
Features Describing Problems

Instead of reasoning explicitly in terms of states, it is often better to
describe states in terms of features and then to reason in terms of
these features.

Often these features are not independent and there are constraints
that specify legal combinations of assignments of values to variables
corresponding to features.

Enrico Franconi Intelligent Systems - 4.1 1/41

Features Describing Problems

For any practical problem, an agent cannot reason in terms of states;
there are simply too many of them.

Most problems do not come with an explicit list of states; the states
are typically and more naturally described implicitly in terms of
features.

States can be defined in terms of features: features can be primitive
and a state corresponds to an assignment of a value to each feature.

Features can be defined in terms of states: the states can be primitive
and a feature is a function of the states. Given a state, the function
returns the value of the feature on that state.

Each feature has a domain that is the set of values that it can take on.

The domain of the feature is the range of the function on the states.

Enrico Franconi Intelligent Systems - 4.1 2/41

Example

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2

a feature for each switch (up or
down);

a feature for each light (lit or
not);

a feature for each component
(working properly or broken).

A state consists of the position
of every switch, the status of
every device, and so on.

A state may be described as
switch 1 is up, switch 2 is
down, fuse 1 is okay, wire 3 is
broken, and so on.

If the states are primitive, a
function may be, for example,
the position of switch 1. The
position is a function of the
state, and it may be up in some
states and down in other states.

Enrico Franconi Intelligent Systems - 4.1 3/41

Features vs States

One main advantage of reasoning in terms of features is the
computational savings:

10 binary features can describe 210=1,024 states.
20 binary features can describe 220=1,048,576 states.
30 binary features can describe 230=1,073,741,824 states.
100 binary features can describe
2100=1,267,650,600,228,229,401,496,703,205,376 states.

Reasoning in terms of thirty features may be easier than reasoning in
terms of more than a billion states.

Many problems have thousands if not millions of features.

Typically the features are not independent, in that there may be
constraints on the values of different features. One problem is to
determine what states are possible given the features and the
constraints.

Enrico Franconi Intelligent Systems - 4.1 4/41

Variables and Possible Worlds

A direct one-to-one correspondence between features and variables,
and between states and possible worlds.

Possible worlds are described by (algebraic) variables, which are
symbols used to denote features of possible worlds.

Algebraic variables will be written starting with an upper-case letter.

Each algebraic variable V has an associated domain, DV , which is the
set of values the variable can take on.

A discrete variable is one whose domain is finite or countably infinite.

One particular case of a discrete variable is a Boolean variable, which
is a variable with domain {true, false}.
A non-discrete variable whose domain corresponds to a subset of the
real line is, for example, a continuous variable.

Enrico Franconi Intelligent Systems - 4.1 5/41

Example

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2

S1-pos - a binary variable with
domain {up, down}, where
S1-pos=up means switch s1 is up,
and S1-pos=down means switch s1 is
down

S1-st - a variable with domain {ok,
upside-down, short, intermittent,
broken}
Number-of-broken-switches - an
integer-valued variable denoting the
number of switches that are broken.

Current-w1 - a real-valued variable
denoting the current, in amps,
flowing through wire w1.

We also allow inequalities between
variables and constants as Boolean
features; for example, Current-w1 ≥
1.3 is true when there are at least 1.3
amps flowing through wire w1.

Enrico Franconi Intelligent Systems - 4.1 6/41

Variables and Possible Worlds

Possible worlds can be defined in terms of variables or variables can
be defined in terms of possible worlds:

Variables can be primitive and a possible world corresponds to a total
assignment of a value to each variable.
Worlds can be primitive and a variable is a function from possible
worlds into the domain of the variable; given a possible world, the
function returns the value of that variable in that possible world.

Enrico Franconi Intelligent Systems - 4.1 7/41

Constraints

In many domains, not all possible assignments of values to variables
are permissible.

A hard constraint, or simply constraint, specifies legal combinations of
assignments of values to the variables.

A scope or scheme is a set of variables.

A tuple on scope S is an assignment of a value to each variable in S .

A constraint c on a scope S is a set of tuples on S .

A constraint is said to involve each of the variables in its scope.

If S ′ is a set of variables such that S ⊆ S ′, and t is a tuple on S ′,
constraint c is said to satisfy t if t, restricted to S , is in c .

