify knowledge bases and queries. The basic elements of \(\mathcal{DLR}\) are \textit{concepts} (unary relations), and \textit{n-ary relations}. We assume to deal with a finite set of atomic relations, atomic concepts, and constants, denoted by \(P\), \(A\) and \(a\), respectively. We use \(R\) to denote arbitrary relations (of given arity between 2 and \(n_{\text{max}}\)), and \(C\) to denote arbitrary concepts, respectively built according to the
following syntax:

\[
R \ ::= \ T_n \mid P \mid \{i/n\} C \mid \neg R \mid R_1 \cap R_2
\]

\[
C \ ::= \ T_1 \mid A \mid \neg C \mid C_1 \cap C_2 \mid \exists \{i\} [R] \mid (\leq k \{i\} R)
\]

where \(i\) and \(j\) denote components of relations, i.e., integers between 1 and \(m_{\text{max}}\), \(n\) denotes the arity of a relation, i.e., an integer between 2 and \(m_{\text{max}}\), and \(k\) denotes a nonnegative integer. Observe that, the "\(\neg\)" constructor on relations is used to express difference of relations, and not the complement [Calvanese et al., 1998a].

We consider only concepts and relations that are well-typed, which means that (i) only relations of the same arity \(n\) are combined to form expressions of type \(R_1 \cap R_2\) (which inherit the arity \(n\)), and (ii) \(i \leq n\) whenever \(i\) denotes a component of a relation of arity \(n\).

A DCR knowledge base (KB) is constituted by a finite set of assertions, where each assertion has one of the forms:

\[
R_1 \subseteq R_2, \quad C_1 \subseteq C_2, \quad C(a), \quad R(a_1, \ldots, a_n)
\]

where \(R_1\) and \(R_2\) are of the same arity, and \(R\) has arity \(n\).

The semantics of DCR is specified as follows. An interpretation \(\mathcal{I}\) of a KB is constituted by an interpretation domain \(\Delta^\mathcal{I}\) and an interpretation function \(\mathcal{I}\) that assigns to each constant \(a\) a subset \(\mathcal{I}(a)\) of \(\Delta^\mathcal{I}\), to each concept \(C\) a subset \(\mathcal{I}(C)\) of \(\Delta^\mathcal{I}\), and to each relation \(R\) of arity \(n\) a subset \(\mathcal{I}(R)\) of \((\Delta^\mathcal{I})^n\). We assume that \(\Delta^\mathcal{I}\) is a subset of a fixed infinitely countable domain \(\Delta\). To simplify the notation we do not distinguish between constants and their interpretations.

An interpretation \(\mathcal{I}\) satisfies an assertion \(R_1 \subseteq R_2\) (resp. \(C_1 \subseteq C_2\)) if \(\mathcal{I}(R_1)\) is included in \(\mathcal{I}(R_2)\) (resp. \(\mathcal{I}(C_1)\) is included in \(\mathcal{I}(C_2)\)), and satisfies an assertion \(C(a)\) (resp., \(R(a_1, \ldots, a_n)\)) if \(a \in \mathcal{I}(C)\) (resp., \(a_1, \ldots, a_n \in \mathcal{I}(R)\)). An interpretation that satisfies all assertions in a KB \(\mathcal{K}\) is called a model of \(\mathcal{K}\).

A query \(q\) is a non-recursive datalog query, written in the form:

\[
Q(\bar{x}) \leftarrow body_1(\bar{x}, \bar{y}_1, \bar{e}_1) \lor \cdots \lor body_m(\bar{x}, \bar{y}_m, \bar{e}_m)
\]

where each \(body_i(\bar{x}, \bar{y}_i, \bar{e}_i)\) is a conjunction of atoms, and \(\bar{x}, \bar{y}_i, \bar{e}_i\) (resp. \(\bar{e}_i\)) are all the variables (resp. constants) appearing in the conjunct. Each atom has one of the forms \(R(\bar{t})\), or \(C(\bar{t})\) where \(i\) \(\bar{t}, t\), and \(t'\) are constants or variables in \(\bar{x}, \bar{y}_i, \bar{e}_i\), and (ii) \(R, C\) are relations and concepts, respectively. The number of variables of \(\bar{x}\) is called the arity of \(q\), and is the arity of the relation denoted by the query \(q\).

