Temporal Description Logic for Ontology-Based Data Access

Alessandro Artale

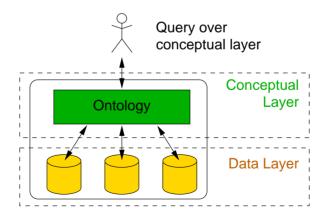
KRDB Centre, University of Bolzano

joint work with

Frank Wolter, Roman Kontchakov, Michael Zakharyaschev Vladislav Ryzhikov and Alisa Kovtunova

Desiderata:

- Hide to the user where and how data are stored
- Present to the user a *conceptual view* of the data
- Query the data sources through the conceptual model



• ABox \mathcal{A} :

heartpatient(peter), diagnose(sue, fibrillation), heartdisease(fibrillation)

• ABox \mathcal{A} :

 $heartpatient(peter), \quad diagnose(sue, fibrillation), \quad heartdisease(fibrillation)$

• Query q:

 $q(x) = \exists y.(\mathsf{diagnose}(x,y) \land \mathsf{heartdisease}(y))$ Answer $q(\mathcal{A}) = \{\mathsf{sue}\}.$

• ABox \mathcal{A} :

 $heartpatient(peter), \quad diagnose(sue, fibrillation), \quad heartdisease(fibrillation)$

• Query q:

 $q(x) = \exists y.(\mathsf{diagnose}(x,y) \land \mathsf{heartdisease}(y))$

- Answer $q(\mathcal{A}) = \{ sue \}.$
- Ontology/TBox \mathcal{T} :

 $heart patient \sqsubseteq \exists diagnose. heart disease$

• ABox \mathcal{A} :

 $heartpatient(peter), \quad diagnose(sue, fibrillation), \quad heartdisease(fibrillation)$

• Query q:

 $q(x) = \exists y.(\mathsf{diagnose}(x,y) \land \mathsf{heartdisease}(y))$

- Answer $q(\mathcal{A}) = \{ sue \}.$
- Ontology/TBox \mathcal{T} :

 $heart patient \sqsubseteq \exists diagnose. heart disease$

• **ABox** \mathcal{A} :

heartpatient(peter), diagnose(sue, fibrillation), heartdisease(fibrillation)

- Query q: $q(x) = \exists y.(diagnose(x, y) \land heartdisease(y))$ Answer $q(\mathcal{A}) = \{sue\}.$
- Ontology/TBox \mathcal{T} :

heartpatient $\sqsubseteq \exists$ diagnose.heartdisease

• Certain Answers:

$$\mathsf{cert}_{\mathcal{T},\mathcal{A}}(q) = \{a \mid \mathcal{T} \cup \mathcal{A} \models q(a)\}$$

In this case

$$\mathsf{cert}_{\mathcal{T},\mathcal{A}}(q) = \{\mathsf{sue},\mathsf{peter}\}.$$

In applications, data are often time-dependent: employment contracts end, children are born, aircrafts arrive.

In applications, data are often time-dependent: employment contracts end, children are born, aircrafts arrive.

 Temporal data (temporal ABoxes) A are finite sets of pairs consisting of facts and their validity time:

atrisk(peter, 2013), diagnose(sue, fibrillation, 1982), heartdisease(fibrillation)

In applications, data are often time-dependent: employment contracts end, children are born, aircrafts arrive.

 Temporal data (temporal ABoxes) A are finite sets of pairs consisting of facts and their validity time:

atrisk(peter, 2013), diagnose(sue, fibrillation, 1982), heartdisease(fibrillation)

• To support querying temporal data, the ontology \mathcal{T} should model temporal conceptual knowledge as well:

 $\diamond_P \exists$ diagnose.heartdisease \sqsubseteq atrisk

 $\forall x, t(((\exists t' < t) \exists y. \mathsf{diagnose}(x, y, t') \land \mathsf{heartdisease}(y, t')) \rightarrow \mathsf{atrisk}(x, t))$

In applications, data are often time-dependent: employment contracts end, children are born, aircrafts arrive.

