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Temporal databases
Data streams

Representing and querying temporal data

We want to extend the basic relational data model and develop
methods and tools to be able:

to represent when data are true (validity & transaction
time),
to query data taking into account this temporal information.
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Foundations
Further challenges

Relational model and time

A relational database is a first-order structure over a (finite)
data domain D and a schema ρ = (r1, . . . , rk ), consisting of a
set of relations (r1, . . . , rk ). A tuple ri(~a) is true in an instance of
(D, ρ) iff ~a ∈ rD

i .

Emp
name department
john d1
mark d2

Definition (Temporal domain)

A temporal domain TP is a tuple (T , <), where T is a nonempty
set of elements called time instants and < is an irreflexive,
linear ordering on T .
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Temporal data model

Definition (Timestamp model)
A timestamp TDB is a first-order structure
D ∪ TP ∪ (R1, . . . ,Rk ), where Ri are temporal
relations-instances of the temporal extensions Ri of ri , where:

Ri(t , ~a), for some t ∈ TP , iff ri(~a).

Emp
time name department
1999 john d1
2000 john d1
2001 john d3
2002 john d3
2000 mark d2
2001 mark d2
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Temporal data model

Definition (Snapshot model)
A snapshot TDB over D, TP , and ρ, is a map
DB : TP 7→ DB(D, ρ), where DB(D, ρ) is the class of (finite)
relational databases over D and ρ.

1999:
Emp

name department
john d1

2001:
Emp

name department
john d3
mark d2
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Temporal data model

There exists a direct correspondence between the timestamp
and the snapshot models:

∀t ∈ T .∀a1, . . . ,ak ∈ D : (rD(t)
i (a1, . . . ,ak )↔ RD

i (t ,a1, . . . ,ak ))

TDBs expressed in the timestamp and snapshot models are
called abstract.

M. Ceriani, S. Klarman, E. Sherkhonov Querying Temporal Databases and Data Streams



Temporal databases
Data streams

Foundations
Further challenges

Abstract query languages

The most natural languages for querying abstract TDBs are
variants of FOL over the vocabulary (=, r1, . . . , rk ) of the
extended structure:

two-sorted FOL (the timestamp model)
FO temporal logic (the snapshot model)
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Two-sorted FOL

The syntax of the two-sorted FO language LP :

M ::= Ri(ti , ~x) | ti < tj | xi = xj | ¬M | M ∧M | ∃ti .M |
∃xi .M

where Ri is the temporal extension of ri , for ri ∈ ρ. Variables ti
range over T and xi over D.

Example:

∃x2.(Emp(t0, x1, x2)∧ ∃t1.(t0 < t1 ∧ ∃x3.(Emp(t1, x1, x3)∧¬(x2 =
x3))))

Answers: t0 7→ 1999, x1 7→ john and t0 7→ 2000, x1 7→ john.

M. Ceriani, S. Klarman, E. Sherkhonov Querying Temporal Databases and Data Streams



Temporal databases
Data streams

Foundations
Further challenges

FO temporal logic

Temporal operators syntax:

O ::= ti < tj | ¬O | O ∧O | ∃ti .O | Xi

where Xi are propositional variables. An n-ary temporal
operator is an O-formula with exactly one free variable t0 and n
free propositional variables X1, . . .Xn. A set of temporal
connectives is denoted by Ω.

Examples:

always-in-future(X ) , ∀t1.(t0 < t1 → X (t1))

sometime-in-future(X ) , ∃t1.(t0 < t1 ∧ X (t1))
... ,

...
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FO temporal logic

The syntax of the FO temporal language LΩ:

F ::= ri(~x) | xi = xj | ¬F | F ∧ F | ω(F1, . . . ,Fn) | ∃xi .F

where r ∈ ρ and ω is an n-ary temporal operator.

Example:

∃x2.(Emp(x1, x2) ∧ sometime-in-future(∃x3.(Emp(x1, x3) ∧
¬(x2 = x3))))

Answer: x1 7→ john in 1999, 2000.
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Expressive power

There exists a translation from LΩ to LP , hence LΩ v LP .

Theorem (Abiteboul et al., 1996)

Lsince,until < LP over the class of finite timestamp TDBs.

Theorem (Toman, Niwinski, Bidoit et al.)

LΩ < LP over the class of timestamp TDBs for an arbitrary finite
set of first-order temporal connectives Ω.