We observe that the atoms in the queries are arbitrary DCR relations and concepts, freely used in the assertions of the KB. This distinguishes our approach with respect to [Donini et al., 1998; Levy and Roussel, 1996], where no constraints on the relations that appear in the queries can be expressed in the KB.

Given an interpretation \(\mathcal{I}\) of a KB, a query \(Q\) of arity \(n\) is interpreted as the set \(Q^\mathcal{I}\) of \(n\)-tuples \((o_1, \ldots, o_n)\), with each \(o_i \in \Delta^\mathcal{I}\), such that, when substituting each \(o_i\) for \(x_i\), the formula

\[
\exists \bar{y}_1, \text{body}_1(\bar{x}, \bar{y}_1, \bar{e}_1) \lor \cdots \lor \exists \bar{y}_m, \text{body}_m(\bar{x}, \bar{y}_m, \bar{e}_m)
\]

evaluates to true in \(\mathcal{I}\).

We observe that DCR is able to capture a great variety of data models with many forms of constraints [Calvanese et al., 1998b; 1998a]. Also, we note that logical implication (checking whether a given assertion logically follows from a KB) in DCR is \(\text{EXPTIME}\)-complete, and both query containment (checking whether one query is contained in another one in every model of a KB) and query answering (checking whether a tuple of constants satisfies the query in every model of a KB) are \(\text{EXPTIME}\)-hard and solvable in \(2\text{EXPTIME}\) [Calvanese et al., 1998a].

3 Answering queries using views

Consider a KB \(\mathcal{K}\), and suppose you want to answer a query \(Q\) only on the basis of your knowledge about the extension of a set of views \(V_1, \ldots, V_n\). Associated to each view \(V_i\) we have

- a definition \(\text{def}(V_i)\) in terms of a query over \(\mathcal{K}\),
- a set \(\text{ext}(V_i)\) of tuples of constants (whose arity is the same as that of \(V_i\) which provides the information about the extension of \(V_i\),
- a specification \(\text{as}(V_i)\) of which assumption to adopt for the view \(V_i\), i.e., how to interpret \(\text{ext}(V_i)\) with respect to the set of tuples that satisfy the view \(V_i\) in \(\mathcal{K}\). We describe below the various possibilities that we consider for \(\text{as}(V_i)\).

As pointed out in several papers [Abiteboul and Duschka, 1998; Gräne and Mendelzon, 1999; Levy, 1996], the above problem comes in different forms, depending on various assumptions about how accurate is the knowledge on both the objects of the KB, and the pairs satisfying the views. With respect to the knowledge about the objects, we distinguish between:

- **Closed Domain Assumption.** The exact set of objects in the domain of interpretation is known, and coincides with the set of objects that appear in the views. We say that an interpretation \(\mathcal{I}\) of a KB is a model of \(\text{ext}(V_1), \ldots, \text{ext}(V_n)\) under CDA if \(\Delta^\mathcal{I}\) coincides with the set of objects appearing in \(\text{ext}(V_1) \cup \cdots \cup \text{ext}(V_n)\).

- **Open Domain Assumption.** Only a subset of the objects in the domain of interpretation is known. We say that an interpretation \(\mathcal{I}\) of a KB is a model of \(\text{ext}(V_1), \ldots, \text{ext}(V_n)\) under ODA if \(\Delta^\mathcal{I}\) is a superset of the set of constants appearing in \(\text{ext}(V_1) \cup \cdots \cup \text{ext}(V_n)\).

With regard to the knowledge about the views, we consider the following three assumptions:
• Sound View Assumption. When a view \(V_i \) is sound (satisfies the SVA), written as \((V_i) = \text{SVA} \), from the fact that a tuple is in \(\text{ext}(V_i) \) one can conclude that it satisfies the view, while from the fact that a tuple is not in \(\text{ext}(V_i) \) one cannot conclude that it does not satisfy the view. More formally, if \((V_i) = \text{SVA} \), then an interpretation \(I \) of a KB is a model of \(V_i \) if \(\text{ext}(V_i) \subseteq \text{def}(V_i)^2 \).

