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Goal 
Cross-fertilize Business Process modeling with  

Reasoning about actions and change in AI and 

(Constraint) Answer Set Programming 

  

(Constraint) Temporal Answer Set Programming 

combines (Constraint) ASP with Temporal Logic (DLTL) 
 

useful for: 
 

• Declarative or procedural process model  

• Modeling background knowledge: direct effects of 

activities and side effects 

• Constraint solving on numeric process data 

• Compliance verification via Bounded Model 

Checking based on [Giordano, Martelli & T.D. TPLP 13] 



Norm 1: “The firm shall provide the investor adequate 

information on its policies before any contract is signed” 

 

Norm 2: “If an investor signs a contract, the firm shall 

provide him a copy of the contract” 

Example 



Example 

Order-delivery process adapted from [Knuplesch 2010], 

branching depends on variables, esp. piece number 

 



Rules 

• After confirming an order, goods have to be shipped 

eventually 

• An order shall either be confirmed or declined 

 



Rules 

• Orders with pn>50000 shall be approved before they 

are confirmed 

• For orders of a non-premium customer with pn>80000 a 

solvency check is necessary before assessing the order 

 

80000 pn 100000 



Rules 

For orders of a non-premium customer with pn>80000 a 

solvency check is necessary before assessing the order 
 

□(pn>80000  c premium  Assess_Order ⊤  
solvency_check_done) 

 

 

 

 

 



Representation languages 

Then, we use: 

 

• An action language, used to describe a domain, 

where effects of atomic actions and their 

executability conditions may involve constraints 

 

• A temporal logic (with constraints), used to express (at 

least) formulae to be verified 

 

Constraints (e.g. pn>80000, or x+y>k ) will  be treated as 

atoms at the temporal logic level and the answer set 

level (as in [Gebser et al 09]) 

 



DLTL (with constraints) 

DLTL [Henriksen & Thiagarajan 99] extends LTL:  

temporal operators can be indexed with regular 

expressions (programs) p 

 

Temporal formulae include: 

 p  a    there is an execution of p after which a holds 

 [p ] a    a holds after all possible executions of p 

 [a] a   a holds after a 
 

and the usual temporal logic modalities: 

 ◊a (eventually a), □a (always a), ○a (next a)  
 

Their semantics is defined from the one of a 𝓤p b 

which means: there is an execution of p after which b 

holds, and a holds in all previous states 

 

 

 

 

 



DLTL (with constraints) 
 

DLTL formulae with constraints are then: 

 
 | ⊤ | p | g | a | a  b | a 𝓤p b 

 

where the p s are atomic propositions and the g s are 

constraints in a constraint language (which we assume to 

have a finite domain) 

 

As in [Gebser et al 09], a function  maps constraint atoms 

(syntax) to constraints (relations on variables), then 

providing an interpretation for constraints (e.g. the usual 

interpretation for arithmetic ops and rels), A ⊨ g means: 

(g) is true for the assigment A of values to variables,  

e.g.  A ⊨ x+y>20  if A(x)=15 and A(y)=10 



DLTL with constraints 

 

A model is M = (s,V,v) where s is an infinite sequence of 

actions, V and v provide, for each prefix t of s  (the state 

reached after t) an interpretation of atomic propositions, 

and an assignment for constraint variables. Then: 

 
M, t ⊨ p  iff p  V(t)  

M, t ⊨ g  iff v(t) ⊨ g 
M, t ⊨ a 𝓤p b iff in s, after t, there is an execution t’of p 

such that M, tt’ ⊨ b and for all intermediate states tt’’, 

M, tt’’ ⊨ a  

 

 

 

 

 

 

 



Temporal action language 

l0   l1 , ... , lm , not lm+1 , ..., not ln 
 

l0  is a fluent literal or temporal fluent literal  ( [a]l or  ○l )  
 

The li  can be: 
 

fluent literals, 

constraint literals, 

temporal (constraint or fluent) literals, 

dynamic constraint literals, i.e. constraint literals also 
involving variables x○ , i.e. ‘x in the next state’ 
 

with some restriction ensuring that successor states only 

depend on current state 

 

Action laws, causal laws, persistence can be expressed 

 

□ (                                                                   )  
implicit 



Action laws, causal laws 

Example of action law:    

    □ ([inform]informed) 
 

Persistence: 

□ ([a] l  l , not [a]  l ) 

 
Static causal laws model dependencies within the 

same state and then also side effects, e.g.: 