Observation: LΩ cannot express query “are there two distinct
time instants at which a unary relation R contains exactly the
same values?”. In LP :

∃t1, t2.(t1 < t2 ∧ ∀x .(R(t1, x)↔ R(t2, x)))
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Concrete databases

Abstract TDBs can be in principle infinite but should be
representable in a finite form. Concrete TDBs are these finite
representations.

Definition (Interval-based temporal domain)

Let TP = (T , <) be a discrete linearly ordered point-based
temporal domain. We define the set:

I(T ) = {(a,b) : a ≤ b,a ∈ T ∪ {−∞},b ∈ T ∪ {∞}}.

Interval-based temporal domain is the structure
TI = (I(T ), <−−, <+−, <−+, <++), where <−−, <+−, <−+, <++

express ordering relationships over I(T ).
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Concrete databases

Definition (Concrete TDB)
A concrete TDB is a finite first-order structure
D ∪ TI ∪ {R1, . . .Rk}, where Ri are the concrete temporal
relations which are finite instances of Ri over D and TI .

Emp
time name department

[1999, 2000] john d1
[2001, 2002] john d3
[2000, 2001] mark d2

Definition (Semantic Mapping ‖ · ‖)
Let D1 be an abstract TDB and D2 a concrete TDB over the
same schema ρ. D2 encodes D1 (written ‖D2‖ = D1) if:

RD1
i (t , x)⇔ ∃I ∈ TI .R

D2
i (I, x) ∧ t ∈ I

for all t ∈ TP , x and Ri .
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Abstract vs. concrete TDBs
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Concrete temporal query language

The syntax of the interval-based language LI :

M ::= Ri(I, ~x) | I∗i < I∗j | xi = xj | ¬M | M ∧M | ∃Ii .M |
∃xi .M

where Ri is the temporal extension of ri , for ri ∈ ρ, and
I∗i ∈ {I

+, I−}

Example:
For databases D1,D2 and the relation r ∈ ρ, such that
RD1 = {([1,2],a), ([1,3],a)} and RD2 = {([1,3],a)}:

∃I, J.∃x .(R(I, x) ∧ R(J, x) ∧ I 6= J)

Answer:
x 7→ a in D1, and ∅ in D2.
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‖ · ‖-generic querying

Definition (‖ · ‖-generic queries)

Let ‖ · ‖ be the semantic mapping and ϕ ∈ LI . We say that ϕ is
‖ · ‖-generic if ‖D1‖ = ‖D2‖ implies ‖ϕ(D1)‖ = ‖ϕ(D2)‖ for all
concrete TDBs D1, D2.

The challenge is then to devise methods ensuring that querying
remains ‖ · ‖-generic.
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‖ · ‖-generic querying

One solution is to use compilation techniques, i.e., transform
T P queries into LI while preserving meaning under ‖ · ‖.

Theorem (Toman 1996)

There is a (recursive) mapping F : LP 7→ LI such that
ϕ(‖D‖) = ‖F (ϕ)(D)‖.

Theorem (Toman 1996)

For every ‖ · ‖-generic ϕ ∈ LI there is ψ ∈ LP such that
‖ϕ(D)‖ = ψ(‖D‖) for all concrete temporal databases D.
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Temporal extensions of SQL

Challenges for practical temporal extensions

Multi-set (bag) semantics of SQL,
Extensions must support the chosen model of time,
Efficient query evaluation over concrete databases.

The majority of extensions assume point based semantics
but use syntax based on intervals (Allen’s interval algebra),
Extensions based on: abstract and concrete query
languages.
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Based on abstract language Lp: SQL/TP

Simple extension of SQL with data type based on the
point-based temporal domain,
Bag semantics,
Can be efficiently evaluated via translation of Lp to LI ,

select r1 . name
from Emp r1 , Emp r2
where r1 . name = r2 . name

and r1 . time < r2 . time
and not exists ( select ∗

from Emp r3
where r3 . name = r1 . name

and r1 . time < r3 . time
and r3 . time < r2 . time )
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Based on abstract language LΩ

Added similarly to set operators.

Q1 until Q2 Q1 since Q2

A natural extension of ATSQL’s sequenced semantics
[Snodgrass et al., 1995],
Two ways of evaluating:

Over coalesced concrete databases using the translation
from LΩ to LI ;
By composing the translation of LΩ to Lp with translation to
Lp to LI .
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Based on concrete language LI

A lot of proposals
SQL/Temporal,
AT-SQL,
Temporal extension of Informix.

