
Local Search

We have considered algorithms that systematically search the space.

If the space is finite, they will either find a solution or report that no
solution exists.

Unfortunately, many search spaces are too big for systematic search
and are possibly even infinite.

Local search methods do not systematically search the whole search
space but they are designed to find solutions quickly on average.

They do not guarantee that a solution will be found even if one
exists, and so they are not able to prove that no solution exists.

Enrico Franconi, 2012 Intelligent Systems - 4.2 1/26



Local Search

Local Search:

Maintain an assignment of a value to each variable.

At each step, select a “neighbor” of the current assignment (e.g., one
that improves some heuristic value).

Stop when a satisfying assignment is found, or return the best
assignment found.

Requires:

What is a neighbor?

Which neighbor should be selected?

(Some methods maintain multiple assignments.)

Enrico Franconi, 2012 Intelligent Systems - 4.2 2/26



Procedure Local-Search(V , dom,C )

Inputs: V : a set of variables,
dom: a function such that dom(X ) is the domain of variable X ,
C : set of constraints to be satisfied.

Local: A[V ] an array of values indexed by V
repeat

(a try)
for each variable X do

(random initialisation)
A[X ] ::= random value in dom(X );

while (stop criterion not met & A is not a satisfying assignment)
(local search or walk)
Select a variable Y and a value V ∈ dom(Y )
A[Y ] ::= V

if (A is a satisfying assignment) then
return A

until termination

Enrico Franconi, 2012 Intelligent Systems - 4.2 3/26



Random Sampling and Random Walk

Random Sampling:

The stop criterion is always true: the while loop is never executed.

It keeps picking random assignments until it finds one that satisfies
the constraints, and otherwise it does not halt.

Random sampling is complete in the sense that, given enough time, it
guarantees that a solution will be found if one exists, but there is no
upper bound on the time it may take.

Random Walk:

The while loop is only exited when it has found a satisfying
assignment (i.e., the stopping criterion is always false and there are
no random restarts).

In the while loop it selects a variable and a value at random.

Random walk is also complete in the same sense as random sampling.

A random walk algorithm can either select a variable at random and
then a value at random, or select a variable-value pair at random. The
latter is more likely to select a variable when it has a larger domain.

Enrico Franconi, 2012 Intelligent Systems - 4.2 4/26



Selecting Neighbors in Local Search

In iterative best improvement, the neighbor of the current selected
node is one that optimizes some evaluation function.

In greedy descent, a neighbor is chosen to minimize an evaluation
function. This is also called hill climbing or greedy ascent when the
aim is to maximize.

If the domains are continuous, Gradient descent changes each
variable proportional to the gradient of the heuristic function in that
direction. The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

Gradient ascent: go uphill; vi becomes vi + η ∂h
∂Xi

.

Enrico Franconi, 2012 Intelligent Systems - 4.2 5/26



Local Search for CSPs

Aim is to find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is an
unsatisfied constraint.

The goal is an assignment with zero conflicts.

Heuristic function to be minimized: the number of conflicts.

Enrico Franconi, 2012 Intelligent Systems - 4.2 6/26



Best improvement step

Algorithms can differ in how much work they require to guarantee the
best improvement step.

At one extreme, an algorithm can guarantee to select a new
assignment that gives the best improvement out of all of the
neighbors.

At the other extreme, an algorithm can select a new assignment at
random and reject the assignment if it makes the situation worse.

We will see typical algorithms that differ in how much computational
effort they put in to ensure that they make the best improvement.

Which of these methods works best is, typically, an empirical question.

Enrico Franconi, 2012 Intelligent Systems - 4.2 7/26



Greedy Descent Variants

Find the variable-value pair that minimizes the number of conflicts at
every step (“1-stage choice” or “Most Improving Step”).

Select a variable that participates in the most number of conflicts.
Select a value that minimizes the number of conflicts (“2-Stage
choice”)

Select a variable that appears in any conflict. Select a value that
minimizes the number of conflicts (“Any Conflict choice”).

Select a variable at random. Select a value that minimizes the
number of conflicts.

Select a variable and value at random; accept this change if it doesn’t
increase the number of conflicts.

Although some theoretical results exist, deciding which method works
better in practice is an empirical question.

Enrico Franconi, 2012 Intelligent Systems - 4.2 8/26



Problems with Greedy Descent

a local minimum that is not
a global minimum

a plateau where the heuristic
values are uninformative

a ridge is a local minimum
where n-step look-ahead
might help

Ridge

Local Minimum

Plateau

Enrico Franconi, 2012 Intelligent Systems - 4.2 9/26



Randomized Algorithms

Consider two methods to find a minimum value:

Greedy descent, starting from some position, keep moving down &
report minimum value found
Pick values at random & report minimum value found

Which do you expect to work better to find a global minimum?

Can a mix work better?

Enrico Franconi, 2012 Intelligent Systems - 4.2 10/26



Randomized Greedy Descent

As well as downward steps we can allow for:

Random steps: move to a random neighbor.

Random restart: reassign random values to all variables.

For problems involving a large number of variables, a random restart
can be quite expensive.

