
Compliance Verification of

Business Processes with (Constraint)

Temporal Answer Set Programming

Laura Giordano, Alberto Martelli,

Matteo Spiotta, Daniele Theseider Dupré

Università del Piemonte Orientale

Università di Torino

Italy

based on

L. Giordano, A. Martelli, M. Spiotta, D. Theseider Dupré, Business Process

Verification with Constraint Temporal Answer Set Programming, TPLP 13 (4-

5), 2013. Presented at ICLP 2013.

L. Giordano, A. Martelli, M. Spiotta, D. Theseider Dupré, Business Processes

Verification with Temporal Answer Set Programming. KiBP, 1st Int. Workshop

on Knowledge-intensive Business Processes, Rome, 2012

both build on:

L. Giordano, A. Martelli, D. Theseider Dupré. Reasoning about actions with

Temporal Answer Sets. TPLP 13 (2), 2013

Goal
Cross-fertilize Business Process modeling with

Reasoning about actions and change in AI and

(Constraint) Answer Set Programming

(Constraint) Temporal Answer Set Programming

combines (Constraint) ASP with Temporal Logic (DLTL)

useful for:

• Declarative or procedural process model

• Modeling background knowledge: direct effects of

activities and side effects

• Constraint solving on numeric process data

• Compliance verification via Bounded Model

Checking based on [Giordano, Martelli & T.D. TPLP 13]

Norm 1: “The firm shall provide the investor adequate

information on its policies before any contract is signed”

Norm 2: “If an investor signs a contract, the firm shall

provide him a copy of the contract”

Example

Example

Order-delivery process adapted from [Knuplesch 2010],

branching depends on variables, esp. piece number

Rules

• After confirming an order, goods have to be shipped

eventually

• An order shall either be confirmed or declined

Rules

• Orders with pn>50000 shall be approved before they

are confirmed

• For orders of a non-premium customer with pn>80000 a

solvency check is necessary before assessing the order

80000 pn 100000

Rules

For orders of a non-premium customer with pn>80000 a

solvency check is necessary before assessing the order

□(pn>80000 c premium Assess_Order ⊤
solvency_check_done)

Representation languages

Then, we use:

• An action language, used to describe a domain,

where effects of atomic actions and their

executability conditions may involve constraints

• A temporal logic (with constraints), used to express (at

least) formulae to be verified

Constraints (e.g. pn>80000, or x+y>k) will be treated as

atoms at the temporal logic level and the answer set

level (as in [Gebser et al 09])

DLTL (with constraints)

DLTL [Henriksen & Thiagarajan 99] extends LTL:

temporal operators can be indexed with regular

expressions (programs) p

Temporal formulae include:

 p a there is an execution of p after which a holds

 [p] a a holds after all possible executions of p

 [a] a a holds after a

and the usual temporal logic modalities:

 ◊a (eventually a), □a (always a), ○a (next a)

Their semantics is defined from the one of a 𝓤p b

which means: there is an execution of p after which b

holds, and a holds in all previous states

DLTL (with constraints)

DLTL formulae with constraints are then:

 | ⊤ | p | g | a | a b | a 𝓤p b

where the p s are atomic propositions and the g s are

constraints in a constraint language (which we assume to

have a finite domain)

As in [Gebser et al 09], a function maps constraint atoms

(syntax) to constraints (relations on variables), then

providing an interpretation for constraints (e.g. the usual

interpretation for arithmetic ops and rels), A ⊨ g means:

(g) is true for the assigment A of values to variables,

e.g. A ⊨ x+y>20 if A(x)=15 and A(y)=10

DLTL with constraints

A model is M = (s,V,v) where s is an infinite sequence of

actions, V and v provide, for each prefix t of s (the state

reached after t) an interpretation of atomic propositions,

and an assignment for constraint variables. Then:

M, t ⊨ p iff p V(t)

M, t ⊨ g iff v(t) ⊨ g
M, t ⊨ a 𝓤p b iff in s, after t, there is an execution t’of p

such that M, tt’ ⊨ b and for all intermediate states tt’’,

M, tt’’ ⊨ a

Temporal action language

l0 l1 , ... , lm , not lm+1 , ..., not ln

l0 is a fluent literal or temporal fluent literal ([a]l or ○l)

