On Specifying Database Updates Survey Talk on the JLP article by Ray Reiter [Rei95]

Jens Bürger¹, Thomas Ruhroth¹ and Emanuel Sallinger²

¹TU Dortmund University, Dortmund, Germany

²Vienna University of Technology, Vienna, Austria

Research School FCCOD 2014, Bolzano, Italy

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 1 / 44

Overview

Situation Calculus

- 2 Database Transactions
- 3 Transaction Logs and Evaluation
 - Proving Properties of Database States

5 Extensions

Situation Calculus

Situation calculus is

- a logical language to represent change
- introduced by McCarthy [McC68]

A situation is

- "the complete state of the universe at an instance of time" (McCarthy and Hayes [MH69])
- the same as its history, i.e., the sequence of actions that has been performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin's Handbook of KR article [Lin08]

• # • • • • • • • •

Situation Calculus

Situation calculus is

- a logical language to represent change
- introduced by McCarthy [McC68]

A situation is

 "the complete state of the universe at an instance of time" (McCarthy and Hayes [MH69])

• the same as its history, i.e., the sequence of actions that has been performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin's Handbook of KR article [Lin08]

• (10) • (10)

Situation calculus is

- a logical language to represent change
- introduced by McCarthy [McC68]

A situation is

- "the complete state of the universe at an instance of time" (McCarthy and Hayes [MH69])
- the same as its history, i.e., the sequence of actions that has been performed since the initial situation (Reiter [Rei01])

For more background information, cf. Fangzhen Lin's Handbook of KR article [Lin08]

< 回 ト < 三 ト < 三

- fluents: relation symbols like broken(x, s) where the last argument always refers to the situation
- actions: function symbols like repair(r, x)
- **atemporals**: relation symbols like *heavy*(*x*) that hold regardless of the situation

The vocabulary also includes the special symbols:

- the predicate **Poss**(*action*, *situation*) indicates that an action is possible in a certain situation
- the function **do**(*action*, *situation*) describes the resulting situation

伺 ト イ ヨ ト イ ヨ

- fluents: relation symbols like broken(x, s) where the last argument always refers to the situation
- actions: function symbols like repair(r, x)
- **atemporals**: relation symbols like *heavy*(*x*) that hold regardless of the situation

The vocabulary also includes the special symbols:

- the predicate **Poss**(*action*, *situation*) indicates that an action is possible in a certain situation
- the function **do**(*action*, *situation*) describes the resulting situation

< 回 ト < 三 ト < 三

- fluents: relation symbols like broken(x, s) where the last argument always refers to the situation
- actions: function symbols like repair(r, x)
- **atemporals**: relation symbols like *heavy*(*x*) that hold regardless of the situation

The vocabulary also includes the special symbols:

- the predicate **Poss**(*action*, *situation*) indicates that an action is possible in a certain situation
- the function **do**(*action*, *situation*) describes the resulting situation

< 回 ト < 三 ト < 三

- **fluents**: relation symbols like *broken*(*x*, *s*) where the last argument always refers to the situation
- actions: function symbols like repair(r, x)
- **atemporals**: relation symbols like *heavy*(*x*) that hold regardless of the situation

The vocabulary also includes the special symbols:

- the predicate **Poss**(*action*, *situation*) indicates that an action is possible in a certain situation
- the function **do**(*action*, *situation*) describes the resulting situation

A (1) > A (2) > A (2) >

- **fluents**: relation symbols like *broken*(*x*, *s*) where the last argument always refers to the situation
- actions: function symbols like *repair*(*r*, *x*)
- **atemporals**: relation symbols like *heavy*(*x*) that hold regardless of the situation

The vocabulary also includes the special symbols:

- the predicate **Poss**(*action*, *situation*) indicates that an action is possible in a certain situation
- the function **do**(*action*, *situation*) describes the resulting situation

(A) (B) (A) (B)

• $broken(x, s) \land hasGlue(r, s) \rightarrow Poss(repair(r, x), s)$

 [∀z ¬holding(r, z, s)] ∧ ¬heavy(x) ∧ nextTo(r, x, s) → Poss(repair(r, x), s)

