
## Multifarious Uncertainty in Ontologies Where we are and where we might go

#### Ivan José Varzinczak

Centre for Artificial Intelligence Research CSIR Meraka Institute and UKZN, South Africa

ijv@acm.org http://krr.meraka.org.za/~ivarzinczak





multifariously adverb . multifariousness noun

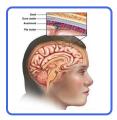
ORIGIN late 16th cent.: from Latin *multifarius* + -OUS.



#### multifarious

adjective

our multifarious ethnic traditions: DIVERSE, many, numerous, various, varied, diversified, multiple, multitudinous, multiplex, manifold, multifaceted, different, heterogeneous, miscellaneous, assorted; literary myriad, divers. ANTONYMS homogeneous.


## Motivation



### Medical terminology

- Viral meningitis is a type of meningitis
- Bacterial meningitis is a type of meningitis
- Meningitis is either viral or bacterial

# Motivation



### Medical terminology

- Viral meningitis is a type of meningitis
- Bacterial meningitis is a type of meningitis
- Meningitis is either viral or bacterial
- Meningitis is usually not fatal
- Meningitis and caused by bacteria is usually fatal
- Meningitis affects most of skull, Dura mater is mostly made of fibre
- B. menin. is similar to v. menin., Pia mater is analogous to dura mater
- Cases of *B. meningitis* can be treated with *antibiotics*
- But Mary has meningitis and is pregnant

Ivan Varzinczak (CAIR)

# Uncertainty in Ontologies

#### Several nuances

Exceptions: special cases, overriding of properties

meningitis, bact. meningitis

Similarity or analogy: focus on relevant aspects, tolerance

pia mater, dura mater

- Vagueness: notions of 'generally', 'rarely', 'most' meningitis rarely kills
- Incomplete information: take chances, be venturous give antibiotics to cases of meningitis
- Dynamicity: incorporate new information, backtracking

not during pregnancy

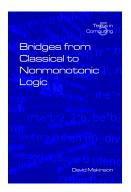
#### Others

Ivan Varzinczak (CAIR)

# Uncertainty in Ontologies

#### Various takes

- Quantitative: probabilistic, statistical
- Qualitative: logical
- Combinations thereof


# Uncertainty in Ontologies

#### Various takes

- Quantitative: probabilistic, statistical
- Qualitative: logical
- Combinations thereof

### Logical approaches

- Qualitative analysis of uncertainty in reasoning
- a.k.a. nonmonotonic reasoning
- Broader than the usual understanding of NMR



Where To?

Conclusion



Overview

Where Are We?

Where To?

Conclusion

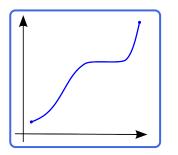
Ivan Varzinczak (CAIR)

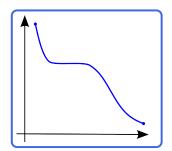
Where To?

Conclusion

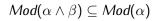


#### Overview


Where Are We?


Where To?

Conclusion

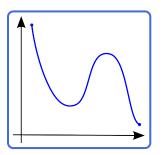

Ivan Varzinczak (CAIR)

### Monotonicity





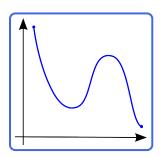
 $Cn(\alpha) \subseteq Cn(\alpha \land \beta)$ 




#### In reasoning

- It means knowledge is always incremental
- Not suitable when facing uncertainty

Ivan Varzinczak (CAIR)


# Reasoning under Uncertainty

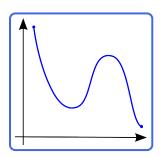


### In the logic landscape

- Shares aims of non-classical logics
- But does not reject classical reasoning
- Builds on classical logic, extending it

# Reasoning under Uncertainty




### In the logic landscape

- Shares aims of non-classical logics
- But does not reject classical reasoning
- Builds on classical logic, extending it

Two fundamental aspects

Ampliativeness and defeasibility

# Reasoning under Uncertainty



### In the logic landscape

- Shares aims of non-classical logics
- But does not reject classical reasoning
- Builds on classical logic, extending it

Two fundamental aspects

Ampliativeness and defeasibility

### Happens at three levels (at least)

Object, entailment and meta-reasoning levels

Ivan Varzinczak (CAIR)

## Ampliative Aspect of Uncertainty

Allowing more conclusions by venturing beyond what is known

### Default reasoning

- ▶ Jumping to conclusions:  $\mathcal{T} \not\models \neg \alpha$ ,  $\therefore \mathcal{T} \cup \{\alpha\}$  OK
- E.g.: negation as failure, closed-world assumption