The li can be:

fluent literals,

constraint literals,

temporal (constraint or fluent) literals,

dynamic constraint literals, i.e. constraint literals also
involving variables x○ , i.e. ‘x in the next state’

with some restriction ensuring that successor states only

depend on current state

Action laws, causal laws, persistence can be expressed

□ ()
implicit

Action laws, causal laws

Example of action law:

 □ ([inform]informed)

Persistence:

□ ([a] l l , not [a] l)

Static causal laws model dependencies within the

same state and then also side effects, e.g.:

□ (confirmed deleted)

where “deleted ” = “order deleted by customer” and

“ confirmed” = “order confirmed for the seller”

Causal laws

Dynamic causal laws:

□ (О l t1 , ... , tm , not tm+1 , ... , not tn)

The ti ’s can be of the forms li or О li

Then we can represent side effects of changes of

fluents, e.g.:

 f , О f

i.e. f becomes true

Ramifications & BPs

[Weber et al. 2010] use clauses (in classical logic) to

model dependencies, and the Possible Models

Approach [Winslett 1988] to deal with ramifications

the intended states after an action are those:

• where direct effects hold

• where the background axioms are satisfied

• that differ minimally from the state before the action

But one of their examples is:

insurance claim accepted when accepted by

reviewer A and by reviewer B

Ramifications & BPs

If this is modeled as the material implication:

claimAccRevA claimAccRevB claimAccepted

and the PMA is used, if A already accepted and B

accepts, this either makes claimAccepted true or

claimAccRevA false

The static causal rule

claimAccepted claimAccRevA , claimAccRevB

can be used to have only claimAccepted change as

a side effect, while still intending that the implication

holds

Ramifications & BPs

The implication may be false if e.g. we allow the

acceptance to be overridden later by a supervisor

In this case dynamic laws are appropriate:

О claimAccepted О claimAccRevA ,

 claimAccRevB, О claimAccRevB

i.e., if the conjunction of acceptances becomes true, we

have the side effect, which:

• remains true by default persistence

• may be made false while its original cause remains true

Constraint Temporal Answer Sets

Given a set P of rules, we define a Constraint Temporal

Answer Set combining Temporal AS in [Giordano, Martelli

& T.D.13] and Constraint AS in [Gebser et al 09]

It is a partial temporal interpretation (s,S) where S is a set

of temporal literals of the form [a1;...;ak]l where a1;...;ak is a

prefix of s

It is defined relative to an assignment v to constraint

variables at each prefix of a s

Then, we define for the various types of literals their being
satisfied by (s,S) at the prefix a1;...;ak given v

Constraint Temporal Answer Sets

Given an interpretation (s,S), for each prefix a1;...;ak we

compute a different constraint reduct, a set of rules

[a1;...;ak] H Body

obtained from rules in P:
• eliminating constraint literals true at a1;...;ak given v (if

all true)
• and extended literals not l true at a1;...;ak (if all true)

reduct = union of reducts for all prefixes

(s,S) is a constraint temporal answer set wrt v if S is

minimal among the R such that (s,R) satisfies the rules in

the reduct

Extensions

Given a domain description (P,Q) where P is a set of

rules, and Q is a set of (constraint) DLTL formulas, its

extensions (i.e. models) are constraint temporal answer
sets of P whose corresponding temporal model satisfies

formulae in Q

Validity of a formula a for a d.d. (P,Q) corresponds to

verifying that there is no extension of (P, {Q a})

Modeling Business Processes

The control flow of a business process can be modeled

in several ways

• a program (regular expression) in a DLTL constraint:
p ⊤ (only structured, sequential programs)

[Giordano et al. CLIMA 10]

• declarative temporal constraints (e.g.