□ ( confirmed  deleted) 

where “deleted ” = “order deleted by customer” and 

“ confirmed” = “order confirmed for the seller” 
 



Causal laws 

Dynamic causal laws:  

□ (О l   t1 , ... , tm , not tm+1 , ... , not tn ) 

The ti ’s can be of the forms li  or О li  

Then we can represent side effects of changes of 

fluents, e.g.: 

        f , О f    

i.e. f becomes true 

  
 



Ramifications & BPs 

[Weber et al. 2010] use clauses (in classical logic) to 

model dependencies, and the Possible Models 

Approach [Winslett 1988] to deal with ramifications 
 

the intended states after an action are those: 
 

• where direct effects hold 

• where the background axioms are satisfied  

• that differ minimally from the state before the action 
 

But one of their examples is:  
 

insurance claim accepted when accepted by 

reviewer A and by reviewer B 

 
 



Ramifications & BPs 

If this is modeled as the material implication: 
 

claimAccRevA  claimAccRevB  claimAccepted 
 

and the PMA is used, if A already accepted and B 

accepts, this either makes claimAccepted true or 

claimAccRevA false  

 

The static causal rule 
 

claimAccepted  claimAccRevA , claimAccRevB 
 

can be used to have only claimAccepted change as 

a side effect, while still intending that the implication 

holds 

 

 
 



Ramifications & BPs 

The implication may be false if e.g. we allow the 

acceptance to be overridden later by a supervisor 

 

In this case dynamic laws are appropriate: 

 

О claimAccepted  О claimAccRevA ,  

        claimAccRevB, О claimAccRevB 

 

i.e., if the conjunction of acceptances becomes true, we 

have the side effect, which: 
 

• remains true by default persistence 

• may be made false while its original cause remains true 

 
 



Constraint Temporal Answer Sets 

Given a set P of rules, we define a Constraint Temporal 

Answer Set combining Temporal AS in [Giordano, Martelli 

& T.D.13] and Constraint AS in [Gebser et al 09] 

 
It is a partial temporal interpretation (s,S) where S is a set 

of temporal literals of the form  [a1;...;ak]l  where a1;...;ak is a 

prefix of s 

 
It is defined relative to an assignment v to constraint 

variables at each prefix of a s 

 

Then, we define for the various types of literals their being 
satisfied by (s,S) at the prefix a1;...;ak  given v 

 
 

 



Constraint Temporal Answer Sets 

Given an interpretation (s,S), for each prefix a1;...;ak we 

compute a different constraint reduct, a set of rules 
 

[a1;...;ak] H   Body 
 

obtained from rules in P:  
• eliminating constraint literals true at a1;...;ak given v (if 

all true)  
• and extended literals not l true at a1;...;ak (if all true) 

 

reduct = union of reducts for all prefixes 

 
(s,S) is a constraint temporal answer set wrt v if S is 

minimal among the R such that (s,R) satisfies the rules in 

the reduct 



Extensions 

Given a domain description (P,Q) where P is a set of 

rules, and Q is a set of (constraint) DLTL formulas, its 

extensions (i.e. models) are constraint temporal answer 
sets of P whose corresponding temporal model satisfies 

formulae in Q 
 
Validity of a formula a for a d.d. (P,Q) corresponds to 

verifying that there is no extension of (P, {Q  a} )  

 
 



Modeling Business Processes 

The control flow of a business process can be modeled 

in several ways 

 

• a program (regular expression) in a DLTL constraint:  
p ⊤ (only structured, sequential programs) 

[Giordano et al. CLIMA 10] 

• declarative temporal constraints (e.g. 

ConDec/Declare from van der Aalst et al) 

•  «classical» graphical workflow notation (BPMN, 

YAWL) 

 

 

 



Modeling Business Processes 
We used a translation from basic workflow constructs of 

YAWL to the temporal action language, based on the 

enabling of actions and arcs 

 

An action precondition is its being enabled 

 

Causal laws define enabling of action based on 

enabling of incoming arcs (one/all for XOR/AND)  

 

Actions enable and disable arcs 

 
[a] en_arc_a_b   pn > 50 
[a] en_arc_a_c   not pn > 50 a 

b 

c 

pn>50 



Modeling Business Processes 
The model provides information on which actions have a 

variable as output: 
 

[a] x  [0..1000000] 
 

Across other actions, the value of x persists, we model this 

via a fluent change_x which is non persistent and false by 

default: 
 

x ○ =x  ○ change_x 

[a] change_x 

change_x  not change_x 
 

Other fluents persist: 
 