• Temporal data (**temporal ABoxes**) *A* are finite sets of pairs consisting of facts and their validity time:

atrisk(peter, 2013), diagnose(sue, fibrillation, 1982), heartdisease(fibrillation)

• To support querying temporal data, the ontology ${\cal T}$ should model temporal conceptual knowledge as well:

 $\diamond_P \exists$ diagnose.heartdisease \sqsubseteq atrisk

 $\forall x, t(((\exists t' < t) \exists y. \mathsf{diagnose}(x, y, t') \land \mathsf{heartdisease}(y, t')) \rightarrow \mathsf{atrisk}(x, t)) \\$

• For $q = \operatorname{atrisk}(x, 2013)$ we obtain

$$\mathsf{cert}_{\mathcal{T},\mathcal{A}}(q) = \{\mathsf{peter},\mathsf{sue}\}$$

• Cover validity time (no transaction time): ABox assertions of the form

$A(c,n), \quad P(c,d,n)$

More succinct intervals A(c, [n, m]) not yet considered.

• Cover validity time (no transaction time): ABox assertions of the form

$A(c,n), \quad P(c,d,n)$

More succinct intervals A(c, [n, m]) not yet considered.

• Ontology language **temporal extension of OWL 2 QL** (OWL standard for OBDA). Axioms time-independent, but model time-dependent classes and properties. E.g.,

 \diamond_P givesbirth \sqsubseteq mother

• Cover validity time (no transaction time): ABox assertions of the form

$A(c,n), \quad P(c,d,n)$

More succinct intervals A(c, [n, m]) not yet considered.

• Ontology language **temporal extension of OWL 2 QL** (OWL standard for OBDA). Axioms time-independent, but model time-dependent classes and properties. E.g.,

 \diamond_P givesbirth \sqsubseteq mother

• Queries at least two sorted conjunctive queries with variables for individuals and timepoints, and expressions t < t', A(x,t), P(x, y, t).

• Cover validity time (no transaction time): ABox assertions of the form

$A(c,n), \quad P(c,d,n)$

More succinct intervals A(c, [n, m]) not yet considered.

• Ontology language **temporal extension of OWL 2 QL** (OWL standard for OBDA). Axioms time-independent, but model time-dependent classes and properties. E.g.,

 \diamond_P givesbirth \sqsubseteq mother

- Queries at least two sorted conjunctive queries with variables for individuals and timepoints, and expressions t < t', A(x,t), P(x,y,t).
- Every such query should be SQL/FO-rewritable (with linear-order < available).

The Ontology Language: TQL

TQL contains OWL 2 QL, where OWL 2 QL ontologies consist of inclusions

 $B_1 \sqcap B_2 \sqsubseteq \bot, \quad B_1 \sqsubseteq B_2, \quad R_1 \sqsubseteq R_2$

with

The Ontology Language: TQL

TQL contains OWL 2 QL, where OWL 2 QL ontologies consist of inclusions

$$B_1 \sqcap B_2 \sqsubseteq \bot, \quad B_1 \sqsubseteq B_2, \quad R_1 \sqsubseteq R_2$$

with

$$R_i ::= \perp | P | P^-,$$

 $B_i ::= A \mid \exists R_i,$

and should be "maximal" FO-rewritable with:

- rigid concept and roles;
- persistent in the future concepts and roles;
- instantaneous concepts and roles;
- convex concepts and roles.
- etc.

Syntax: OWL 2 QL extended by \diamond_F and \diamond_P

TQL ontologies/TBox consist of inclusions

$$C \sqsubseteq B, \quad S \sqsubseteq R$$

where

R ::=	⊥	P		$P^{-},$
B ::=	⊥	\boldsymbol{A}		$\exists R,$

Syntax: OWL 2 QL extended by \diamond_F and \diamond_P

TQL ontologies/TBox consist of inclusions

 $C \sqsubseteq B, \quad S \sqsubseteq R$

where

$\mathbf{R} ::= \bot$	P		$P^{-},$
$\mathbf{B} ::= \bot$	\boldsymbol{A}	I	$\exists R,$

and C and S are defined by:

Syntax: OWL 2 QL extended by \diamond_F and \diamond_P

TQL ontologies/TBox consist of inclusions

 $C \sqsubseteq B, \quad S \sqsubseteq R$

where

and C and S are defined by:

$\mathbf{C} ::= B$		$C_1 \sqcap C_2$	$\diamond_P C$		$\diamond_F C,$
${f S}$::= R		$S_1\sqcap S_2$	$\diamond_P S$	I	$\diamond_F S,$

Thus TQL has a Horn-like TBox with temporal operators only on the left-hand side.