# Ampliative Aspect of Uncertainty

Allowing more conclusions by venturing beyond what is known

### Default reasoning

- ▶ Jumping to conclusions:  $\mathcal{T} \not\models \neg \alpha$ ,  $\therefore \mathcal{T} \cup \{\alpha\}$  OK
- E.g.: negation as failure, closed-world assumption

### Abductive reasoning

- ▶ Finding tentative explanations:  $T \not\models \alpha$ ,  $T \cup ? \models \alpha$
- E.g.: diagnosis, forensics

# Ampliative Aspect of Uncertainty

Allowing more conclusions by venturing beyond what is known

### Default reasoning

- ▶ Jumping to conclusions:  $\mathcal{T} \not\models \neg \alpha$ ,  $\therefore \mathcal{T} \cup \{\alpha\}$  OK
- E.g.: negation as failure, closed-world assumption

### Abductive reasoning

- ▶ Finding tentative explanations:  $T \not\models \alpha$ ,  $T \cup ? \models \alpha$
- E.g.: diagnosis, forensics

#### Inductive reasoning

- ► Making generalizations:  $P(a), P(b), P(c), ..., \because \forall x. P(x)$  OK
- E.g.: physical laws, stereotypes

Ivan Varzinczak (CAIR)

## Defeasible Aspect of Uncertainty

Allowing less conclusions by disregarding or blocking some of them

#### Retractive reasoning

Withdrawing conclusions already derived

$$\alpha \in Cn(\mathcal{T}) \quad i \quad \alpha \notin Cn(\mathcal{T})$$

Ex.: ontology change, dialectics

# Defeasible Aspect of Uncertainty

Allowing less conclusions by disregarding or blocking some of them

#### Retractive reasoning

Withdrawing conclusions already derived

$$\alpha \in Cn(\mathcal{T}) \quad \blacklozenge \quad \alpha \notin Cn(\mathcal{T})$$

Ex.: ontology change, dialectics

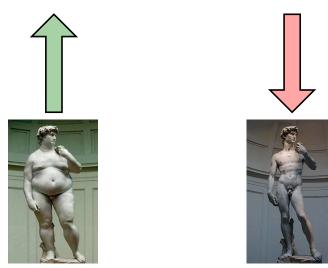
### Preemptive reasoning

Preventing the derivation of some conclusion

$$\gamma \rightarrow \alpha, \ \alpha \rightarrow \beta, \ \text{not} \ (\gamma \rightarrow \beta)$$

Ex.: special cases in taxonomies, exceptions in regulations

Ivan Varzinczak (CAIR)


## Central Research Question in Uncertainty

How to sanction more conclusions and how to sanction fewer of them



# Central Research Question in Uncertainty

#### How to sanction more conclusions and how to sanction fewer of them



## Uncertainty at the Object Level

#### Logical symbols of the language

Connectives can behave nonmonotonically

## Uncertainty at the Object Level

### Logical symbols of the language

Connectives can behave nonmonotonically

Nonmonotonic version of material implication ' $\sim$  '

• Ampliative aspect:  $\alpha \rightsquigarrow \beta$  holds even if  $\alpha \rightarrow \beta$  doesn't

meningitis  $\rightsquigarrow \neg$ fatal

▶ Defeasible (preemptive) aspect:  $\alpha \rightsquigarrow \beta$  is the case but  $\alpha \land \gamma \rightsquigarrow \beta$  not

meningitis  $\land$  bacterial  $\rightsquigarrow$  fatal

## Uncertainty at the Object Level

### Logical symbols of the language

Connectives can behave nonmonotonically

Nonmonotonic version of material implication ' $\sim$  '

• Ampliative aspect:  $\alpha \rightsquigarrow \beta$  holds even if  $\alpha \rightarrow \beta$  doesn't

meningitis  $\rightsquigarrow \neg$ fatal

▶ Defeasible (preemptive) aspect:  $\alpha \rightsquigarrow \beta$  is the case but  $\alpha \land \gamma \rightsquigarrow \beta$  not

 $\textit{meningitis} \land \textit{bacterial} \rightsquigarrow \textit{fatal}$ 

Negation in logic programming

Ampliative and retractive

## Uncertainty at the Entailment Level

#### Sanctioned inferences or reasoning

Entailment |= behaves nonmonotonically

## Uncertainty at the Entailment Level

#### Sanctioned inferences or reasoning

Entailment |= behaves nonmonotonically

#### Nonmonotonic version of $\models$

- Historically the most extensively studied
- Ampliative aspect: we may have  $\{\alpha\} \models \beta$  even if  $\{\alpha\} \not\models \beta$

#### $\{hasMeningitis(mary)\} \models AntiBioOK$

• Defeasible (retractive) aspect:  $\{\alpha\} \models \beta$  is the case but  $\{\alpha, \gamma\} \not\models \beta$ 