• Complete View Assumption. When a view \(V_i \) is complete (satisfies the CVA), written as \((V_i) = \text{CVA} \), from the fact that a tuple is in \(\text{ext}(V_i) \) one cannot conclude that such a tuple satisfies the view. On the other hand, from the fact that a tuple is not in \(\text{ext}(V_i) \) one can conclude that such a tuple does not satisfy the view. More formally, if \((V_i) = \text{CVA} \), then an interpretation \(I \) of a KB is a model of \(V_i \) if \(\text{ext}(V_i) \supseteq \text{def}(V_i)^2 \).

• Exact View Assumption. For each view \(V_i \) is exact (satisfies the EVA), written as \((V_i) = \text{EVA} \), the extension of the view is exactly the set of tuples of objects that satisfy the view. More formally, if \((V_i) = \text{EVA} \), then an interpretation \(I \) of a KB is a model of \(V_i \) if \(\text{ext}(V_i) = \text{def}(V_i)^2 \).

The problem of answering queries using views under the domain assumption \(\alpha \) in DCR is the following: Given

• a KB \(\mathcal{K} \),
• a set of views \(\mathcal{V} = \{ V_1, \ldots, V_n \} \) with \(\text{def}(V_i) \), \(\text{ext}(V_i) \), and \(\text{as}(V_i) \), for each \(V_i \),
• a query \(Q \) of arity \(n \), and a tuple \(\bar{d} = (d_1, \ldots, d_n) \) of constants,

decide whether \(\bar{d} \in \text{ans}(Q, \mathcal{K}, \mathcal{V}) \) under \(\alpha \), i.e., decide whether \((a_1, \ldots, a_n) \in Q^2 \), for each \(I \) such that: (i) \(I \) is a model of \(\mathcal{K} \); (ii) \(I \) is a model of \(\text{ext}(V_1), \ldots, \text{ext}(V_n) \) under \(\alpha \); (iii) \(I \) is a model of every \(V_i \).

4 Answering queries using views in DCR

Our goal is to characterize the complexity of query answering using views in DCR.

4.1 Under closed domain assumption

We start our investigation by considering the closed domain assumption. By exploiting one of the results in [Calvanese et al., 1999a], it is easy to see that the problem is coNP-hard. Moreover, the number of possible interpretations of the KB is finite, and therefore, we can guess one of them, check if it is a model which is a model of the views, and evaluate the query. This yields an NP algorithm that checks whether the answer to the query is no.

Theorem 1 Answering queries using views under the closed domain assumption in DCR is coNP-complete.

4.2 Under open domain assumption

Let us now consider the case of the open domain assumption. In this case we reduce the problem of checking whether a tuple \(\bar{d} \) of constants is in \(\text{ans}(Q, \mathcal{K}, \mathcal{V}) \) to the problem of checking the satisfiability of a concept in the DL C\(\text{T} \)Q [De Giacomo and Lenzerini, 1996]. The reduction is done in three steps.

• First we add to the KB \(\mathcal{K} \) special assertions as follows.

 - For each sound view \(V \), with \(\text{def}(V) = \text{body}_1(\bar{x}, \bar{y}_1, \bar{c}_1) \lor \cdots \lor \text{body}_m(\bar{x}, \bar{y}_m, \bar{c}_m) \), for each tuple \(\bar{a} \) in \(\text{ext}(V) \), we include an existentially quantified formula:
 \[\exists \bar{y}_1, \ldots, \exists \bar{y}_m, \text{body}_1(\bar{a}, \bar{y}_1, \bar{c}_1) \lor \cdots \lor \text{body}_m(\bar{a}, \bar{y}_m, \bar{c}_m) \]

 - For each complete view \(V \), we include a universally quantified formula:
 \[\forall \bar{x}. \forall \bar{y}. (\bar{x} \neq \bar{a}_1 \lor \cdots \lor \bar{x} \neq \bar{a}_k) \supset q(\bar{x}, \bar{y}, \bar{c}) \]

 where \(\{\bar{a}_1, \ldots, \bar{a}_k\} = \text{ext}(V) \) and \(q(\bar{x}, \bar{y}, \bar{c}) \) is the right hand part of \(\text{def}(V) \).