 [a] f   f, not [a]  f 
 



Verification 

In [Giordano, Martelli & T.D. TPLP13] we defined a 

translation of domain descriptions to ASP and an 

encoding in ASP of Bounded Model Checking 

(following [Heljanko & Niemelä 03]) 

 

• BMC, given a system and a formula, searches for a 

model  

• Infinite paths are represented as finite paths of 

length k with a loop back from state k to a previous 

state  

• The search proceeds iteratively, increasing k until a 

model is found (if one exists) 

 

  

 

 



Translation 

Our translation is defined so that extensions of domain 

descriptions correspond to (constraint) answer sets of 

the translation 
 

• occurs(Action,State)    (State is a number) 
• holds(Literal,State) 
 

e.g. for   [a]f1  f2 :  
 

holds(f1,S’)   state(S), next(S,S’),occurs(a,S),holds(f2,S) 
 

• sat(Formula,State)    
 

defined inductively on the structure of the DLTL Formula  

 

 

 

  

 

 



Translation 

Constraint literals are represented using CSP variables 

value(x,s)  for the value of process variable x at state s 
 

 [a] en_arc_a_b   pn > 50 
 

becomes 
 

holds(en_arc_a_b,S’)           
 state(S),next(S,S’),occurs(a,S),value(pn,S) $> 50 

 
 x ○ =x  ○ change_x 
 

becomes 
 

value(x,S’) $= value(x,S)   
 state(S),next(S,S’),not holds(change_x,S’) 

 

 

  

 

 



BP Verification 

The approach in [Giordano, Martelli & T.D. TPLP 13] is 

suitable for verifing system with infinite computations 

(and finite state space) 

 

In BPs only executions that reach the end are 

considered sound 

 

Finite executions can be represented as infinite ones 

with a final dummy action 

 

In practice, we restrict to finite traces 



Completeness of BMC 

BMC is in general a partial decision procedure 

 

Completeness can be obtained for special classes of 

formulae, or for general formulae, computing a 

completeness threshold t (using bounds up to t is 

enough to find a model if one exists) [Biere et al. 03,06, 

Clarke et al. 04, Giordano et al.  KR12] 

 

But computing the threshold may be unfeasible 

 

For loop-free workflows the length of the longest run 

can be used as threshold 



BP Verification 

• Orders with pn>50000 shall be approved before they 

are confirmed 

• For orders of a non-premium customer with pn>80000 a 

solvency check is necessary before assessing the order 

 



BP Verification 

Running the translation in clingcon we get (in  0.1s) 
 

• □(pn>50000  Confirm_Order ⊤  a=true)   valid 
 

• □(pn>80000  c premium  Assess_Order ⊤  
solvency_check_done)          non valid 

 

 



BP Verification 

80000 pn 100000 

if clingcon is asked to provide weak answer sets,  
for the s after pn is assigned,  

value(pn,s) is given the domain [80001..100000] 

 



Scalability 

c1i implies c4i and ci+1 (ki > ki+1), then 

 □(a1  ◊ br)   valid 
while 
  □(d1  ◊ br)    non valid 

v>ki v>ki/2 ai 

di 

bi 



Variant with  

(pure) ASP conditions  

(run in clingo) 

r 

Scalability 



Scalability 

but c4r is  (vi > ki’/2), with ki’< ki , then, O(12r) runs and 

 □(ai  ◊ br)   valid 
while 

 □(di  ◊ br)   non valid 

vi>ki vi>ki/2 ai 

di 

bi 



Variant with  

(pure) ASP conditions  

(run in clingo) 

r 

Scalability 



r=4  1025 ÷ 1028  different runs, 10 ÷ 100 s  verification time 

 
r=5  1036 ÷ 1040  different runs, 100 ÷ 10000 s verif. time 

  

Scalability 

c1i is v>ki  (vi>ki) 

 

c4i is v>ki/2 ( vi>ki/2 ) 
 

□ ( ai  ◊ bi)   valid 

□ (di  ◊ bi)   non valid 

 
 



Conclusions 

Constraint Temporal Answer Set Programming 

combines temporal logic with: 

 

• Nonmonotonic knowledge representation of 

actions and change [Giordano, Martelli & T.D. 

TPLP 13], also suitable for flexible modeling of 

obligations [Giordano et al ICAIL 13] 

• Constraint reasoning 

 

We have shown that current (C)ASP technology 

already makes the framework useful for verifying 

compliance of business processes (also) involving 

conditions on numerical data 