Effect axioms:

• **Poss**(*repair*(r, x), s) $\rightarrow \neg broken(x, do(repair(<math>r, x$), s))

• **Poss**(drop(r, x), s) \land $fragile(x) \rightarrow broken(x, do(drop(r, x), s))$

• $broken(x, s) \land hasGlue(r, s) \rightarrow Poss(repair(r, x), s)$

• $[\forall z \neg holding(r, z, s)] \land \neg heavy(x) \land$ $nextTo(r, x, s) \rightarrow Poss(repair(r, x), s)$

Effect axioms:

• **Poss**(*repair*(r, x), s) $\rightarrow \neg broken(x, do(repair(<math>r, x$), s))

• **Poss**(drop(r, x), s) \land $fragile(x) \rightarrow broken(x, do(<math>drop(r, x), s$))

- $broken(x, s) \land hasGlue(r, s) \rightarrow Poss(repair(r, x), s)$
- $[\forall z \neg holding(r, z, s)] \land \neg heavy(x) \land$ $nextTo(r, x, s) \rightarrow Poss(repair(r, x), s)$

Effect axioms:

• **Poss**(*repair*(r, x), s) $\rightarrow \neg$ *broken*(x,**do**(*repair*(r, x), s))

• Poss(drop(r, x), s) \land $fragile(x) \rightarrow broken(x, do(drop(r, x), s))$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 5 / 44

イロト イポト イヨト イヨト 一日

• $broken(x, s) \land hasGlue(r, s) \rightarrow Poss(repair(r, x), s)$

•
$$[\forall z \neg holding(r, z, s)] \land \neg heavy(x) \land$$

 $nextTo(r, x, s) \rightarrow Poss(repair(r, x), s)$

Effect axioms:

- **Poss**(*repair*(r, x), s) $\rightarrow \neg$ *broken*(x,**do**(*repair*(r, x), s))
- $Poss(drop(r, x), s) \land fragile(x) \rightarrow broken(x, do(drop(r, x), s))$

The Frame Problem

The frame problem is

- one of the most famous AI problems
- "normally, only relatively few actions [...] will affect the truth value of a given fluent"

Frame axioms:

The Frame Problem

The frame problem is

- one of the most famous AI problems
- "normally, only relatively few actions [...] will affect the truth value of a given fluent"

Frame axioms:

 Poss(*drop*(*r*, *x*), *s*) ∧ *color*(*y*, *c*, *s*) → *color*(*y*, *c*, **do**(*drop*(*r*, *x*), *s*))
 Poss(*drop*(*r*, *x*), *s*) ∧ ¬*broken*(*y*, *s*) ∧ [*y* ≠ *x* ∨ ¬*fragile*(*y*)] → ¬*broken*(*y*, **do**(*drop*(*r*, *x*), *s*))

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 6 / 44

(3)

The Frame Problem

The frame problem is

- one of the most famous AI problems
- "normally, only relatively few actions [...] will affect the truth value of a given fluent"

Frame axioms:

•
$$Poss(drop(r, x), s) \land$$

 $color(y, c, s) \rightarrow color(y, c, do(drop(r, x), s))$
• $Poss(drop(r, x), s) \land \neg broken(y, s) \land$
 $[y \neq x \lor \neg fragile(y)] \rightarrow \neg broken(y, do(drop(r, x), s))$

Some database relations are modeled as fluents:

- enrolled(student, course, s)
- grade(student, course, grade, s)

Some as atemporals:

• prereq(prerequisite, course)

< 回 ト < 三 ト < 三

Some database relations are modeled as fluents:

- enrolled(student, course, s)
- grade(student, course, grade, s)

Some as atemporals:

prereq(prerequisite, course)

Transactions (changes to the database) are modeled as actions:

- register(student, course)
- change(student, course, grade)
- drop(student, course)

Most transactions have particular preconditions:

```
    Poss(drop(st, c), s) ↔ enrolled(st, c, s)
    Poss(register(st, c), s) ↔
        [∀p prereq(p, c)] → [∃g grade(st, p, g, s) ∧ g ≥ 50)
    Poss(change(st, c, g), s) ↔
        [∃g' grade(st, c, g', s) ∧ g' ≠ g]
```

