Group 8: Modelling and Reasoning with Business Processes and Workflows

Nahid Mahbub, FBK, Trento, Italy Robert Muthuri, Erasmus Mundus LAST-JD, Turin, Italy Stefan Scheglmann, Univ. Koblenz, Germany Ognjen Savković, FUB, Bozen-Bolzano, Italy Laura Genga, Univ. Politecnica delle Marche, Ancona, Italy

What are Business Processes?

- **Business Processes** (BPs) are set of **activities** organized to accomplish a specific **goal**
 - E.g., Order-Delivery, Production chain, etc.
- Business Processes are **used** for
 - Documentation
 - Communication
 - Execution
 - Static Analysis
 - Verification of Properties
 - Simulation and performance analysis
 - Comparability check, etc.

BPs Languages

- **'04 BPEL**: Business Process Execution Language
 - executable language for specifying actions within business processes with web services
- **'05 BPMN**: Business Process Modeling Notation
 - graphical modeling language

Static Analysis of BPs

- '97 Verification of Workflow Nets, van der Aalst
 - Semantics via Petri Nets
 - Checking for deadlocks, reachability, etc.
- **'03 Workflow Patterns**, van der Aalst
 - Exhaustive analysis of control-flow, resource, and exception handling

Business Processes and Data

• How the **data impacts** on **process execution**? E.g., can I buy an item that is **not available** at the warehouse (**database**)?

amazon	Ognjen's	Amazon.com Toda	ay's Deals Gift Cards	Sell Help	À	the Big Game > Shop now
Shop by Department +	Search	Electronics *		Go	Hello, Ognjen Your Account 👻	Try Prime - V Cart - Ush -
Computers Brands	Best Sellers	Laptops & Tablets	Desktops & Monitors	Hard Drives & Storage	Computer Accessories	Tablet Accessories PC Components
	ć		Kuzy - BLACK Rubberized 13-inch Hard Case Cover for Apple MacBook Pro 13.3" (A1278 with or without Thunderbolt) Aluminum Unibody - Black by Kuzy **** * 546 customer reviews 8 answered questions		ed 13-inch ple ?78 with or minum	Qty: 1 + Add to Cart or Sign in to turn on 1-Click ordering. Add to Wish List
		aller a	List Price: \$49.9 Price: \$19. Detai You Save: \$29.5	List Price: \$49.96 Price: \$19.99 & FREE Shipping on orders over \$35. Details You Save: \$29.96 (60%)		More buying choices 2 new from \$19.99
			In Stock. Sold by KUZY ar Color: Black	nd Fulfilled by Amazon.		Have one to sell? Sel on Amazon

• But Data and Process modelling are usually separated!

BPs and Data: History

Business artifacts: An approach to operational specification

A. Nigam N.S. Caswell

IBM System Journal 2003

Operational Specification (OPS)

- IFF (Information, Function, Flow)
- Targets
 - o analyze
 - o manage
 - control
- Business people

 retains formality for
 - reasoning
 - automated implementation

Business Artifacts

"Business artifacts constitute concrete information chunks that the business creates and maintains"

• Two parts

- \circ enterprise-wide unique identity
- self-describing content (Key, Value)
- Identity unchangeable, Unsplitable
 multiple artifacts with same content but different id

• Manipulatable

- o update
- copy from other artifacts
- adds from any source (input, computation, ...)

Example: Burgershop

guest-check(

ID 123 context () customer (num 3) store (ID(55) server(2) item (desc Hamb price 2.57 cooked "13:23 04/07/1998) delivered "13:26 04/07/1998" tax 0.33 tender (total 2.9 cash 20.00 coupon 1.00 change 18.10)

Artifact Life Cycle

- each artifact has a lifecycle
- end-to-end processing
 - creation
 - \circ completion
 - \circ archiving
- Places
 - Tasks (changes to artifacts)
 - Repositories (artifacts await further processing)
- describes the operations of a business
 - Function: how to add/update information
 - Flow: transport across functional units

Functions/Tasks

- Performs actions
- Activated by incoming artifact or externally
- Transforms artifacts (one or more)
- Artifacts are received or requested from repo
- After tasks completes all artifacts are ejected