 - According to the definition, we treat each exact view as a view that is both sound and complete.

 - Finally, since we are checking whether \(\bar{d} \) is an answer to \(Q \), we consider the negation of the query \(\neg Q \), and we include a universally quantified formula:
 \[\forall \bar{y}. \neg q(\bar{d}, \bar{y}, \bar{c}) \]

where \(q(\bar{d}, \bar{y}, \bar{c}) \) is obtained by instantiating \(\bar{x} \) to \(\bar{d} \) in the right hand part of \(Q \).

• Then we translate \(\mathcal{K} \) and each of the formulas introduced in the previous step into a single concept in C\(\text{T} \)Q plus object names (which are concepts that are satisfied by a single object in each model). In particular following [Calvanese et al., 1998a]:

 - We eliminate \(n \)-ary relations by means of reification.

 - We internalize the assertions in \(\mathcal{K} \).

 - We translate each existentially quantified formula into a concept, treating every existentially quantified variable as a new object name (skolem constant).

 - We translate each universally quantified formula into a conjunction of concepts, one for each possible instantiation of the universally quantified variables with the object names introduced so far.

• Finally, we eliminate object names along the lines of [Calvanese et al., 1998a], thus obtaining a concept in C\(\text{T} \)Q.

The reduction can be shown to be correct along the line of [Calvanese et al., 1998a]. From the reduction we get the following result.
Theorem 2 Answering queries using views under the open domain assumption in DLR is EXPTIME-hard and can be done in 2EXPTIME.

Interestingly, when all views are sound and the query is simple, i.e., is an atom of the form \(R(\bar{x}) \) or \(C(\bar{x}) \), we obtain a setting that corresponds closely to the typical TBox and ABox reasoning in DLs. In this case the following result holds.

Theorem 3 Answering simple queries using sound views under the open domain assumption in DLR is EXPTIME-complete.

5 Comparison with query rewriting

The problem of query answering using views has also been dealt with techniques based on rewriting queries using views [Levy et al., 1995; Duschka and Genesereth, 1997; Ullman, 1997; Beeri et al., 1997]: Given a query \(Q \) and views \(V_1, \ldots, V_n \) with associated definitions \(\text{def}(V_1), \ldots, \text{def}(V_n) \), generate a new query \(\bar{Q} \) over the alphabet \(V_1, \ldots, V_n \) such that for every database (model in our setting), first computing the extension of each \(V_i \) on the database, and then evaluating \(\bar{Q} \) on the basis of such extensions, provides the answer to \(Q \). Although methods for query rewriting can be adapted to the problem of query answering using views [Levy et al., 1995], the two problems are different. Query rewriting has as inputs only the view definitions and the query and uses the view definitions to re-express the query in terms of the views. Then, to compute the answer to the original query, the rewritten query is evaluated on the extensions of the views. On the other hand, query answering takes as inputs the view definitions, the view extensions, the view assumptions, and the query, and computes directly the answer to the query.

Hence, in the general case one cannot exploit query rewriting using views for query answering. In particular, when the rewriting is not exact (i.e., it is not equivalent to the query), it may miss some tuples that are in the answer to a query. Even if there exists an exact rewriting, it may still miss some tuples of the answer to a query in the case where the views are sound (but not exact). Only if the rewriting is exact and the views are exact, one can use such rewriting to solve the query answering problem [Grahne and Mendelzon, 1999; Calvanese et al., 1999b].

Note that query rewriting in our setting remains an open problem.

6 Conclusions

We have studied query answering using views for non-recursive datalog queries embedded in a DLR knowledge base. We have considered different assumptions on the view extensions (sound, complete, and exact) and on our knowledge of the domain (closed and open domain assumptions). We have established decidability and established upper and lower bounds for the computational complexity of the problem.

We conclude by stressing that query answering using views is essentially an extended form of a familiar reasoning service for DLs, namely instance checking, where from a partial knowledge about the extensions of concepts and relations, i.e. the ABox, one wants to establish if a given individual (tuple of individuals) is in the extension of a concept (relation).

References

[Donini et al., 1994] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Deduction in concept languages: From subsumption to