 $\{hasMeningitis(mary), pregnant(mary)\} \not\approx AntiBioOK$ 

Ivan Varzinczak (CAIR)

# Uncertainty at the Meta-reasoning Level

#### Reasoning about sanctioned inferences

Nonmonotonicity happens 'outside' the logic

## Theory change

- Theory expansion: make sure  $\alpha \in Cn(\mathcal{T})$
- Theory contraction: make sure  $\alpha \notin Cn(\mathcal{T})$

# Uncertainty at the Meta-reasoning Level

#### Reasoning about sanctioned inferences

Nonmonotonicity happens 'outside' the logic

## Theory change

- Theory expansion: make sure  $\alpha \in Cn(\mathcal{T})$
- Theory contraction: make sure  $\alpha \notin Cn(\mathcal{T})$

### Ampliative aspect

- Usually more 'conservative': primacy of new information
- Even when not conservative, not venturous enough: minimal change
- New information must follow classically from the new theory

Where To?

Conclusion



#### Overview

Where Are We?

Where To?

Conclusion

Ivan Varzinczak (CAIR)

# Standard Logical Frameworks for Uncertainty

- Conditional logics
- Default logic
- Circumscription
- Autoepistemic logic
- AGM belief revision
- Ontology evolution
- Abstract argumentation frameworks
- Dynamic epistemic logic
- Adaptive logics
- Preferential logics

...

# Standard Logical Frameworks for Uncertainty

- Conditional logics
- Default logic
- Circumscription
- Autoepistemic logic
- AGM belief revision
- Ontology evolution
- Abstract argumentation frameworks
- Dynamic epistemic logic
- Adaptive logics
- Preferential logics

▶ ...

## Default Logic

#### **Motivation**

- Account of conclusions by default (based on absence of knowledge)
- Default rules of the form

 $\frac{\alpha:\beta,\neg\gamma}{\beta} \quad \frac{hasMeningitis(mary):AntiBioOK,\neg pregnant(mary)}{AntiBioOK}$ 

# Default Logic

#### Motivation

- Account of conclusions by default (based on absence of knowledge)
- Default rules of the form

 $\frac{\alpha:\beta,\neg\gamma}{\beta} \quad \frac{hasMeningitis(mary):AntiBioOK,\neg pregnant(mary)}{AntiBioOK}$ 

### **Operational semantics**

- Notion of *extension*: 'closure' of default rules
- Related to negation as failure

# Default Logic

#### Motivation

- Account of conclusions by default (based on absence of knowledge)
- Default rules of the form

 $\frac{\alpha:\beta,\neg\gamma}{\beta} \quad \frac{hasMeningitis(mary):AntiBioOK,\neg pregnant(mary)}{AntiBioOK}$ 

### **Operational semantics**

- Notion of *extension*: 'closure' of default rules
- Related to negation as failure

Aspects and levels

- Both ampliative and defeasible (retractive)
- Only at the entailment level

Ivan Varzinczak (CAIR)

## Circumscription

#### Motivation

- Assumption that everything is normal by default
- Exceptional cases should be minimized

## Circumscription

#### Motivation

- Assumption that everything is normal by default
- Exceptional cases should be minimized

#### Semantic intuition

- Minimize the extension of predicates (different policies)
- Look at some models of the premises
- $\alpha \models_{Circ(\gamma)} \beta$  if the  $\gamma$ -minimized  $\alpha$ -models are  $\beta$ -models
- ▶ E.g. minimize extension of *pregnant* to infer *AntiBioOK*

## Circumscription

#### Motivation

- Assumption that everything is normal by default
- Exceptional cases should be minimized

#### Semantic intuition

- Minimize the extension of predicates (different policies)
- Look at some models of the premises
- $\alpha \models_{Circ(\gamma)} \beta$  if the  $\gamma$ -minimized  $\alpha$ -models are  $\beta$ -models
- ▶ E.g. minimize extension of *pregnant* to infer *AntiBioOK*

### Aspects and levels

- Both ampliative and defeasible (retractive)
- Only at the entailment level

#### **Motivation**

- Account of theory change
- Additions and removals of theorems
- Several guiding principles (postulates), e.g. minimal change

#### **Motivation**

- Account of theory change
- Additions and removals of theorems
- Several guiding principles (postulates), e.g. minimal change
- Approaches and construction methods
  - Belief bases and belief sets
  - Partial-meet, kernels, system of spheres, etc.