Flow connector

- A pipe
- Ensures reliable transport
- for repos provides request/response communication

Modeling with Artifacts

- Pick key artifacts, construct lifecycle
- Create a candidate list (all artifacts needed for key artifact)
- Repeat
 - Take artifact from candidate list
 - construct lifecycle
 - add newly emerging artifacts to candidate list

Specification and Verification of Data-driven Web Applications

Alin Deutsch, Liying Sui and Victor Vianu

Journal of Computer and System Sciences, 2007

Data-driven Web Application

Modeling Web Application

- Action := f (Page, DB, State, Inputs)
- State := State of the application (set of relations)
- Inputs := Interaction with outside world (users or apps)
- Output relations := Application response
 - e.g., which item is selected for purchase

Definition: Web Application

A Web application \mathcal{W} is a tuple $\langle \mathbf{D}, \mathbf{S}, \mathbf{I}, \mathbf{A}, \mathbf{W}, W_0, W_{\epsilon} \rangle$, where:

- \bullet $\mathbf{D}, \mathbf{S}, \mathbf{I}, \mathbf{A}$ are relational schemas:
 - Database schema
 - \cdot State schema
 - Input schema
 - Action schema
- \bullet W is a finite set of Web page schemas
- $W_0 \in \mathbf{W}$ is the home page schema, and $W_{\epsilon} \notin \mathbf{W}$ is the error page schema

Definition: Web App Schema

A Web page schema $W \in \mathbf{W}$ is a tuple $\langle \mathbf{I}_W, \mathbf{A}_W, \mathbf{T}_W, \mathcal{R}_W \rangle$, where:

- $\bullet \; \mathbf{I}_W \subseteq \mathbf{I}$, input set of the web page schema
- $\bullet \, {\mathbf A}_W \subseteq {\mathbf A}$, action set of the web page schema
- $\bullet \; \mathbf{T}_{W} \subseteq \mathbf{T}$, the set of target web pages
- $\bullet \mathcal{R}_W$, the set of rules containing:
 - · Input rules for each input relations $I \in \mathbf{I}_W$
 - \cdot State rules for each state relations $S \in \mathbf{S}$
 - · Action rules for each action relations $A \in \mathbf{A}_W$
 - · Input rules for each input relations $V \in \mathbf{T}_W$

Input and State Rules

- Input rules: $Options_I(\tilde{x}) \leftarrow \varphi_{I,W(\tilde{x})}$ where $Options_I$ is a realtion of arity k, \tilde{x} a k-tuple of distinct variables and $\varphi_{I,W}(\tilde{x})$ an FO formular over $\mathbf{D} \cup \mathbf{S} \cup \mathbf{Prev_I} \cup \mathbf{const}(\mathbf{I})$ with free \tilde{x} $\mathbf{D} \cup \mathbf{S} \cup \mathbf{Prev_I} \cup \mathbf{const}(\mathbf{I})$ with free \tilde{x}
- State rules: one, both or none of the following:
 - \cdot insertion rule $S(\tilde{x}) \leftarrow \varphi_{S,W}^+(\tilde{x})$
 - · deletion rule $\neg S(\tilde{x}) \leftarrow \varphi_{S,W}^{-}(\tilde{x})$, with

S is of arity k, \tilde{x} a k-tuple of distinct variables and $\varphi_{S,W}^{\epsilon}(\tilde{x}), \epsilon \in \{+, -\}$ are FO formulars over schema $\mathbf{D} \cup \mathbf{S} \cup \mathbf{Prev_{I}} \cup \mathbf{const}(\mathbf{I}) \cup \mathbf{I}_{W}$, with free \tilde{x}

Action and Target Rules

- Action rules: $A(\tilde{x}) \leftarrow \varphi_{A,W}(\tilde{x})$, where A is of arity k, \tilde{x} a k-tuple of distinct variables and $\varphi_{A,W}(\tilde{x})$ an FO formular over schema $\mathbf{D} \cup \mathbf{S} \cup \mathbf{Prev_I} \cup \mathbf{const}(\mathbf{I}) \cup \mathbf{I}_W$ with free variables \tilde{x}
- Target rules $V \leftarrow \varphi_{V,W}$ where $\varphi_{V,W}$ is an FO sentence over schema $\mathbf{D} \cup \mathbf{S} \cup \mathbf{Prev_I} \cup \mathbf{const}(\mathbf{I}) \cup \mathbf{I}_W$

 $W_{\epsilon} = \langle \emptyset, \emptyset \{ W_{\epsilon} \}, R_W \rangle$ where $R_{W_{\epsilon}}$ consists of the rule $W_{\epsilon} \leftarrow true$.