Enrico Franconi, 2012 Intelligent Systems - 4.2 11/26



1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different structure?

Enrico Franconi, 2012 Intelligent Systems - 4.2 12/26



Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent: move to a lowest neighbor

Random walk: taking some random steps

Random restart: reassigning values to all variables

Enrico Franconi, 2012 Intelligent Systems - 4.2 13/26



Example Local Search in delivery scheduling

Suppose gradient descent starts with the assignment
A=2, B=2, C=3, D=2, E=1.

This assignment has an evaluation of 3, because it
does not satisfy A 6=B, B 6=D, and C<D.

Its neighbor with the minimal evaluation has B=4 with
an evaluation of 1 because only C<D is unsatisfied.

This is now a local minimum.

A random walk can then change D to 4, which has an
evaluation of 2.

It can change A to 4, with an evaluation of 2, and
then change B to 2 with an evaluation of zero, and a
solution is found.

Trace of the assignments through the walk:

A B C D E evaluation
2 2 3 2 1 3
2 4 3 2 1 1
2 4 3 4 1 2
4 4 3 4 1 2
4 2 3 4 1 0

Different initializations, or different choices when
multiple assignments have the same evaluation, give
different results.

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Enrico Franconi, 2012 Intelligent Systems - 4.2 14/26



Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value to the
variable chosen.

We can implement it more efficiently than as a list of complete
assignments.

It can be expensive if k is large.

Enrico Franconi, 2012 Intelligent Systems - 4.2 15/26



Random Walk

Variants of random walk:

When choosing the best variable-value pair, randomly sometimes
choose a random variable-value pair.

When selecting a variable then a value:

Sometimes choose any variable that participates in the most conflicts.
Sometimes choose any variable that participates in any conflict (a red
node).
Sometimes choose any variable.

Sometimes choose the best value and sometimes choose a random
value.

Enrico Franconi, 2012 Intelligent Systems - 4.2 16/26



Comparing Stochastic Algorithms

How can you compare three algorithms when

one solves the problem 30% of the time very quickly but doesn’t halt
for the other 70% of the cases
one solves 60% of the cases reasonably quickly but doesn’t solve the
rest
one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time, and
mode run time don’t make much sense.

Enrico Franconi, 2012 Intelligent Systems - 4.2 17/26



Comparing Stochastic Algorithms

How can you compare three algorithms when

one solves the problem 30% of the time very quickly but doesn’t halt
for the other 70% of the cases
one solves 60% of the cases reasonably quickly but doesn’t solve the
rest
one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time, and
mode run time don’t make much sense.

Enrico Franconi, 2012 Intelligent Systems - 4.2 18/26



Runtime Distribution

Plots runtime (or number of steps) and the proportion of the runs that are
solved within that runtime. “Scheduling Problem 1” of AISpace.org

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Red distribution is for the two-stage greedy

descent. Blue distribution is for the one-

stage greedy descent. Green distributionis

a greedy descent with random walk, where

first a random node that participates in a

conflict is chosen, then the best value for

this variable is chosen with a 50% chance

and a random value is chosen otherwise.

Red algorithm solved the problem 40% of the time in 10 or fewer steps. Blue algorithm solved the problem in about 50% of the
runs in 10 or fewer steps. Green algorithm found a solution in 10 or fewer steps in about 12% of the runs. Red algorithm found
a solution in about 58% of the runs. Blue algorithm could find a solution about 80% of the time. Green algorithm always found
a solution.

This only compares the number of steps; the time taken would be a better evaluation.

Enrico Franconi, 2012 Intelligent Systems - 4.2 19/26



Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending on a
temperature parameter, T .

With current assignment n and proposed assignment n′ we move to n′

with probability e(h(n′)−h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000005
0.1 0.00005 0 0

Enrico Franconi, 2012 Intelligent Systems - 4.2 20/26



Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending on a
temperature parameter, T .

With current assignment n and proposed assignment n′ we move to n′

with probability e(h(n′)−h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000005
0.1 0.00005 0 0

Enrico Franconi, 2012 Intelligent Systems - 4.2 21/26



Parallel Search

A total assignment is called an individual .

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of steps.

Enrico Franconi, 2012 Intelligent Systems - 4.2 22/26



Beam Search

Like parallel search, with k individuals, but choose the k best out of
all of the neighbors.

When k = 1, it is greedy descent.

When k =∞, it is breadth-first search.

The value of k lets us limit space and parallelism.

Enrico Franconi, 2012 Intelligent Systems - 4.2 23/26



Stochastic Beam Search

Like beam search, but it probabilistically chooses the k individuals at
the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the fittest
ones survive.

Enrico Franconi, 2012 Intelligent Systems - 4.2 24/26



Genetic Algorithms

Like stochastic beam search, but pairs of individuals are combined to
create the offspring:

For each generation:

Randomly choose pairs of individuals where the fittest individuals are
more likely to be chosen.
For each pair, perform a cross-over: form two offspring each taking
different parts of their parents:
Mutate some values.

Stop when a solution is found.

Enrico Franconi, 2012 Intelligent Systems - 4.2 25/26



Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.

Enrico Franconi, 2012 Intelligent Systems - 4.2 26/26