#### Motivation

- Account of theory change
- Additions and removals of theorems
- Several guiding principles (postulates), e.g. minimal change

Example

 $\mathcal{K} = \{\dots, \exists \mathsf{hasDisease.Menin(mary)}, \dots\} = \exists \mathsf{hasDisease.} \neg \mathsf{Fatal(mary)}$ 

Revise  $\mathcal{K}$  with  $\exists$ hasDisease.BacMenin(mary)

#### Motivation

- Account of theory change
- Additions and removals of theorems
- Several guiding principles (postulates), e.g. minimal change

Example

 $\mathcal{K} = \{\dots, \exists \mathsf{hasDisease.Menin(mary)}, \dots\} = \exists \mathsf{hasDisease.} \neg \mathsf{Fatal(mary)}$ 

Revise  $\mathcal{K}$  with  $\exists$ hasDisease.BacMenin(mary)

## Aspects and levels

- Both ampliative\* and defeasible (retractive)
- Only at the metareasoning level

## Ontology Evolution

#### **Motivation**

- Ontology revision and repair
- Essentially the same as AGM ...
- ... but from a different angle (more 'operational')

## Ontology Evolution

#### Motivation

- Ontology revision and repair
- Essentially the same as AGM ...
- ...but from a different angle (more 'operational')

## Approaches

- ► Justifications, MUPs, etc.
- Repairs

# Ontology Evolution

#### Motivation

- Ontology revision and repair
- Essentially the same as AGM ...
- ... but from a different angle (more 'operational')

## Approaches

- ► Justifications, MUPs, etc.
- ► Repairs

## Aspects and levels

- Both ampliative\* and defeasible (retractive)
- Only at the metareasoning level

## Dynamic Epistemic Logic(s)

#### Motivation

- Logic of (group) knowledge change
- Information flows via informative events:

[hasDisease.BacMenin(mary)!]

## Dynamic Epistemic Logic(s)

#### Motivation

- Logic of (group) knowledge change
- Information flows via informative events:

```
[hasDisease.BacMenin(mary)!]
```

## Semantic intuition

- Epistemic possibilities held by multiple agents
- Model transformations:  $\mathscr{M}_E \otimes \mathscr{M}_A \Rightarrow \mathscr{M}'_E$

 $\mathscr{M}_{E}^{\mathsf{hasDisease}.\mathsf{Menin}(\mathsf{mary})} \otimes \mathscr{M}_{A}^{\mathsf{hasDisease}.\mathsf{BacMenin}(\mathsf{mary})} \Rightarrow \mathscr{M}_{E}^{\mathsf{hasDisease}.\mathsf{Fatal}(\mathsf{mary})}$ 

# Dynamic Epistemic Logic(s)

#### Motivation

- Logic of (group) knowledge change
- Information flows via informative events:

```
[hasDisease.BacMenin(mary)!]
```

## Semantic intuition

- Epistemic possibilities held by multiple agents
- Model transformations:  $\mathscr{M}_E \otimes \mathscr{M}_A \Rightarrow \mathscr{M}'_E$

 $\mathscr{M}_{E}^{\mathsf{hasDisease}.\mathsf{Menin}(\mathsf{mary})} \otimes \mathscr{M}_{A}^{\mathsf{hasDisease}.\mathsf{BacMenin}(\mathsf{mary})} \ \Rightarrow \ \mathscr{M}_{E}^{\mathsf{hasDisease}.\mathsf{Fatal}(\mathsf{mary})}$ 

## Aspects and levels

- ▶ Only defeasible (retractive):  $\neg K \alpha \rightarrow [\alpha!] \neg K \alpha$  not valid
- Only at the object level

# Preferential Logics and Rational Closure (KLM) Motivation

► Nonmonotonic conditional ~> satisfying rationality properties:

# Preferential Logics and Rational Closure (KLM)

▶ Nonmonotonic conditional ~> satisfying rationality properties:

(Ref)  $\alpha \rightsquigarrow \alpha$  (LLE)  $\frac{\alpha \equiv \beta, \alpha \rightsquigarrow \gamma}{\beta \rightsquigarrow \gamma}$  (And)  $\frac{\alpha \rightsquigarrow \beta, \alpha \rightsquigarrow \gamma}{\alpha \rightsquigarrow \beta \land \gamma}$  (Or)  $\frac{\alpha \lor \gamma, \beta \rightsquigarrow \gamma}{\alpha \lor \beta \rightsquigarrow \gamma}$ (RW)  $\frac{\alpha \rightsquigarrow \beta, \models \beta \rightarrow \gamma}{\alpha \rightsquigarrow \gamma}$  (CM)  $\frac{\alpha \rightsquigarrow \beta, \alpha \rightsquigarrow \gamma}{\alpha \land \gamma \rightsquigarrow \beta}$  (RM)  $\frac{\alpha \rightsquigarrow \beta, \alpha \checkmark \gamma \neg \gamma}{\alpha \land \gamma \rightsquigarrow \beta}$ 

- Semantic intuition
  - Extra structure: *preference relation* on worlds
  - ► Notion of *minimal entailment à la* circumscription
  - Different strategies: prototypical and presumptive reasoning