Semantics

A run of a Web app W over a database \mathbf{D} is an infinite sequence of configurations $\{\langle V_i, S_i, I_i, P_i, A_i \rangle\}_{i \geq 0}$ such that configurations $\langle V_i, S_i, I_i, P_i, A_i \rangle$ and $\langle V_{i+1}, S_{i+1}, I_{i+1}, P_{i+1}, A_{i+1} \rangle$ satisfy all Web app state, input, action and target rules accordingly

Running Example

- Imagine a e-commerce Web site selling PCs (like Amazon.com)
- Allowed actions can be
 - New customer register with username and pass
 - Returning customers can login
 - Customer can search for PCs
 - Add found item to the shopping cart
 - Pay items from the shopping cart, etc.

Example: Pages

Pages in the running example

- HP the home page
- **RP** the new user **r**egistration **p**age
- CP the customer page
- AP the administration page
- LSP the laptop search page
- PIP the product item page, products returned by search
- CC the cart content
- MP the error message page

Example: Home Page

Page HPInputs I_{HP} : name, password, button(x) InputRules :

 $\begin{array}{l} \mathsf{Options}_{\texttt{button}}(x) \leftarrow x = ``login" \lor x = ``register" \lor x = ``clear" \end{array}$

StateRules :

 $\operatorname{error}(x) \leftarrow \neg \underline{\operatorname{user}}(\operatorname{name}, \operatorname{password}) \land \operatorname{button}("\operatorname{login"}) \land x = "failed login"$

TargetWebPages T_{HP} : HP, RP, CP, AP, MPTargetRules :

 $HP \leftarrow \texttt{button}(\texttt{``clear''})$

 $RP \leftarrow \texttt{button}(\texttt{"register"})$

 $CP \leftarrow \underline{user}(name, password) \land button("login") \land name \neq ("Admin")$ $AP \leftarrow \underline{user}(name, password) \land button("login") \land name = ("Admin")$ $MP \leftarrow \neg \underline{user}(name, password) \land button("login")$ mdPare HP

EndPage HP

Example: Laptop Search Page

 $\mathsf{Page}\; LSP$

Inputs I_{LSP} : laptopsearchpage(ram, hd, display), button(x) InputRules :

 $\begin{array}{l} \mathsf{Options_{button}}(x) \leftarrow x = ``search" \lor x = ``viewcart" \lor x = ``logout" \end{array}$

 $\mathsf{Options}_{\texttt{laptopsearch}}(r,h,d) \gets \texttt{cirteria}(``laptop'',``ram'',r)$

 $\land \texttt{cirteria}(``laptop", ``hdd", h) \land \texttt{cirteria}(``laptop", ``display", d) \\ \texttt{StateRules}:$

userchoise(r, h, d) $\leftarrow \texttt{laptopsearch}(r, h, d) \land \texttt{button}("search")$ TargetWebPages \mathbf{T}_{HP} : HP, PIP, CCTargetRules :

```
HP \leftarrow \texttt{button}(\texttt{``logout"})

PIP \leftarrow \exists r \exists h \exists d \texttt{laptopsearch}(r, h, d) \land \texttt{button}(\texttt{``search"})

CC \leftarrow \texttt{button}(\texttt{``view cart"})

EndPage LSP
```

Verification Language

- Verification of temporal aspects of web application
 - $_{\odot}~$ Verify properties over all runs of the web app
- Ex 1. "If page *Ordered* is reached in the *run* then page *Payment* is reached eventually"
- Ex 2. "Any shipped product is previously paid"

Since we have relations we need FO Temporal Logics

Linear Temporal Properties

- LTL-FO for checking linear properties
 i.e., satisfied by all runs of a Web app
- E.g., "Any shipped product is previously paid"

