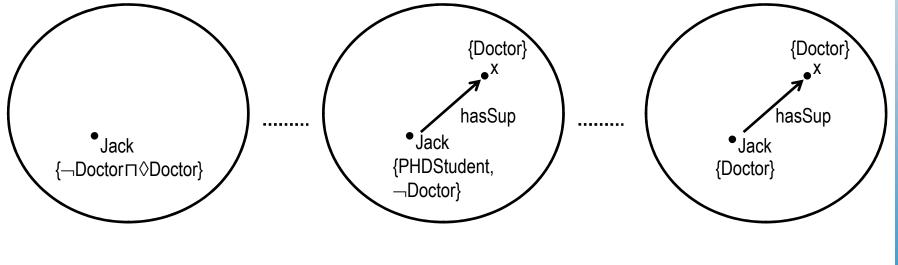
Foundations and Challenges of Change in Ontologies and Databases Bozen-Bolzano, Italy 29-31 January 2014

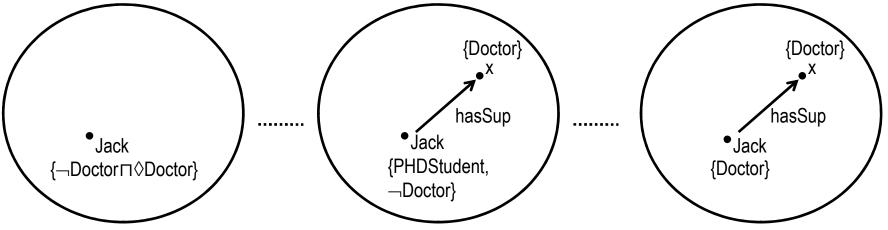
Temporal Dynamic Description Logic


Liang Chang

changl.guet@gmail.com liang.chang@manchester.ac.uk

Temporal description logic (TDL)

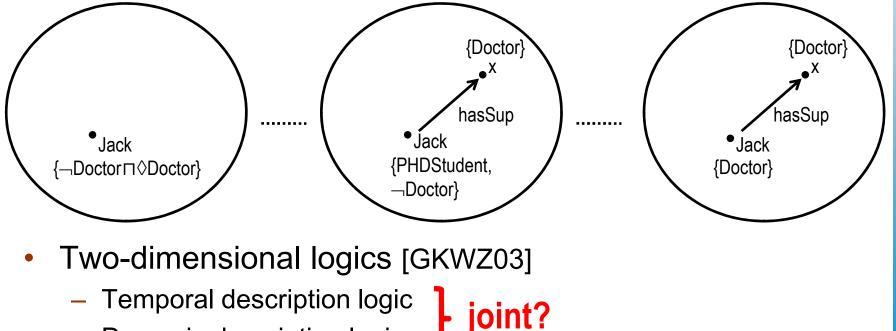
- For capturing temporal aspects of concepts in ontologies.
 ¬Doctor □ ◊Doctor ⊑
 - ♦ (PHDStudent□¬Doctor□(PHDStudent U Doctor))


PHDStudent ⊑ ∃*hasSup*.Doctor

Temporal description logic (TDL)

- For capturing temporal aspects of concepts in ontologies.
 ¬Doctor □ ◊Doctor ⊑
 - ♦ (PHDStudent □¬Doctor □ (PHDStudent U Doctor))

PHDStudent ⊑ ∃*hasSup*.Doctor



- Two-dimensional logics [GKWZ03]
 - Temporal description logic
 - Dynamic description logic

Temporal description logic (TDL)

- For capturing temporal aspects of concepts in ontologies.
 ¬Doctor □ ◊Doctor ⊑
 - ♦ (PHDStudent □¬Doctor □ (PHDStudent U Doctor))

PHDStudent ⊑ ∃*hasSup*.Doctor

Dynamic description logic

Different temporal extensions of DLs

- Explicit notion of time or implicit time
- Interval-based notion of time or point-based time
 - External representation of time or internal representation
- Linear time or branching time