Observe the common syntactic form of these preconditions!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Most transactions have particular preconditions:

Poss(drop(st, c), s) ↔ enrolled(st, c, s)
Poss(register(st, c), s) ↔ [∀p prereq(p, c)] → [∃g grade(st, p, g, s) ∧ g ≥ 50]
Poss(change(st, c, g), s) ↔ [∃g' grade(st, c, g', s) ∧ g' ≠ g]

Observe the common syntactic form of these preconditions!

Most transactions have particular preconditions:

- $Poss(drop(st, c), s) \leftrightarrow enrolled(st, c, s)$
- **Poss**(*register*(*st*, *c*), *s*) \leftrightarrow [$\forall p \, prereq(p, c)$] \rightarrow [$\exists g \, grade(st, p, g, s) \land g \ge 50$]
- Poss(change(st, c, g), s) \leftrightarrow [$\exists g' grade(st, c, g', s) \land g' \neq g$]

Observe the common syntactic form of these preconditions!

The most important and usually most complex parts are the effects of transactions:

 Poss(a, s) → [enrolled(st, c, do(a, s)) ↔
 a = register(st, c) ∨
 (enrolled(st, c, s) ∧ a ≠ drop(st, c))]

 Poss(a, s) → [grade(st, c, g, do(a, s)) ↔
 a = change(st, c, g) ∨
 (grade(st, c, g, s) ∧ [∀g' g' ≠ g → a ≠ change(st, c, g')])]

Observe the syntactic form and in particular the (implicit) universal quantification over transactions!

The most important and usually most complex parts are the effects of transactions:

 Poss(a, s) → [enrolled(st, c, do(a, s)) ↔
 a = register(st, c) ∨
 (enrolled(st, c, s) ∧ a ≠ drop(st, c))]
 Poss(a, s) → [grade(st, c, g, do(a, s)) ↔
 a = change(st, c, g) ∨
 (grade(st, c, g, s) ∧ [∀g' g' ≠ g → a ≠ change(st, c, g')])]

Observe the syntactic form and in particular the (implicit) universal quantification over transactions!

The Frame Problem Revisited

```
    Poss(a, s) → [enrolled(st, c, do(a, s)) ↔
    a = register(st, c) ∨
    (enrolled(st, c, s) ∧ a ≠ drop(st, c))]
```

implies

• $Poss(a, s) \land$ $a \neq register(st, c) \land a \neq drop(st, c)) \rightarrow$ $[enrolled(st, c, do(a, s)) \leftrightarrow enrolled(st, c, s)]$

"The database relation *enrolled* can *only* be affected by transactions *register* or *drop*."

(日)

The Frame Problem Revisited

```
    Poss(a, s) → [enrolled(st, c, do(a, s)) ↔
    a = register(st, c) ∨
    (enrolled(st, c, s) ∧ a ≠ drop(st, c))]
```

implies

• $Poss(a, s) \land$ $a \neq register(st, c) \land a \neq drop(st, c)) \rightarrow$ $[enrolled(st, c, do(a, s)) \leftrightarrow enrolled(st, c, s)]$

"The database relation *enrolled* can *only* be affected by transactions *register* or *drop*."

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 11 / 44

・ロト ・四ト ・ヨト ・ヨト

The Frame Problem Revisited

```
    Poss(a, s) → [enrolled(st, c, do(a, s)) ↔
    a = register(st, c) ∨
    (enrolled(st, c, s) ∧ a ≠ drop(st, c))]
```

implies

• $Poss(a, s) \land$ $a \neq register(st, c) \land a \neq drop(st, c)) \rightarrow$ $[enrolled(st, c, do(a, s)) \leftrightarrow enrolled(st, c, s)]$

"The database relation *enrolled* can *only* be affected by transactions *register* or *drop*."