# Preferential Logics and Rational Closure (KLM)

► Nonmonotonic conditional ~> satisfying rationality properties:

(Ref)  $\alpha \rightsquigarrow \alpha$  (LLE)  $\frac{\alpha \equiv \beta, \alpha \rightsquigarrow \gamma}{\beta \rightsquigarrow \gamma}$  (And)  $\frac{\alpha \rightsquigarrow \beta, \alpha \rightsquigarrow \gamma}{\alpha \rightsquigarrow \beta \land \gamma}$  (Or)  $\frac{\alpha \lor \gamma, \beta \rightsquigarrow \gamma}{\alpha \lor \beta \rightsquigarrow \gamma}$ (RW)  $\frac{\alpha \rightsquigarrow \beta, \models \beta \rightarrow \gamma}{\alpha \rightsquigarrow \gamma}$  (CM)  $\frac{\alpha \rightsquigarrow \beta, \alpha \rightsquigarrow \gamma}{\alpha \land \gamma \rightsquigarrow \beta}$  (RM)  $\frac{\alpha \rightsquigarrow \beta, \alpha \checkmark \gamma \neg \gamma}{\alpha \land \gamma \rightsquigarrow \beta}$ 

#### Semantic intuition

- Extra structure: preference relation on worlds
- Notion of *minimal entailment à la* circumscription
- Different strategies: prototypical and presumptive reasoning

Aspects and levels

- Both ampliative and defeasible (preemptive and retractive)
- Only at the object and entailment levels

 $C - D \quad C \sqsubset E$ 

## Preferential DLs

## Defeasible subsumption

- ▶ E.g. Menin eq ¬Fatal, BacMenin eq Fatal
- Properties

$$(Cons) \top \not E \perp \qquad (Ref) C \subseteq C \qquad (LLE) \frac{C \subseteq D, C \subseteq L}{D \subseteq E}$$
$$(And) \frac{C \subseteq D, C \subseteq E}{C \subseteq D \sqcap E} \qquad (Or) \frac{C \subseteq E, D \subseteq E}{C \sqcup D \subseteq E} \qquad (RW) \frac{C \subseteq D, D \subseteq E}{C \subseteq E}$$

(CM) 
$$\frac{C \subseteq D, \quad C \subseteq E}{C \sqcap D \subseteq E}$$
 (RM)  $\frac{C \subseteq D, \quad C \not\subseteq \neg E}{C \sqcap E \subseteq D}$ 

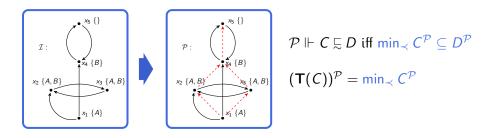
## Preferential DLs

## Defeasible subsumption

- ▶ E.g. Menin eq ¬Fatal, BacMenin eq Fatal
- Properties

$$(Cons) \top \not \sqsubseteq \bot \qquad (Ref) C \sqsubset C \qquad (LLE) \frac{C \equiv D, C \vdash E}{D \sqsubset E}$$

$$(And) \ \frac{C \sqsubseteq D, \ C \sqsubseteq E}{C \sqsubseteq D \sqcap E} \quad (Or) \ \frac{C \sqsubseteq E, \ D \sqsubseteq E}{C \sqcup D \sqsubseteq E} \quad (RW) \ \frac{C \sqsubseteq D, \ D \sqsubseteq E}{C \sqsubseteq E}$$
$$(CM) \ \frac{C \sqsubseteq D, \ C \sqsubseteq E}{C \sqcap D \sqsubseteq E} \quad (RM) \ \frac{C \sqsubseteq D, \ C \not \sqsubseteq \neg E}{C \sqcap E \sqsubseteq D}$$


## Typicality operator

▶ E.g.  $T(Menin) \sqsubseteq \neg Fatal, T(BacMenin) \sqsubseteq Fatal$ 

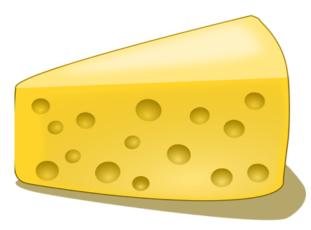
## Preferential DLs

#### Semantics

- Enriched DL Interpretations  $\mathcal{P} := \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \prec \rangle$
- $\Delta^{\mathcal{I}}$  and  $\cdot^{\mathcal{I}}$  as before
- ► ≺ is a preference (or normality) relation



#### Representation results: soundness and completeness of postulates


Ivan Varzinczak (CAIR)

Multifarious Uncertainty in Ontologies

## Existing Frameworks: Summary

|                     | Amp.         | Def.         | Obj.         | Ent.         | Meta.        |
|---------------------|--------------|--------------|--------------|--------------|--------------|
| Conditional logics  | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Default logics      | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |
| Circumscription     | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |
| Autoepistemic logic | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |
| AGM belief change   |              | $\checkmark$ |              |              | $\checkmark$ |
| Ontology evolution  |              | $\checkmark$ |              |              | $\checkmark$ |
| Argumentation       |              | $\checkmark$ |              |              | $\checkmark$ |
| DEL                 |              | $\checkmark$ | $\checkmark$ |              |              |
| Adaptive logics     | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |
| Preferential        | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |

## **Existing Frameworks: Summary**



#### Not all levels and aspects have been dealt with!

Where To?

