Motivation	The AGM	paradigm
00	00	

Contraction and DLs

Revision and DLs

Conclusions and Future Work $_{\rm OO}$

Belief Revision in Description Logic

Renata Wassermann

renata@ime.usp.br Computer Science Department University of São Paulo

(mostly joint work with Márcio Ribeiro)

Bolzano, FCCOD, 2014

Renata Wassermann

Belief Revision in Description Logic

イロト イポト イヨト -

1 / 16

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
•0	00	000	00000	00

Motivation

- Study the dynamics of ontologies, specially "OWL-like" DL ontologies.
- AGM Belief Revision deals with the problem of adding/removing information in a consistent way.
- AGM is most commonly applied to propositional classical logic and cannot be directly used with DLs.
- How can we adapt AGM so that it can deal with interesting DLs?

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
0•	00	000	00000	00

In this work

- Show reasons why AGM fails to apply to DLs.
- Adapt Contraction (easy).
- Adapt Revision (less easy).

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	00000	00

Outline of the Talk

- Contraction and DLs
- 4 Revision and DLs



Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	•0	000	00000	00

Three operations defined to deal with knowledge base dynamics:

• Expansion - adding knowledge (possibly inconsistent)

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	•0	000	00000	00

Three operations defined to deal with knowledge base dynamics:

- Expansion adding knowledge (possibly inconsistent)
- **Contraction** removing knowledge

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	•0	000	00000	00

Three operations defined to deal with knowledge base dynamics:

- Expansion adding knowledge (possibly inconsistent)
- **Contraction** removing knowledge
- Revision adding knowledge consistently

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	•0	000	00000	00

Three operations defined to deal with knowledge base dynamics:

- Expansion adding knowledge (possibly inconsistent)
- **Contraction** removing knowledge
- Revision adding knowledge consistently

Revision usually defined in terms of contraction: $K * \alpha = (K - \neg \alpha) + \alpha$

イロト 不得 トイヨト イヨト ヨー つくつ

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	0	000	00000	00

For contraction and revision:

• Rationality Postulates

イロト イポト イヨト イヨト 二日

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	0	000	00000	00

For contraction and revision:

- Rationality Postulates
- Construction

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	0	000	00000	00

For contraction and revision:

- Rationality Postulates
- Construction
- **Representation Theorem** (postulates ⇔ construction)

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	0	000	00000	00

For contraction and revision:

- Rationality Postulates
- Construction
- **Representation Theorem** (postulates ⇔ construction)

AGM Assumptions: Tarskian, Compact, Deduction Theorem, Supraclassical.

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclus
00	00	•00	00000	00

Conclusions and Future Work

AGM contraction

(closure) $K - \alpha = Cn(K - \alpha)$ (success) If $\alpha \notin Cn(\emptyset)$ then $\alpha \notin K - \alpha$ (inclusion) $K - \alpha \subseteq K$ (vacuity) If $\alpha \notin K$ then $K - \alpha = K$ (recovery) $K \subseteq K - \alpha + \alpha$ (extensionality) If $Cn(\alpha) = Cn(\beta)$ then $K - \alpha = K - \beta$

Renata Wassermann

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Wo
00	00	000	00000	00

- AGM cannot be applied to every logic. In particular it can not be applied to SHIF and SHOIN. [Flouris 2006]
- Solution: substitute recovery by relevance

(relevance) If $\beta \in K \setminus K - \alpha$, then there is K' s. t. $K - \alpha \subseteq K' \subseteq K$ and $\alpha \notin Cn(K')$, but $\alpha \in Cn(K' \cup \{\beta\})$.

• Good property: AGM assumptions + 5 postulates \Rightarrow recovery and relevance are equivalent.

イロト イヨト イヨト イヨト 三日

Motivation	The AGM paradigm	Contraction and DLs
00	00	00●

Revision and DLs 00000 Conclusions and Future Work 00

Results - contraction

Representation Theorem [RW06]

If the underlying logic is tarskian and compact, partial meet contraction is equivalent to the AGM postulates with relevance instead of recovery.

Motivation	The AGM paradigm	Contraction and DLs
00	00	00●

Revision and DLs 00000 Conclusions and Future Work 00

Results - contraction

Representation Theorem [RW06]

If the underlying logic is tarskian and compact, partial meet contraction is equivalent to the AGM postulates with relevance instead of recovery.