Enrico Franconi Intelligent Systems - 4.1 8/41

Representing Constraints

Constraints are also often defined intensionally, in terms of predicates
(Boolean functions), to recognize legal assignments rather than
extensionally by representing each assignment explicitly in a table.

Extensional definitions can be implemented either by representing the
legal assignments or by representing the illegal assignments.

Enrico Franconi Intelligent Systems - 4.1 9/41

Models

A possible world w satisfies a set of constraints if, for every
constraint, the values assigned in w to the variables in the scope of
the constraint satisfy the constraint.

In this case, we say that the possible world is a model of the
constraints.

That is, a model is a possible world that satisfies all of the constraints.

Enrico Franconi Intelligent Systems - 4.1 10/41

Example: Scheduling a Delivery Robot

Suppose the delivery robot must carry out a number of delivery
activities: a, b, c, d, and e.

Suppose that each activity happens at any of times 1, 2, 3, or 4.

Let A be the variable representing the time that activity a will occur,
and similarly for the other activities.

The variable domains, which represent possible times for each of the
deliveries, are
DA=DB=DC=DD=DE={1,2,3,4}.
Suppose the following constraints must be satisfied:
{(B6=3), (C 6=2), (A 6=B), (B6=C), (C<D), (A=D), (E<A), (E<B),
(E<C), (E<D), (B6=D)}
The aim is to find a model, an assignment of a value to each variable,
such that all the constraints are satisfied.

Enrico Franconi Intelligent Systems - 4.1 11/41

Constraint Satisfaction Problems

Given a set of variables, each with a set of possible values (a domain),
assign a value to each variable that either

satisfies some set of constraints: satisfiability problems — “hard
constraints”
minimizes some cost function, where each assignment of values to
variables has some cost: optimization problems — “soft constraints”

Many problems are a mix of hard and soft constraints.

Enrico Franconi Intelligent Systems - 4.1 12/41

Relationship to Search

The path to a goal isn’t important, only the solution is.

Many algorithms exploit the multi-dimensional nature of the problems.

There are no predefined starting nodes.

Often these problems are huge, with thousands of variables, so
systematically searching the space is infeasible.

For optimization problems, there are no well-defined goal nodes.

Enrico Franconi Intelligent Systems - 4.1 13/41

Posing a Constraint Satisfaction Problem

A (finite) CSP is characterized by

A (finite) set of variables V1,V2, . . . ,Vn.

Each variable Vi has an associated (finite) domain DVi
of possible

values.

For satisfiability problems, there are constraints on various subsets of
the variables which specify legal combinations of values for these
variables.

A solution to the CSP is an n-tuple of values for the variables that
satisfies all the constraints.

Enrico Franconi Intelligent Systems - 4.1 14/41

Example: Scheduling a Delivery Robot

Variables: A, B, C , D, E that represent the starting times of various
activities.

Domains: DA = {1, 2, 3, 4}, DB = {1, 2, 3, 4}, DC = {1, 2, 3, 4},
DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}
Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C) ∧ (E < D) ∧ (B 6= D).

Enrico Franconi Intelligent Systems - 4.1 15/41

Tasks for a CSP

Given a CSP, there are a number of tasks that can be performed:

Determine whether or not there is a model.
Find a model.
Find all of the models.
Count the number of models.
Find the best model, given a measure of how good models are.
Determine whether some statement holds in all models.

We mostly considers the problem of finding a model.

Some of the methods can also determine if there is no solution.

Enrico Franconi Intelligent Systems - 4.1 16/41

Complexity

CSPs are very common, so it is worth trying to find relatively efficient
ways to solve them.

Determining whether there is a model for a CSP with finite domains
is NP-hard and no known algorithms exist to solve such problems that
do not use exponential time in the worst case.

However, just because a problem is NP-hard does not mean that all
instances are difficult to solve. Many instances have structure that
can be exploited.

Enrico Franconi Intelligent Systems - 4.1 17/41

Generate-and-Test Algorithm

Generate the assignment space D = DV1 ×DV2 × . . .×DVn . Test
each assignment with the constraints.

Example:

D = DA ×DB ×DC ×DD ×DE

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
×{1, 2, 3, 4} × {1, 2, 3, 4}

= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

Generate-and-test is always exponential in the number of variables.