TQL: Expressivity

TQL can express the following temporal constraints:

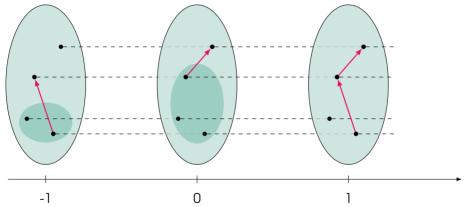
- person is rigid: $\diamond_F \diamond_P$ person \sqsubseteq person;
- mother is **persistent**: \diamond_P mother \sqsubseteq mother;
- givesbirth is instantaneous: givesbirth $\Box \diamond_P$ givesbirth $\sqsubseteq \bot$;
- employed is **convex**: \diamond_P employed $\Box \diamond_F$ employed \sqsubseteq employed.

Semantics

Temporal interpretations \mathcal{I} are given by $(\mathbb{Z}, <)$ (time points) and standard (atemporal) interpretations

$$\mathcal{I}(n) = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}(n)}),$$

for each $n \in \mathbb{Z}$. We assume constant domain and rigid interpretation of individuals. Thus, interpretations look as follows:

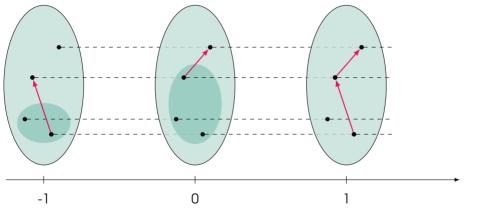


Semantics

Temporal interpretations \mathcal{I} are given by $(\mathbb{Z}, <)$ (time points) and standard (atemporal) interpretations

$$\mathcal{I}(n) = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}(n)}),$$

for each $n \in \mathbb{Z}$. We assume constant domain and rigid interpretation of individuals. Thus, interpretations look as follows:



 $(\diamondsuit_P C)^{\mathcal{I}(n)} = \{x \mid x \in C^{\mathcal{I}(m)}, \text{ for some } m < n\},$

 $(\diamondsuit_{\scriptscriptstyle F} C)^{\mathcal{I}(n)} = \{x \mid x \in C^{\mathcal{I}(m)}, ext{ for some } m > n\}.$

Temporal SQL/FO-Rewritability

Consider again

• *A*:

 $atrisk(peter, 2013), \quad diagnose(sue, fibrillation, 1982), \quad heart disease(fibrillation)$

• \mathcal{T} :

 $\diamond_P \exists diagnose.heart disease \sqsubseteq atrisk$

Temporal SQL/FO-Rewritability

Consider again

• *A*:

 $atrisk(peter, 2013), \quad diagnose(sue, fibrillation, 1982), \quad heart disease(fibrillation)$

• \mathcal{T} :

 $\diamond_P \exists \mathsf{diagnose}.\mathsf{heartdisease} \sqsubseteq \mathsf{atrisk}$

• Then $q = \operatorname{atrisk}(x, 2013)$ can be rewritten into

 $q_{\mathcal{T}} = \operatorname{atrisk}(x, 2013) \lor \exists t' < 2013 . \exists y. \operatorname{diagnose}(x, y, t') \land \operatorname{heartdisease}(y, t')$

and

$$(\mathcal{T},\mathcal{A})\models q(a,2013) ext{ iff } \mathcal{A}\models q_{\mathcal{T}}(a,2013)$$

Temporal Datalog_∃ Formulation

Let

 $B = A \mid \exists R$

TBoxes consist of "datalog" rules of the form

 $B(x,t) \leftarrow \mathsf{Body}(x,\vec{t})$

where $Body(x, \vec{t})$ is a conjunction of atoms of the form B'(x, t') and t' < t'' and

$$P(x,y,t) \gets \mathsf{Body}(x,y,\vec{t})$$

where $Body(x, y, \vec{t})$ is a conjunction of atoms of the form B'(x, y, t') and t' < t''.

Note: Link between rules for unary and binary predicates only via $\exists R$.

Main Result

Queries are two-sorted conjunctive queries (CQs):

 $\exists \vec{y} \ \vec{t} \underbrace{\varphi(\vec{x}, \vec{y}, \vec{s}, \vec{t})}$

conjunction of atoms

where the atoms are of the form

 $A(x,t), \quad P(x,y,t), \quad (t_1 = t_2), \quad (t_1 < t_2)$

Main Result

Queries are two-sorted conjunctive queries (CQs):

 $\exists \vec{y} \ \vec{t} \ \varphi(\vec{x}, \vec{y}, \vec{s}, \vec{t})$

conjunction of atoms

where the atoms are of the form

 $A(x,t), \quad P(x,y,t), \quad (t_1 = t_2), \quad (t_1 < t_2)$

Theorem. Let $q(\vec{x}, \vec{t})$, be a CQ and \mathcal{T} a TQL ontology. Then one can construct a disjunction of CQs $q_{\mathcal{T}}(\vec{x}, \vec{t})$ such that, for any \mathcal{A} , any $\vec{a} \subseteq \operatorname{ind}(\mathcal{A})$, and any $\vec{n} \subseteq \operatorname{tem}(\mathcal{A})$, we have

$$(\mathcal{T},\mathcal{A})\models q(ec{a},ec{n}) \quad ext{iff} \quad \mathcal{A}\models q_{\mathcal{T}}(ec{a},ec{n})$$

• Mixing concepts and roles: $\exists R.A \sqsubseteq A$ not FO-rewritable.