Motivation	The AGM paradigm	Contraction and DLs	R
00	00	00●	0

Revision and DLs

Conclusions and Future Work $_{\rm OO}$

Results - contraction

Representation Theorem [RW06]

If the underlying logic is tarskian and compact, partial meet contraction is equivalent to the AGM postulates with relevance instead of recovery.

Can we do the same for revision???

Renata Wassermann

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	•0000	00

AGM Revision

(closure) $K * \alpha = Cn(K * \alpha)$ (success) $\alpha \in K * a$ (inclusion) $K * \alpha \subseteq K + \alpha$ (vacuity) If $K + \alpha$ is consistent then $K * \alpha = K + \alpha$ (consistency) If α is consistent then $K * \alpha$ is consistent.

(extensionality) If $Cn(\alpha) = Cn(\beta)$ then $K * \alpha = K * \beta$

Renata Wassermann

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	0000	00

- Problem: no negation \Rightarrow no Levi identity.
- Solution: Direct constructions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	0000	00

- Problem: no negation \Rightarrow no Levi identity.
- Solution: Direct constructions.

Definition

 $X \in K \downarrow \alpha$ iff X maximal subset of K such that $X \cup \{\alpha\}$ is consistent.

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	00000	00

- Problem: no negation \Rightarrow no Levi identity.
- Solution: Direct constructions.

Definition

 $X \in K \downarrow \alpha$ iff X maximal subset of K such that $X \cup \{\alpha\}$ is consistent.

Definition (Revision without negation)

$$K *_{\gamma} \alpha = \bigcap \gamma(K \downarrow \alpha) + \alpha$$

where γ selects at least one element of $K \downarrow \alpha$.

N	Notivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
C	00	00	000	00000	00

Properties

- Inconsistent explosion: Whenever K is inconsistent, then for all formulas α, α ∈ Cn(K)
- **2** Distributivity: For all sets of formulas X, Y and W, $Cn(X \cup (Cn(Y) \cap Cn(W))) = Cn(X \cup Y) \cap Cn(X \cup W)$

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	00000	00

Properties

- Inconsistent explosion: Whenever K is inconsistent, then for all formulas α, α ∈ Cn(K)
- **2** Distributivity: For all sets of formulas X, Y and W, $Cn(X \cup (Cn(Y) \cap Cn(W))) = Cn(X \cup Y) \cap Cn(X \cup W)$

Representation Theorem [RW09]

If the logic is monotonic and compact and satisfies Inconsistent explosion and Distributivity, then * is a revision without negation iff it satisfies closure, success, inclusion, consistency, relevance and uniformity.

(uniformity) If for all $K' \subseteq K$, $K' \cup \{\alpha\}$ is inconsistent iff $K' \cup \{\beta\}$ is inconsistent then $K \cap K * \alpha = K \cap K * \beta$

Renata Wassermann

Mot	ivat	ion
00		

 $\begin{array}{c} \text{Contraction and DLs} \\ \text{000} \end{array}$

Revision and DLs

Conclusions and Future Work $_{\rm OO}$

Which Logics Satisfy Distributivity?

- Classical logic does.
- But what about DLs?
 - \mathcal{ALC} does not.
 - \mathcal{ALC} with empty $\mathcal{A}Box$ does.
 - not many more...

イロト 不得下 イヨト イヨト

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	0000	00

New characterisation

Representation Theorem [RW14]

If the logic is monotonic and compact and satisfies Inconsistent explosion and Distributivity, then * is a revision without negation iff it satisfies closure, success, <u>strong</u> inclusion, consistency, relevance and uniformity.

(strong inclusion) $K * \alpha \subseteq (K \cap K * \alpha) + \alpha$

In classical logics this postulate is equivalent to inclusion.

Renata Wassermann

Belief Revision in Description Logic

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	00000	•0

What was done

- Adapted AGM to DLs
 - Contraction only 1 postulate changed
 - Revision Contruction and postulates
- Provided representation results.

イロト 不得下 イヨト イヨト

Motivation	The AGM paradigm	Contraction and DLs	Revision and DLs	Conclusions and Future Work
00	00	000	00000	0•

What we want to do

- Study other forms of revision for DLs avoiding negation.
- Apply the solutions to other fragments
 - Horn
 - ???