Conclusion



#### Overview

Where Are We?

Where To?

#### Conclusion

Ivan Varzinczak (CAIR)

Multifarious Uncertainty in Ontologies

## Other nonmonotonic logical symbols

- Nonmonotonic connectives
- Nonmonotonic modalities and quantifiers

## Other nonmonotonic logical symbols

- Nonmonotonic connectives
- Nonmonotonic modalities and quantifiers

New nonmonotonic consequence relations

- Levels of venturousness
- Links with abduction, induction and other forms of reasoning

## Other nonmonotonic logical symbols

- Nonmonotonic connectives
- Nonmonotonic modalities and quantifiers

New nonmonotonic consequence relations

- Levels of venturousness
- Links with abduction, induction and other forms of reasoning

More powerful accounts of theory change

- Languages that are more expressive
- With nonmonotonic connectives

## Other nonmonotonic logical symbols

- Nonmonotonic connectives
- Nonmonotonic modalities and quantifiers

New nonmonotonic consequence relations

- Levels of venturousness
- Links with abduction, induction and other forms of reasoning

More powerful accounts of theory change

- Languages that are more expressive
- With nonmonotonic connectives

## New and more general theories of uncertainty are called for

#### Defeasible disjointness

Normally mutually exclusive

```
\mathsf{BacMenin} \sqsubseteq \neg \mathsf{ViralMen} \ `\mathsf{OR'} \ \mathsf{ViralMen} \sqsubseteq \neg \mathsf{BacMenin}
```

#### Defeasible disjointness

Normally mutually exclusive

```
\mathsf{BacMenin} \sqsubseteq \neg \mathsf{ViralMen} \ `\mathsf{OR'} \ \mathsf{ViralMen} \sqsubseteq \neg \mathsf{BacMenin}
```

#### Defeasible equivalence

Normally equivalent (similar, analogous?)

 $\mathsf{Cortisol}\cong\mathsf{Dexamethasone}$ 

## Defeasible disjointness

Normally mutually exclusive

```
\mathsf{BacMenin} \sqsubseteq \neg \mathsf{ViralMen} \ `\mathsf{OR'} \ \mathsf{ViralMen} \sqsubseteq \neg \mathsf{BacMenin}
```

## Defeasible equivalence

Normally equivalent (similar, analogous?)

 $\mathsf{Cortisol}\cong\mathsf{Dexamethasone}$ 

Other layers of typicality

Talk about other levels

 $T_1(Menin), T_2(Menin), \ldots, T_n(Menin)$ 

## Defeasible disjointness

Normally mutually exclusive

```
\mathsf{BacMenin} \sqsubseteq \neg \mathsf{ViralMen} \ `\mathsf{OR'} \ \mathsf{ViralMen} \sqsubseteq \neg \mathsf{BacMenin}
```

## Defeasible equivalence

Normally equivalent (similar, analogous?)

 $Cortisol \cong Dexamethasone$ 

## Other layers of typicality

Talk about other levels

 $T_1(Menin), T_2(Menin), \ldots, T_n(Menin)$ 

## Typicality for roles

Some relations are more normal than others

T(infectedBy), T(marriedTo)





## Defeasible role subsumption

Normal relationship between roles

 $\mathsf{parentOf} \sqsubseteq \mathsf{progenitorOf}$ 



## Defeasible role subsumption

Normal relationship between roles

 $\mathsf{parentOf} \sqsubseteq \mathsf{progenitorOf}$ 

## Defeasible role properties

Holding in the most normal cases

marriedTo: usually functional, partOf: usually transitive

## Allow for extra expressivity

Transfer propositional constructions to DLs, modal logics, etc

## Allow for extra expressivity

- Transfer propositional constructions to DLs, modal logics, etc
- But also make use of it
  - Extra postulates beyond the Boolean ones
  - Further semantic constraints
  - (Naïve) Existential Restriction Introduction