ConDec/Declare from van der Aalst et al)

• «classical» graphical workflow notation (BPMN,

YAWL)

Modeling Business Processes
We used a translation from basic workflow constructs of

YAWL to the temporal action language, based on the

enabling of actions and arcs

An action precondition is its being enabled

Causal laws define enabling of action based on

enabling of incoming arcs (one/all for XOR/AND)

Actions enable and disable arcs

[a] en_arc_a_b pn > 50
[a] en_arc_a_c not pn > 50 a

b

c

pn>50

Modeling Business Processes
The model provides information on which actions have a

variable as output:

[a] x [0..1000000]

Across other actions, the value of x persists, we model this

via a fluent change_x which is non persistent and false by

default:

x ○ =x ○ change_x

[a] change_x

change_x not change_x

Other fluents persist:

 [a] f f, not [a] f

Verification

In [Giordano, Martelli & T.D. TPLP13] we defined a

translation of domain descriptions to ASP and an

encoding in ASP of Bounded Model Checking

(following [Heljanko & Niemelä 03])

• BMC, given a system and a formula, searches for a

model

• Infinite paths are represented as finite paths of

length k with a loop back from state k to a previous

state

• The search proceeds iteratively, increasing k until a

model is found (if one exists)

Translation

Our translation is defined so that extensions of domain

descriptions correspond to (constraint) answer sets of

the translation

• occurs(Action,State) (State is a number)
• holds(Literal,State)

e.g. for [a]f1 f2 :

holds(f1,S’) state(S), next(S,S’),occurs(a,S),holds(f2,S)

• sat(Formula,State)

defined inductively on the structure of the DLTL Formula

Translation

Constraint literals are represented using CSP variables

value(x,s) for the value of process variable x at state s

 [a] en_arc_a_b pn > 50

becomes

holds(en_arc_a_b,S’)
 state(S),next(S,S’),occurs(a,S),value(pn,S) $> 50

 x ○ =x ○ change_x

becomes

value(x,S’) $= value(x,S)
 state(S),next(S,S’),not holds(change_x,S’)

BP Verification

The approach in [Giordano, Martelli & T.D. TPLP 13] is

suitable for verifing system with infinite computations

(and finite state space)

In BPs only executions that reach the end are

considered sound

Finite executions can be represented as infinite ones

with a final dummy action

In practice, we restrict to finite traces

Completeness of BMC

BMC is in general a partial decision procedure

Completeness can be obtained for special classes of

formulae, or for general formulae, computing a

completeness threshold t (using bounds up to t is

enough to find a model if one exists) [Biere et al. 03,06,

Clarke et al. 04, Giordano et al. KR12]

But computing the threshold may be unfeasible

For loop-free workflows the length of the longest run

can be used as threshold

BP Verification

• Orders with pn>50000 shall be approved before they

are confirmed

• For orders of a non-premium customer with pn>80000 a

solvency check is necessary before assessing the order

BP Verification

Running the translation in clingcon we get (in 0.1s)

• □(pn>50000 Confirm_Order ⊤ a=true) valid

• □(pn>80000 c premium Assess_Order ⊤
solvency_check_done) non valid

BP Verification

80000 pn 100000

if clingcon is asked to provide weak answer sets,
for the s after pn is assigned,

value(pn,s) is given the domain [80001..100000]

Scalability

c1i implies c4i and ci+1 (ki > ki+1), then

 □(a1 ◊ br) valid
while
 □(d1 ◊ br) non valid

v>ki v>ki/2 ai

di

bi

Variant with

(pure) ASP conditions

(run in clingo)

r

Scalability

Scalability

but c4r is (vi > ki’/2), with ki’< ki , then, O(12r) runs and

 □(ai ◊ br) valid
while

 □(di ◊ br) non valid

vi>ki vi>ki/2 ai

di

bi

Variant with

(pure) ASP conditions

(run in clingo)

r

Scalability

r=4 1025 ÷ 1028 different runs, 10 ÷ 100 s verification time

r=5 1036 ÷ 1040 different runs, 100 ÷ 10000 s verif. time

Scalability

c1i is v>ki (vi>ki)

c4i is v>ki/2 (vi>ki/2)

□ (ai ◊ bi) valid

□ (di ◊ bi) non valid

Conclusions

Constraint Temporal Answer Set Programming

combines temporal logic with:

• Nonmonotonic knowledge representation of

actions and change [Giordano, Martelli & T.D.

TPLP 13], also suitable for flexible modeling of

obligations [Giordano et al ICAIL 13]

• Constraint reasoning

We have shown that current (C)ASP technology

already makes the framework useful for verifying

compliance of business processes (also) involving

conditions on numerical data