• Mixing concepts and roles: $\exists R.A \sqsubseteq A$ not FO-rewritable.

 $\diamond_P A \sqsubseteq A$ is rewritable only because < is transitive.

• Mixing concepts and roles: $\exists R.A \sqsubseteq A$ not FO-rewritable.

 $\diamond_P A \sqsubseteq A$ is rewritable only because < is transitive.

• NEXT-operators: $\bigcirc_P A \sqsubseteq B$ and $\bigcirc_P B \sqsubseteq A$ can be used to express even distance between time points.

• Mixing concepts and roles: $\exists R.A \sqsubseteq A$ not FO-rewritable.

 $\diamond_P A \sqsubseteq A$ is rewritable only because < is transitive.

- NEXT-operators: $\bigcirc_P A \sqsubseteq B$ and $\bigcirc_P B \sqsubseteq A$ can be used to express even distance between time points.
- CQ answering for $\{A \sqsubseteq \diamond_P B\}$ NP-hard—by reduction of 2 + 2-SAT.

Extensions with NEXT - \bigcirc_F

The TQL language with nextime, \bigcirc_F , Atomic Concepts and Horn axioms is not in AC^0 .

Extensions with NEXT - \bigcirc_F

The TQL language with nextime, \bigcirc_F , Atomic Concepts and Horn axioms is not in AC^0 .

Parity problem: Given a binary string output 1 iff the number of 1s is even.

We reduce the Parity problem which is not computable in AC^0 (Furst,Saxe and Sipser, 1984) to query answering in TQL TBox with \bigcirc_F .

Extensions with NEXT - \bigcirc_F

The TQL language with nextime, \bigcirc_F , Atomic Concepts and Horn axioms is not in AC^0 .

Parity problem: Given a binary string output 1 iff the number of 1s is even.

We reduce the Parity problem which is not computable in AC^0 (Furst,Saxe and Sipser, 1984) to query answering in TQL TBox with \bigcirc_F .

TBox

$$\mathcal{T} = \{C_1 \sqcap \bigcirc_F C_{even} \sqsubseteq C_{odd}, \ C_1 \sqcap \bigcirc_F C_{odd} \sqsubseteq C_{even}$$
$$C_0 \sqcap \bigcirc_F C_{even} \sqsubseteq C_{even}, \ C_0 \sqcap \bigcirc_F C_{odd} \sqsubseteq C_{odd}\}$$

ABox. Encodes the binary strings and terminates with $C_{even}(a, n + 1)$. E.g., the binary string w = 01001 is encoded as:

$$\mathcal{A}_w = \{C_0(a,0), C_1(a,1), C_0(a,2), C_0(a,3), C_1(a,4), C_{\text{even}}(a,5)\}$$

 $(\mathcal{T},\mathcal{A}_w)\models C_{\mathit{even}}(a,0)$ iff w has an even number of 1's

Extensions with NEXT and Automata

We can construct a Non-Deterministic Finite Automata (NFA) to compute query answers. E.g., the automaton $\mathfrak{A}_{\mathcal{T}}$ for the parity TBox starting at t = n is:

$$C_0(a,t-1)$$
 $C_1(a,t-1)$ $O \supset C_0(a,t-1)$

 $\mathfrak{A}_{\mathcal{T}}$ accepts \mathcal{A} iff $(\mathcal{T},\mathcal{A})\models C_{even}(a,0).$

- Upper Bound. The problem whether an automata accepts a word is tractable: it belongs to complexity class NC^1 (contained in LogSpace).
- Future Work. The automata encoding without roles is obvious: We intend to extend it to languages with roles.

Future Work

- Investigate efficient rewritings, implementation.
- Consider datalog-rewritability: then NEXT-operator should be ok.
- The TQL languages with \bigcirc_F seems to be still FO-rewritable with arithmetic predicates, e.i., TQL_{core,\bigcirc_F} is conjectured to be in $FO(+, \times)$.