 $\frac{C \sqsubseteq D}{\exists r. C \sqsubseteq \exists r. D}$ 

## Allow for extra expressivity

- Transfer propositional constructions to DLs, modal logics, etc
- But also make use of it
  - Extra postulates beyond the Boolean ones
  - Further semantic constraints
  - (Naïve) Existential Restriction Introduction

$$\frac{C \sqsubseteq D}{\exists r.C \sqsubseteq \exists r.D}$$

 $\checkmark \qquad \frac{\mathsf{BacMenin} \sqsubseteq \mathsf{Fatal}}{\exists \mathsf{hasDisease}.\mathsf{BacMenin} \sqsubseteq \exists \mathsf{hasDisease}.\mathsf{Fatal}}$ 



Make use of extra expressivity

Existential Restriction Introduction

$$\frac{C \sqsubseteq D}{\exists r. \mathsf{T}(C) \sqsubseteq \exists r. D}$$

$$\checkmark \qquad \underbrace{\mathsf{Menin} \sqsubseteq \neg \mathsf{Fatal}}_{\exists \mathsf{hasDisease.} \mathsf{T}(\mathsf{Menin}) \sqsubseteq \exists \mathsf{hasDisease.} \neg \mathsf{Fatal}}$$

Value Restriction Introduction

 $\frac{C \sqsubseteq D}{\forall r. \mathsf{T}(C) \sqsubseteq \forall r. D}$ 

#### Make use of extra expressivity

Rational Existential Monotonicity

(REM) 
$$\frac{\exists r. C \subseteq \exists r. D, \exists r. C \not\subseteq \neg \mathsf{T}(\exists r. E)}{\exists r. (C \sqcap E) \subseteq \exists r. D}$$

Rational Value Monotonicity

(RVM) 
$$\frac{\forall r. C \subseteq \forall r. D, \quad \forall r. C \not\subseteq \neg \mathsf{T}(\forall r. E)}{\forall r. (C \sqcap E) \subseteq \forall r. D}$$

#### Instance-level ampliative and defeasible reasoning

► Let the TBox

$$\mathcal{T} = \left\{ \begin{array}{l} \mathsf{BacMenin} \sqsubseteq \mathsf{Menin}, \\ \mathsf{Menin} \sqsubset \neg \mathsf{Fatal}, \\ \mathsf{BacMenin} \sqsubset \mathsf{Fatal} \end{array} \right\}$$

#### Instance-level ampliative and defeasible reasoning

Let the TBox

$$\mathcal{T} = \begin{cases} \mathsf{BacMenin} \sqsubseteq \mathsf{Menin}, \\ \mathsf{Menin} \sqsubset \neg \mathsf{Fatal}, \\ \mathsf{BacMenin} \sqsubset \mathsf{Fatal}, \end{cases}$$

If we learn hasDisease.Menin(mary) ...

#### Instance-level ampliative and defeasible reasoning

Let the TBox

$$\mathcal{T} = \begin{cases} \mathsf{BacMenin} \sqsubseteq \mathsf{Menin}, \\ \mathsf{Menin} \sqsubset \neg \mathsf{Fatal}, \\ \mathsf{BacMenin} \sqsubset \mathsf{Fatal} \end{cases}$$

- If we learn hasDisease.Menin(mary) ...
- ▶ ...it is plausible to (defeasibly) conclude hasDisease.¬Fatal(mary) ...

#### Instance-level ampliative and defeasible reasoning

Let the TBox

$$\mathcal{T} = \begin{cases} \mathsf{BacMenin} \sqsubseteq \mathsf{Menin}, \\ \mathsf{Menin} \sqsubset \neg \mathsf{Fatal}, \\ \mathsf{BacMenin} \sqsubset \mathsf{Fatal} \end{cases}$$

- ► If we learn hasDisease.Menin(mary) ...
- ... it is plausible to (defeasibly) conclude hasDisease.¬Fatal(mary) ...
- ...allowing for retracting it if we learn hasDisease.BacMenin(mary)

#### Instance-level ampliative and defeasible reasoning

Let the TBox

$$\mathcal{T} = \begin{cases} \mathsf{BacMenin} \sqsubseteq \mathsf{Menin}, \\ \mathsf{Menin} \sqsubset \neg \mathsf{Fatal}, \\ \mathsf{BacMenin} \sqsubset \mathsf{Fatal} \end{cases}$$

- ► If we learn hasDisease.Menin(mary) ...
- ... it is plausible to (defeasibly) conclude hasDisease.¬Fatal(mary) ...
- ...allowing for retracting it if we learn hasDisease.BacMenin(mary)

### Different levels of 'venturousness'

Skeptical, credulous, and in between

Ivan Varzinczak (CAIR)

### Standard constructions

Usually: Strengthening the premises or relaxing the conclusions

 $\mathcal{K} \models \alpha \text{ iff } \downarrow Mod(\mathcal{K}) \subseteq Mod(\alpha)$ 