Syntax is extended with Allen’s interval algebra
expressions,
Multi-set semantics.
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Example for SQL/Temporal

select r1 . name
from Emp r1 , Emp r2
where r1 . name = r2 . name

and r1 . time before r2 . time

Incorrect! Reason: non-generic.
Two approaches to overcome this:

Coalescing. → incompatible with bag semantics
Folding and Unfolding. → space blow-up
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Further extensions

Beyond first order logic.
Extended with monadic quantifiers over temporal domain,
Fixpoints.

Beyond Closed World Assumption.

Quickly leads to undecidability even in append-only
databases.
Decidable fragments: monadic temporal extensions,
temporal logic programs.
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Updating temporal databases

Insertion is easy for both abstract and concrete databases.
Deletion and update is not straightforward for concrete
databases.

Example
Assume DB contains a tuple ([1999, 2005] , john, d1). We want
to specify that john was sacked in 2001 but was hired back to
the same department in 2003.

Delete ([1999, 2005] , john, d1),
Add tuples ([1999, 2001] , john, d1) and ([2003, 2005],
john, d1).
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Updates in append-only database, expiration and
stream

An update adds a new state to the existing finite history,
Expiration techniques are needed for forgetting old data:
administrative and query-driven approaches
This is very similar to the problem of efficient data storing
in data streams
Continuous queries in data streams are similar to queries
over database histories.
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Different Applications
Sensor Networks (smart homes, smart cities)
Social Data
Network Traffic Anaysis
Financial Tickers
...

Common Requirements
Input stream(s) unbounded in space and time (only a small
portion of data available at a time)
Timely reaction is needed, i.e. continuous queries
Order and rate of data arrival is not under control of the
system
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Data & Query Model

“Kind of” the Temporal DBs timestamp model, but...
Time has a linear discrete model
Temporal Relations have a finite encoding, while Data
Streams may be infinite
Temporal Queries are usually one-time, while Data Stream
Queries are typically continuous
Temporal Queries may be unbounded in time, while Data
Stream Queries are typically on windows
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Sliding Windows

☛

☛

Window

Past
Data

Future
Data

Recent Data
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Tumbling Windows
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Continuous Query Processing Model

Input/Outputs are Streams or (Temporal) Relations
Network (DAG) of operators:

Stream-to-relation operators:
Now operator
Time-based Sliding/Tumbling Window operator

Relation-to-relation operators:
Relational Algebra operators

Relational-to-stream operators:
Insert Stream
Delete Stream
Relation Stream
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An Example: Linear Road

Seg 0 Seg 1 Seg 98 Seg99

1 Mile

100 Miles

Input: stream of positions and speeds of vehicles.
Output: the tolls for vehicles.
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Linear Road: Network of Queries Used

PosSpeedStr

SegSpeedStr

ActiveVehicleSegRel

VehicleSegEntryStr SegVolRel

TollStr

CongestedSegRel
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Linear Road: Congested Segments Identification

CREATE VIEW CongestedSegRel ( segNo ) AS

SELECT segNo
FROM SegSpeedStr [RANGE 5 MINUTES]
GROUP BY segNo
HAVING AVG( speed ) < 40
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Linear Road: Computing Toll

CREATE VIEW T o l l S t r ( veh i c l e Id , t o l l ) AS

SELECT RSTREAM(E. veh i c le Id ,
2 ∗ (V . numVehicles−50)
∗ (V . numVehicles−50)

AS t o l l )
FROM Vehic leSegEntryStr [NOW] AS E,

CongestedSegRel AS C,
SegVolRel AS V

WHERE E. segNo = C. segNo AND
C. segNo = V. segNo
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Processing Strategies

Asynchronous processing: update/computeAnswer
Bounded Space (dealing with)

Avoid Unneeded Materialization
Synopsis Data Structures
Sketches (approximation of synopsis)

Bounded Time (dealing with)
Incremental Evaluation
Batch Processing (slow computeAnswer)
Sampling (slow update)
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Challenging Domains

Streaming of Social Data
Streaming and the Semantic Web
Stream Monitoring
XML Streams
Uncertain Streams
Streaming Frameworks and Systems
Distributed Streams
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