Enrico Franconi Intelligent Systems - 4.1 18/41

Backtracking Algorithms

Systematically explore D by instantiating the variables one at a time

evaluate each constraint predicate as soon as all its variables are
bound

any partial assignment that doesn’t satisfy the constraint can be
pruned.

Example:

In the previous delivery scheduling problem, assignment A = 1 ∧ B = 1
is inconsistent with constraint A 6= B regardless of the value of the
other variables.
If the variables A and B are assigned values first, this inconsistency can
be discovered before any values are assigned to C , D, or E , thus saving
a large amount of work.

Enrico Franconi Intelligent Systems - 4.1 19/41

CSP as Graph Searching

A CSP can be represented as a graph-searching algorithm:

A node is an assignment values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk . Select a
variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y) there is a neighbour
X1 = v1, . . . ,Xk = vk ,Y = yi if this assignment is consistent with the
constraints on these variables.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.

Generate and test is equivalent to not checking constraints until
reaching the leaves.

Checking constraints higher in the tree can prune large subtrees that
do not have to be searched.

Enrico Franconi Intelligent Systems - 4.1 20/41

Example

Suppose you have a CSP with the
variables A, B, and C, each with
domain 1,2,3,4.

Suppose the constraints are A<B and
B<C.

A possible search tree is:

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

A node corresponds to all of the
assignments from the root to that
node.

The potential nodes that are pruned
because they violate constraints are
labeled with X .

The leftmost X corresponds to the
assignment A=1, B=1. This violates
the A<B constraint, and so it is
pruned.

This CSP has four solutions. The
leftmost one is A=1, B=2, C=3.

There would be 43 = 64 assignments
tested in a generate-and-test
algorithm. For the search method,
there are 22 assignments generated.

Enrico Franconi Intelligent Systems - 4.1 21/41

Example (cont’d)

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

In the previous example, the variables
A and B are related by the constraint
A<B.

The assignment A=4 is inconsistent
with each of the possible assignments
to B because DB ={1,2,3,4}.
In the course of the backtrack search,
this fact is rediscovered for different
assignments to B and C.

This inefficiency can be avoided by
the simple expedient of deleting 4
from DA, once and for all.

This idea is the basis for the
consistency algorithms.

Enrico Franconi Intelligent Systems - 4.1 22/41

Consistency Algorithms

Idea: prune the domains as much as possible before selecting values
from them.

A variable is domain consistent if no value of the domain of the
node is ruled impossible by any of the constraints.

Example: DB = {1, 2, 3, 4} isn’t domain consistent as B = 3 violates
the constraint B 6= 3.

Enrico Franconi Intelligent Systems - 4.1 23/41

Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable node.

There is an arc from variable X to each constraint that involves X .

Enrico Franconi Intelligent Systems - 4.1 24/41

Example Constraint Network

Variables: A, B, C , D, E that
represent the starting times of various
activities.

Domains: DA = {1, 2, 3, 4},
DB = {1, 2, 3, 4}, DC = {1, 2, 3, 4},
DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}

Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C) ∧ (E < D) ∧ (B 6= D).

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Enrico Franconi Intelligent Systems - 4.1 25/41

Another example Constraint Network

Suppose you have a CSP with the variables A, B, and C, each with
domain 1,2,3,4.

Suppose the constraints are A<B and B<C.

The corresponding constraint network is:

A
{1,2,3,4} A<B B

{1,2,3,4} B<C C
{1,2,3,4}

Enrico Franconi Intelligent Systems - 4.1 26/41

Arc Consistency

An arc
〈
X , r(X ,Y)

〉
is arc consistent if, for each value x ∈ dom(X),

there is some value y ∈ dom(Y) such that r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

A
{1,2,3,4} A<B B

{1,2,3,4} B<C C
{1,2,3,4}

None of the arcs are arc consistent.

The first arc is not arc consistent
because for A=4 there is no
corresponding value for B for which
A<B.

If 4 were removed from the domain
of A, then it would be arc consistent.

The second arc is not arc consistent
because there is no corresponding
value for A when B=1.

Enrico Franconi Intelligent Systems - 4.1 27/41

Arc Consistency

If an arc
〈
X , r(X ,Y)

〉
is not arc consistent, all values of X in

dom(X) for which there is no corresponding value in dom(Y) may be
deleted from dom(X) to make the arc

〈
X , r(X ,Y)

〉
consistent.