 $\mathcal{K} \approx \alpha \text{ iff } Mod(\mathcal{K}) \subseteq \uparrow Mod(\alpha)$ 

• Usually:  $\downarrow Mod(\mathcal{K}) =$  the most preferred  $\mathcal{K}$ -worlds

### Standard constructions

Usually: Strengthening the premises or relaxing the conclusions

 $\mathcal{K} \approx \alpha \text{ iff } \downarrow Mod(\mathcal{K}) \subseteq Mod(\alpha)$ 

 $\mathcal{K} \approx \alpha \text{ iff } Mod(\mathcal{K}) \subseteq \uparrow Mod(\alpha)$ 

• Usually:  $\downarrow Mod(\mathcal{K}) =$  the most preferred  $\mathcal{K}$ -worlds

#### Beyond standard constructions

- ► Go beyond the dichotomy "preferred v. non-preferred"
- Look for other notions of preferences and minimality
- New forms of reasoning beyond induction and abduction?

Ivan Varzinczak (CAIR)

# Enhanced Theory Change

#### Beyond propositional languages

Modal logics, description logics, ...

$$\mathcal{T} \star \Box \alpha$$
 ?,  $\mathcal{T} \star (C \sqsubseteq D)$  ?,  $\mathcal{T} - r(a, b)$  ?

► Also fragments thereof (Horn, *EL*, etc.)

# Enhanced Theory Change

Beyond propositional languages

Modal logics, description logics, ...

$$\mathcal{T} \star \Box \alpha$$
 ?,  $\mathcal{T} \star (C \sqsubseteq D)$  ?,  $\mathcal{T} - r(a, b)$  ?

► Also fragments thereof (Horn, *EL*, etc.)

#### Beyond classical constructors

- Makes sense for languages with nonmonotonic connectives
- A whole family of AGM-like new postulates
- ▶ Links with various ≥

### Desiderata for a General Framework

#### Remember

The two aspects and the three levels

### Desiderata for a General Framework

#### Remember

- The two aspects and the three levels
- But we also want a framework that
  - accounts for languages of various expressive power
  - has good balance between expressivity and computational complexity
  - is general yet elegant
  - can serve as a core formalism for further extensions
  - abides by principles of software ergonomics (usability)

### Desiderata for a General Framework

#### Remember

The two aspects and the three levels

#### But we also want a framework that

- accounts for languages of various expressive power
- has good balance between expressivity and computational complexity
- is general yet elegant
- can serve as a core formalism for further extensions
- abides by principles of software ergonomics (usability)

#### Principle

Not to diverge from existing approaches, rather build on them

Ivan Varzinczak (CAIR)

### What to Use as a Springboard?

#### Several frameworks available

In principle, anyone can serve as the basis for such constructions

# What to Use as a Springboard?

#### Several frameworks available

- In principle, anyone can serve as the basis for such constructions
- Promising starting point
  - Formalisms general enough in the propositional case: Preferential

# What to Use as a Springboard?

#### Several frameworks available

- In principle, anyone can serve as the basis for such constructions
- Promising starting point
- Formalisms general enough in the propositional case: Preferential Why?
  - Provides a general proof-theoretic characterization of  $\sim$  (and  $\subseteq$ )
  - Basis for nonmonotonic entailment pprox, e.g. *rational closure*
  - Links with AGM belief revision (inter-definability)
  - Simple and elegant (cf. our desiderata)
  - Recently extended to modal and description logics

Where To?

Conclusion



#### Overview

Where Are We?

Where To?

#### Conclusion

Ivan Varzinczak (CAIR)

Multifarious Uncertainty in Ontologies

# Conclusion

#### What we have seen

- Uncertainty has two aspects: ampliative and defeasible
- It happens at three levels: object, entailment, and meta-reasoning
- There are still many open issues not fully addressed
- There is a need for more general theories
- We saw some possible directions to pursue

# Conclusion

#### What we have seen

- Uncertainty has two aspects: ampliative and defeasible
- It happens at three levels: object, entailment, and meta-reasoning
- There are still many open issues not fully addressed
- There is a need for more general theories
- We saw some possible directions to pursue

#### Immediate next steps

- A thorough investigation of uncertainty in the object language
- Study of corresponding appropriate entailment relations
- Assessment of what theory change would mean in these contexts

# Conclusion

#### What we have seen

- Uncertainty has two aspects: ampliative and defeasible
- It happens at three levels: object, entailment, and meta-reasoning
- There are still many open issues not fully addressed
- There is a need for more general theories
- ► We saw some possible directions to pursue

#### Immediate next steps

- A thorough investigation of uncertainty in the object language
- Study of corresponding appropriate entailment relations
- Assessment of what theory change would mean in these contexts

# Thank you!