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 11 / 44

イロン イロン イヨン イヨン 三日

```
• \mathsf{Poss}(a, s) \rightarrow [enrolled(st, c, \mathsf{do}(a, s)) \leftrightarrow a = register(st, c) \lor (enrolled(st, c, s) \land a \neq drop(st, c))]
```

Succinct representation of the frame axioms is possible because:

- quantification over all transactions
- the assumption that "few" transactions affect a particular database relation

What if we want to know

"Is John enrolled in any course after transaction sequence drop(John, C100), register(Mary, C100)from initial state S_0 ?"

We need to evaluate over our database the formula

```
∃c enrolled(John, c,
do(register(Mary, C100),
do(drop(John, C100), S<sub>0</sub>)))
```

This is called the temporal projection problem.

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 13 / 44

< 同 ト < 三 ト < 三 ト

What if we want to know

"Is John enrolled in any course after transaction sequence drop(John, C100), register(Mary, C100)from initial state S_0 ?"

We need to evaluate over our database the formula

```
∃c enrolled(John, c,
do(register(Mary, C100),
do(drop(John, C100), S₀)))
```

This is called the temporal projection problem.

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 13 / 44

B N A B N

The situation calculus used is

- a first-order language
- with equality and <</p>
- that is many-sorted (actions, situations)

But we later need one second-order feature, namely

• quantification over situations

The situation calculus used is

- a first-order language
- with equality and <</p>
- that is many-sorted (actions, situations)

But we later need one second-order feature, namely

quantification over situations

Axiomatizing Transactions

Unique name assumption for

- transactions (i.e. actions)
- states (i.e. situations)

In particular, for transactions it is enforced that

$$t(x_1,\ldots,x_n)=t'(y_1,\ldots,y_n)\to x_1=y_1\wedge\ldots\wedge x_n=y_n$$

This actually means that

Two states are equal if they have the same history, it is *not* enough for them to have equal values for all fluents.

< 回 > < 三 > < 三 >

Axiomatizing Transactions

Unique name assumption for

- transactions (i.e. actions)
- states (i.e. situations)

In particular, for transactions it is enforced that

$$t(x_1,\ldots,x_n)=t'(y_1,\ldots,y_n)\to x_1=y_1\wedge\ldots\wedge x_n=y_n$$

This actually means that

Two states are equal if they have the same history, it is *not* enough for them to have equal values for all fluents.

< ロ > < 同 > < 回 > < 回 >

Axiomatizing Transactions

Unique name assumption for

- transactions (i.e. actions)
- states (i.e. situations)

In particular, for transactions it is enforced that

$$t(x_1,\ldots,x_n)=t'(y_1,\ldots,y_n)\to x_1=y_1\wedge\ldots\wedge x_n=y_n$$

This actually means that

Two states are equal if they have the same history, it is *not* enough for them to have equal values for all fluents.

EN 4 EN

• $Poss(drop(st, c), s) \leftrightarrow enrolled(st, c, s)$ • $Poss(register(st, c), s) \leftrightarrow$ $[\forall p \, prereq(p, c)] \rightarrow [\exists g \, grade(st, p, g, s) \land g \ge 50]$ • $Poss(change(st, c, g), s) \leftrightarrow$ $[\exists g' \, grade(st, c, g', s) \land g' \neq g]$

A simple formula is a first-order formula that

- does not contain Poss or do
- does not quantify over states

< ロ > < 同 > < 回 > < 回 > < 回 > <

Poss(*drop*(*st*, *c*), *s*) ↔ *enrolled*(*st*, *c*, *s*)
 Poss(*register*(*st*, *c*), *s*) ↔
 [∀*p* prereq(*p*, *c*)] → [∃*g* grade(*st*, *p*, *g*, *s*) ∧ *g* ≥ 50]
 Poss(*change*(*st*, *c*, *g*), *s*) ↔
 [∃*q'* grade(*st*, *c*, *g'*, *s*) ∧ *g'* ≠ *q*]

A simple formula is a first-order formula that

- does not contain Poss or do
- does not quantify over states

3 + 4 = +

• $Poss(drop(st, c), s) \leftrightarrow enrolled(st, c, s)$

• **Poss**(*register*(*st*, *c*), *s*) \leftrightarrow [$\forall p \, prereq(p, c)$] \rightarrow [$\exists g \, grade(st, p, g, s) \land g \ge 50$]