 $\forall pid, price \ [\xi(pid, price)] \ \mathbf{B} \neg (\overline{conf}(\mathtt{name}, price) \land \overline{ship}(\mathtt{name}, pid))] \\ \text{where } \xi(pid, price) \text{ is the formula} \\ PP \land \mathtt{pay}(price) \land \mathtt{button}(\text{``authorized payment''}) \\ \land \mathtt{pick}(pid, price) \\ \land \exists pname \ \mathtt{catalog}(pid, price, pname) \\ \end{cases}$

Branching Temporal Prop.

- CTL-FO (CTL*-FO) for checking branching time properties
- E.g., "a bought product will be eventually shipped, but until then, the user can still cancel the order"

 $\forall pid \forall price A \mathbf{G}(\xi(pid, price) \rightarrow A((E\mathbf{F}\overline{cancel}(\mathtt{name}, pid)\mathbf{U}(\overline{ship}(\mathtt{name}, pid))) \\ \text{where } \xi(pid, price) \text{ is the formula} \\ PP \land \mathtt{pay}(price) \land \mathtt{button}(\texttt{``authorized payment''}) \land pick(pid, price) \land \mathtt{prod_price}(pid, price) \\ \end{cases}$

Undecidability

- Given Web App W and Temporal FO ϕ we want to check whether W $|= \phi$
- Undecidability follows immediately :)
 - $\circ \phi$ an FO sentence over D
 - action rule $A \leftarrow \phi$, where A is a proposition
 - ϕ is finitely satisfiable iff A $|= \neg G \neg A$
 - Trakhtenbrot's theorem: finite satisfiability of FO sentences is undecidable

Gaining Decidability

- To gain decidability **restrict** FO formulas to
 - "input-bounded" quantification (restricted FO)
 - all state atoms are ground
- N.B. Web App model is nothing else but a **compact** representation of a transition system (or any other BPs and Data model)
- Model Checking?

Verif. via Model Checking

- Model checking technology requires the transition system to be finite
- However, here states are modeled relationally (not propositionally)

➡ Infinite State Transition System

Verif. via Model Checking (2)

- Restrict FO formulas to be "Input-bounded"
 - "Input-bounded" restricts quantification and helps to establish **finitely many** "isomorphic" configurations for a given LTL formula
- Then we can use "classical" model checking techniques
- CTL (CTL*) needs more restrictions to gain decidability either on the model or on the query language

Complexity Results W $|= \phi$

• LTL-FO

- PSpace (bounded arities)
- ExpTime

• CTL-FO

- ExpTime
- co-NexpTime (states are propositional)

• CTL*-FO

- 2ExpTime
- ExpSpace (states are propositional)

Discussion

- Fragile decidability results
 - adding any schema constraints
 - "tiny" relaxation of the above restrictions
 - preserving full execution history, etc. produces undecidability
- Comparison with DCDS (Calvanese et al.)
 - allows external services via user input
 - allows arbitrary big databases
 - decidability for LTL (restricted CTL*) only
 - no schema constraints

References

- 1. Ruth Sara Aguilar Saven,"Business process modelling: Review and framework"
- 2. Van der Aals, W. "Process Mining. Discovery, Conformance and Enhancement of Business Processes"
- 3. Calvanese, D. , Montali, M., De Giacomo, G., "Foundations of Data-Aware Process Analysis: A Database Theory Perspective"
- 4. Cohn, D., Hull, R., "Business Artifacts: A Data-centric Approach to Modeling Business Operations and Processes"
- 5. Nigam, A., Caswell, N.S., "Business artifacts: An approach to operational specification"
- 6. Serge Abiteboul, Victor Vianu, Brad Fordham and Yelena Yesha, "Relational Transducers for Electronic Commerce"
- 7. Marc Spielmann, "Verification of relational transducers for electronic commerce"
- 8. Alin Deutsch, Liying Sui and Victor Vianu, "Specification and Verification of Data-driven Web Applications"
- o Edgar F Codd "A Relational Model of Data for Large Shared Data Banks"

Thank you! Any Questions?