Enrico Franconi Intelligent Systems - 4.1 28/41

Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

An arc
〈
X , r(X ,Y)

〉
needs to be revisited if the domain of one of the

Y ’s is reduced.

Three possible outcomes (when all arcs are arc consistent):

One domain is empty =⇒ no solution
Each domain has a single value =⇒ unique solution
Some domains have more than one value =⇒ there may or may not be
a solution

Enrico Franconi Intelligent Systems - 4.1 29/41

Arc Consistent Network without Solutions

Suppose there are three variables, A, B and C, each with the domain
{1,2,3}.
Consider the constraints A=B, B=C, and A6=C.

This is arc consistent: no domain can be pruned using any single
constraint.

However, there are no solutions.

There is no assignment to the three variables that satisfies the
constraints.

Enrico Franconi Intelligent Systems - 4.1 30/41

Example Arc Consistency (1)

A
{1,2,3,4} A<B B

{1,2,3,4} B<C C
{1,2,3,4}

Initially, all of the arcs are in the TDA (”To-Do Arcs”) set.

Suppose the algorithm selects the arc 〈A,A < B〉.
For A=4, there is no value of B that satisfies the constraint. Thus, 4 is pruned
from the domain of A. Nothing is added to TDA because there is no other arc
currently outside TDA.

Suppose that 〈B,A < B〉 is selected next.

The value 1 can be pruned from the domain of B. No element is added to TDA.

Suppose that 〈B,B < C〉 is selected next. The value 4 can be removed from the
domain of B. Because the domain of B has been reduced, the arc 〈A,A < B〉 must
be added back into the TDA set because the domain of A could potentially be
reduced further now that the domain of B is smaller.

If the arc 〈A,A < B〉 is selected, the value A=3 is pruned from the domain of A.

The remaining arc on TDA is 〈C ,B < C〉. The values 1 and 2 can be removed
from the domain of C. No arcs are added to TDA and TDA becomes empty.

The algorithm terminates with dom(A) = {1, 2}, dom(B) = {2, 3},
dom(C) = {3, 4}.

Enrico Franconi Intelligent Systems - 4.1 31/41

Example Arc Consistency (2)

The network has already been made domain consistent
(the value 3 has been removed from the domain of B
and 2 has been removed from the domain of C).

Suppose arc 〈D, C < D〉 is considered first. The arc
is not arc consistent because D=1 is not consistent
with any value in dom(C), so 1 is deleted from
dom(D). dom(D) becomes 2,3,4 and arcs
〈A, A = D〉,〈B, B 6= D〉, and 〈E , E < D〉 could be
added to TDA but they are on it already.

Suppose arc 〈C , E < C〉 is considered next; then
dom(C) is reduced to 3,4 and arc 〈D, C < D〉 goes
back into the TDA set to be reconsidered.

Suppose arc 〈D, C < D〉 is next; then dom(D) is
further reduced to the singleton 4.

Processing arc 〈C , C < D〉 prunes dom(C) to 3.

Making arc 〈A, A = D〉 consistent reduces dom(A) to
4.

Processing 〈B, B 6= D〉 reduces dom(B) to 1,2.

Then arc 〈B, E < B〉 reduces dom(B) to 2.

Finally, arc 〈E , E < B〉 reduces dom(E) to 1.

All arcs remaining in the queue are consistent, and so
the algorithm terminates with the TDA set empty.

The set of reduced variable domains is returned. In
this case, the domains all have size 1 and there is a
unique solution: A=4, B=2, C=3, D=4, E=1.

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Enrico Franconi Intelligent Systems - 4.1 32/41

Finding solutions when AC finishes: Splitting

If some domains have more than one element =⇒ search

Split a domain, then recursively solve each part.

Recursively solving the cases using domain splitting, recognizing when
there is no solution based on the assignments, is equivalent to the
search algorithm seen before.

We can be more efficient by interleaving arc consistency with the
search: use arc consistency to simplify the network before each step
of domain splitting.

That is, to solve a problem:

simplify the problem using arc consistency; and,
if the problem is not solved, select a variable whose domain has more
than one element, split it, and recursively solve each case.

We only need to revisit arcs affected by the split.

It is often best to split a domain in half.