Different temporal extensions

- Varying DL component: DL-Lite, EL, ALC, SHOIQ, ...
- Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
 - ¬Doctor □ \Diamond Doctor ⊑ \Diamond (PHDStudent U Doctor)
 - \Diamond □(Citizen \sqsubseteq HASVote)
 - PHDStudent(Jack) ∧ ◊(PHDStudent(Jack) U Doctor(Jack))
- Additional constraints on concepts and roles: rigid concepts, rigid roles
- interpretation domains: expanding, constant

Different temporal extensions

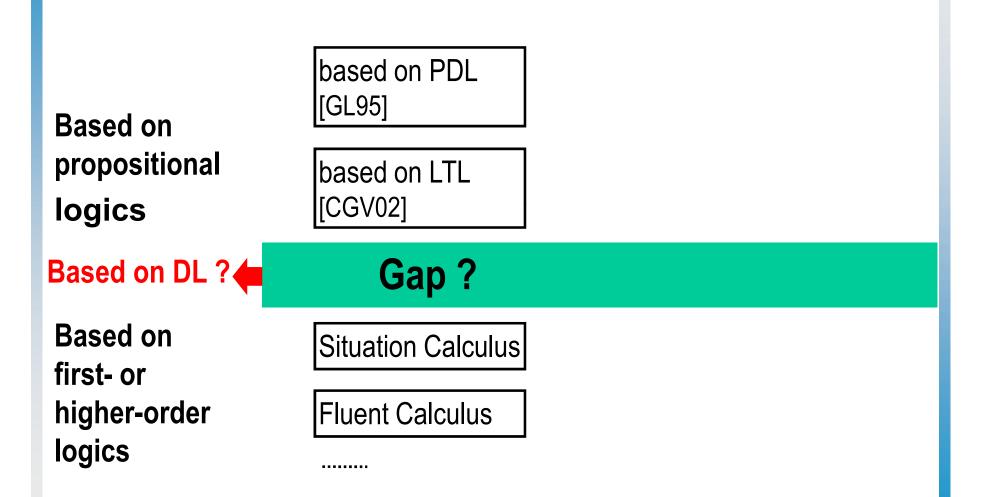
- Explicit notion of time or implicit time
- Interval-based notion of time or point-based time
 - External representation of time or internal representation
- Linear time or branching time

Dozens of combinations!

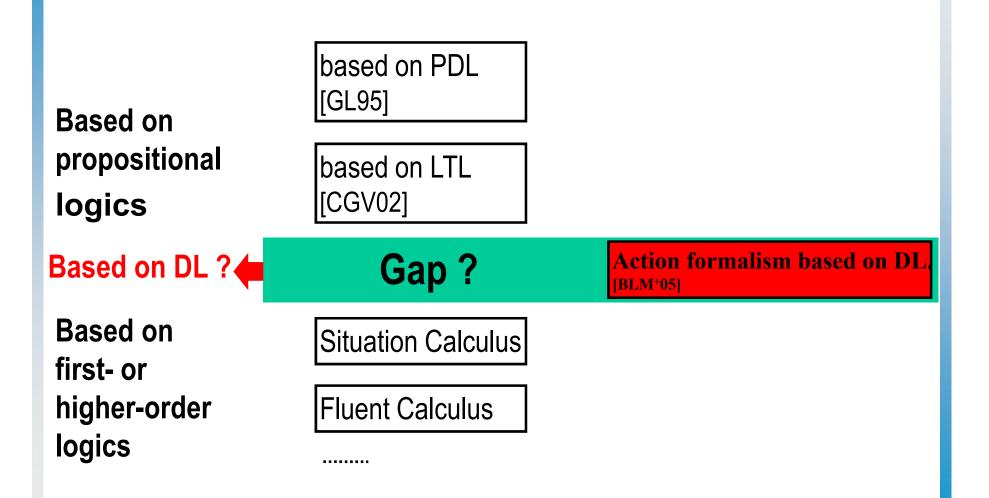
- Varying DL component: DL-Lite, EL, ALC, SHOIQ, ...
- Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
- Additional constraints on concepts and roles: rigid concepts, rigid roles
- interpretation domains: expanding, constant