Enrico Franconi Intelligent Systems - 4.1 33/41

Example

A
{1,2,3,4} A<B B

{1,2,3,4} B<C C
{1,2,3,4}

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

Enrico Franconi Intelligent Systems - 4.1 34/41

The Propositional Satisfiability Problem

Boolean variables: a variable with domain {true,false}.
Given a Boolean variable Happy, the literal happy means
Happy=true, and the literal ¬happy means Happy=false.

Clausal constraints: a clause is an expression of the form
l1 ∨ l2 ∨ · · · ∨ lk , where each li is a literal. A clause is satisfied in a
possible world if and only if at least one of the literals that makes up
the clause is true in that possible world.

A clause is a constraint on Boolean variables removing one
assignment - the assignment that makes all literals false.

Since there are only the two values {true,false}, pruning a value from
the domain is equivalent to assigning the opposite value.

Arc consistency can be used to prune values and constraints.

Pruning the domains and constraints, domain splitting, assigning pure
symbols, and efficiently managing the constraints make a very
efficient algorithm for propositional satisfiability: the DPLL algorithm.

Enrico Franconi Intelligent Systems - 4.1 35/41

DPLL

Arc consistency can be used to prune the set of values and the set of
constraints. Assigning a value to a Boolean variable can simplify the
set of constraints:

If X is assigned true, all of the clauses with X=true become redundant;
they are automatically satisfied. These clauses can be removed.
If X is assigned true, any clause with X=false can be simplified by
removing X=false from the clause.
Similarly, if X is assigned the value of false, then X=true can be
removed from any clause it appears in. This step is called unit
resolution.
Following some steps of pruning the clauses, clauses may exist that
contain just one assignment, Y=v. In this case, the other value can be
removed from the domain of Y.

Enrico Franconi Intelligent Systems - 4.1 36/41

Variable Elimination

Idea: eliminate the variables one-by-one passing their constraints to
their neighbours

Variable Elimination Algorithm:

If there is only one variable, return the intersection of the (unary)
constraints that contain it

Select a variable X

Join the constraints in which X appears, forming constraint R1

Project R1 onto its variables other than X , forming R2

Replace all of the constraints in which X appears by R2

Recursively solve the simplified problem, forming R3

Once it has a solution for the reduced CSP, it can extend that solution
to a solution for the original CSP by joining the solution R3 with R1.

Enrico Franconi Intelligent Systems - 4.1 37/41

Variable elimination (cont.)

When there is a single variable remaining, if it has no values, the
network was inconsistent.

The variables are eliminated according to some elimination ordering

Different elimination orderings result in different size intermediate
constraints.

Enrico Franconi Intelligent Systems - 4.1 38/41

Example network: eliminate C

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A

B

E

C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd

r1 : C 6= E C E
3 2
3 4
4 2
4 3

r2 : C > D C D
3 2
4 2
4 3

r3 : r1 ./ r2 C D E
3 2 2
3 2 4
4 2 2
4 2 3
4 3 2
4 3 3

r4 : π{D,E}r3 D E

2 2
2 3
2 4
3 2
3 3

↪→ new constraint

{1,2}

{1,2,3}

{2,3,4} {3,4}

{2,3}

A

B

E
C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd

{1,2}

{1,2,3}

{2,3,4}

{2,3}

A

B

E

DA ≠ B

E ≠ D

r4(E,D)

A<D

B<E

E-A is odd

Enrico Franconi Intelligent Systems - 4.1 39/41

Variable Elimination ordering

Finding an elimination ordering leading to optimal efficiency (i.e.,
smallest treewidth) is NP-hard.
Good heuristics exist:

min-factor: at each stage, select the variable that results in the
smallest relation.
minimum deficiency or minimum fill: at each stage, select the
variable that adds the smallest number of arcs to the remaining
constraint network. The deficiency of a variable X is the number of
pairs of variables that are in a relationship with X that are not in a
relationship with each other. The intuition is that it is okay to remove
a variable that results in a large relation as long as it does not make
the network more complicated.

The minimum deficiency has usually been found empirically to give a
smaller treewidth than min-factor, but it is more difficult to compute.

VE can also be combined with arc consistency; whenever VE removes
a variable, arc consistency can be used to further simplify the
problem. This approach can result in smaller intermediate tables.

Enrico Franconi Intelligent Systems - 4.1 40/41

Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year
beast, ginger, search,
symbol, syntax

Enrico Franconi Intelligent Systems - 4.1 41/41