Different temporal extensions

- Explicit notion of time or implicit time
- Interval-based notion of time or point-based time
 - External representation of time or internal representation
- Linear time or branching time
- Varying DL component: DL-Lite, EL. ALC SHOIQ, ...
- Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
- Additional constraints on concepts and roles: rigid concepts, rigid roles
- interpretation domains: expanding, constant


Reasoning about actions

- Representation and Reasoning about Actions
- Situation Calculus [Mcc63]
- John Mccarthy
 - father of AI, 1956
 - Winner of Turing Award, 1971



•John Mccarthy (1927-2011)

Action Formalisms

Action Formalisms

DL-Based Action Formalisms

- Background knowledge: RBox, TBox
- States: ABoxes
- Action: α = (pre, occ, post)
 - pre: ABox assertions
 - occ: primitive literals
 - **post:** set of conditional post-conditions, ϕ/ψ

Update ABox after the execution of actions.

Extension of the DL-based action formalism

Basic idea: construct more powerful formalism,

action theory + description logic + dynamic logic

- Background knowledge: RBox, TBox
- Atomic actions: come from Baader et al.'s formalism

α≡(pre, occ, post)

• Complex actions:

 $\pi, \pi' ::= \alpha \mid \phi? \mid \pi \cup \pi' \mid \pi; \pi' \mid \pi^*$

Formulas:

 $\phi, \psi ::= C(\rho) \mid R(\rho,q) \mid <\pi > \phi \mid [\pi] \phi \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi$

Dynamic description logic DDL(X[@])
 X: DLs ranging from ALCO to ALCHOIQ ,
 X[@]: extension of X with the @ constructor.

Features of DDL(X[@]) (1/3)

(1) Complex actions can be constructed

• TBox:

Customer = Person $\sqcap \exists holds.CreditCard$

VIPcustomer = Customer $\sqcap \ge 10$ boughr.(Book \sqcup CD)

• Atomic Actions:

```
buybook(a,b) \equiv ( \{Customer(a), Book(b)\}, \{ \}; \\ \{Instore(b)/\neg Instore(b), Instore(b)/bought(a,b)\} ) \\ order(b) \equiv ( \{(Book \sqcup CD)(b)\}, \{ \}; \\ \{\neg Instore(b)/Instore(b)\} )
```

• Complex Action:

```
VIPbuybook(a,b) \equiv VIPcustomer(a)?;
```

((Instore(b)? ; buybook(a,b)) \cup

(¬Instore(b)?; order(b); buybook(a,b)))

Features of DDL(X[@]) (2/3)

- (2) Properties on (complex) actions can be described directly
- necessary conditions for the execution of (complex) actions
 <VIPbuybook(a,b)>*true* → (VIPcustomer(a)∧Book(b))
 <VIPbuybook(a,b)>*true* → Instore(b)

results on the execution of actions
 [VIPbuybook(a,b)]bought(a,b)
 [buybook(a,b)]bought(a,b)

Features of DDL(X[@]) (3/3)

- (3) Reasoning problems on actions be reduced to the satisfiability problem of formulas
- Executability of actions
- Projection problem
- Consistency/realizability of actions
 - whether a given action makes sense w.r.t. the knowledge base buybook(a1,b); buybook(a2,b)
- Satisfiability problem
 - a Tableau decision algorithm is provided.
 - the complexity upper-bound is
 - EXPSpace if X∈{ALCO, ALCHO, ALCOQ, ALCHOQ},
 - N2EXPTime if $X \in \{ALCOI, ALCHOI, ALCOIQ, ALCHOIQ\}$.

Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:

- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:

 $\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi > \phi \mid [\pi]\phi \mid \neg \phi \mid \phi \lor \psi \mid \mathsf{E}(\phi \mathsf{U}^{\pi}\psi) \mid \mathsf{A}(\phi \mathsf{U}^{\pi}\psi)$

E(ϕ **U**^{π} ψ) : there exists some path of π such that " ϕ until ψ " holds. **A**(ϕ **U**^{π} ψ) : " ϕ until ψ " holds in any path of π .

Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:

- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:

 $\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi > \phi \mid [\pi]\phi \mid \neg \phi \mid \phi \lor \psi \mid \mathsf{E}(\phi \mathsf{U}^{\pi}\psi) \mid \mathsf{A}(\phi \mathsf{U}^{\pi}\psi)$

E(ϕ **U**^{π} ψ) : there exists some path of π such that " ϕ until ψ " holds. **A**(ϕ **U**^{π} ψ) : " ϕ until ψ " holds in any path of π .

$$\begin{aligned} \mathbf{EX} \ \phi =_{def} &\bigvee_{\alpha \in N_{A}} < \alpha > \phi \\ \mathbf{E}(\phi \mathbf{U} \psi) =_{def} &\mathbf{E}(\phi \mathbf{U}^{(\alpha 1 \cup \ldots \cup \alpha n)^{*}} \psi) \\ \mathbf{A}(\phi \mathbf{U} \psi) =_{def} &\mathbf{A}(\phi \mathbf{U}^{(\alpha 1 \cup \ldots \cup \alpha n)^{*}} \psi) \end{aligned}$$

Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:

- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:

 $\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi > \phi \mid [\pi]\phi \mid \neg \phi \mid \phi \lor \psi \mid \mathsf{E}(\phi \mathsf{U}^{\pi}\psi) \mid \mathsf{A}(\phi \mathsf{U}^{\pi}\psi)$

E(ϕ **U**^{π} ψ) : there exists some path of π su **EF** ϕ **A**(ϕ **U**^{π} ψ) : " ϕ until ψ " holds in any path of

$$\mathbf{EX} \ \phi =_{def} \lor_{\alpha \in N_{A}} <\alpha >\phi$$
$$\mathbf{E}(\phi \mathbf{U}\psi) =_{def} \mathbf{E}(\phi \mathbf{U}^{(\alpha 1 \cup \dots \cup \alpha n)^{*}}\psi)$$
$$\mathbf{A}(\phi \mathbf{U}\psi) =_{def} \mathbf{A}(\phi \mathbf{U}^{(\alpha 1 \cup \dots \cup \alpha n)^{*}}\psi)$$

 $\mathbf{EF} \ \phi =_{def} \mathbf{E}(true \mathbf{U}\phi)$ $\mathbf{AF} \ \phi =_{def} \mathbf{A}(true \mathbf{U}\phi)$ $\mathbf{EG} \ \phi =_{def} \neg \mathbf{AF}(\neg \phi)$ $\mathbf{AG} \ \phi =_{def} \neg \mathbf{EF}(\neg \phi)$ $\mathbf{AX} \ \phi =_{def} \neg \mathbf{EX}(\neg \phi)$

Description example of TDDL(X@)

- liveness property: good things will eventually happen.
 EF((∃bought⁻.Customer)(b))
 E(Instore(b) U^{VIPbuybook(a,b)} ¬Instore(b))
- safety property: bad things will never happen.
 AG ¬(≥2 bought⁻.Customer)(b))
 AG (Instore(b) ∨ (∃bought ⁻.Customer)(b))
- Reduced to satisfiability problem of formulas.
- A Tableau decision algorithm is provided.

Limitation of DDL(X[@])/TDDL(X[@])

- TBox:
 - only concept definitions, no GCIs
 - acyclic
- RBox:
 - on transitive property
- Atomic action:
 - no defined concept name occurring in the effect set *post*.

Why?

- difficulty of ABox updating.

Difficulty of ABox updating

Example.

• TBox:

Trans(R), $A \sqsubseteq \exists R.A$, $A \sqcap B \sqsubseteq \bot$, $B \sqsubseteq \forall R.B$

• ABox:

A(a)

Update or new information:
 (∃*R.B*)(a)

Some results on ABox update

Assumptions	DLs	Approach	References
Acyclic TBox; no defined concept names occurring in U	ALC~ALC QIO	PMA semantics & only primitive concept names are counted when measuring distance.	LLMW06, LLMW11
	DL-Lite _F	PMA semantics.	GLPR06, GLPR07
	DL-Lite _R ^{pr}	Both revision and update. Based on $fcl_{\tau}(A)$.	KZ11, KZC13
	DL-Lite _{FR}	Based on $cl_{\tau}(A)$.	CKNZ10

shank you!