• Poss(change(st, c, g), s) \leftrightarrow [$\exists g' grade(st, c, g', s) \land g' \neq g$]

A transaction precondition axiom has the form

 $\forall \vec{x} \forall s \mathbf{Poss}(transaction(x_1, \dots, x_n), s) \leftrightarrow \Pi_{transaction}$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 17 / 44

(B) (A) (B) (A)

- $Poss(drop(st, c), s) \leftrightarrow enrolled(st, c, s)$ • $Poss(register(st, c), s) \leftrightarrow$ $[\forall p \, prereq(p, c)] \rightarrow [\exists g \, grade(st, p, g, s) \land g \ge 50]$
- Poss(change(st, c, g), s) \leftrightarrow [$\exists g' grade(st, c, g', s) \land g' \neq g$]

A transaction precondition axiom has the form

 $\forall \vec{x} \forall s \text{ Poss}(transaction(x_1, \dots, x_n), s) \leftrightarrow \Pi_{transaction}$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 17 / 44

• $Poss(a, s) \rightarrow [enrolled(st, c, do(a, s)) \leftrightarrow$ $a = register(st, c) \lor$ $(enrolled(st, c, s) \land a \neq drop(st, c))]$ • $Poss(a, s) \rightarrow [grade(st, c, g, do(a, s)) \leftrightarrow$ $a = change(st, c, g) \lor$ $(grade(st, c, g, s) \land [\forall g' g' \neq g \rightarrow a \neq change(st, c, g')])]$

A successor state axiom has the form

 $\forall a \forall s \mathsf{Poss}(a, s) \rightarrow \forall \vec{x} \mathsf{fluent}(x_1, \dots, x_n, \mathsf{do}(a, s)) \leftrightarrow \Phi_{\mathsf{fluent}}$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 18 / 44

(日)

• $Poss(a, s) \rightarrow [enrolled(st, c, do(a, s)) \leftrightarrow$ $a = register(st, c) \lor$ $(enrolled(st, c, s) \land a \neq drop(st, c))]$ • $Poss(a, s) \rightarrow [grade(st, c, g, do(a, s)) \leftrightarrow$ $a = change(st, c, g) \lor$ $(grade(st, c, g, s) \land [\forall g' g' \neq g \rightarrow a \neq change(st, c, g')])]$

A successor state axiom has the form

 $\forall a \forall s \mathsf{Poss}(a, s) \rightarrow \forall \vec{x} \mathsf{fluent}(x_1, \dots, x_n, \mathsf{do}(a, s)) \leftrightarrow \Phi_{\mathsf{fluent}}$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 18 / 44

Key to Reiter's solution to the Frame Problem are successor state axioms like

• $\mathsf{Poss}(a, s) \rightarrow [grade(st, c, g, \mathsf{do}(a, s)) \leftrightarrow a = change(st, c, g) \lor (grade(st, c, g, s) \land [\forall g' g' \neq g \rightarrow a \neq change(st, c, g')])]$

A tuple is contained in the database if and only if

- it is added by a transaction
- it was there and is not deleted by a transaction

Key to Reiter's solution to the Frame Problem are successor state axioms like

• $\mathsf{Poss}(a, s) \rightarrow [grade(st, c, g, \mathsf{do}(a, s)) \leftrightarrow a = change(st, c, g) \lor (grade(st, c, g, s) \land [\forall g' g' \neq g \rightarrow a \neq change(st, c, g')])]$

A tuple is contained in the database if and only if

- it is added by a transaction
- it was there and is not deleted by a transaction

In Database applications,

- a log is a sequence of update transactions
- queries are processed wrt. the log
- transactions (esp. here) are virtual

Questions to be addressed

Given: Query Q, transaction sequence τ_1, \ldots, τ_n

- Is τ_1, \ldots, τ_n a legal sequence?
- What is the answer to Q, wrt. S_0 ?

In Database applications,

- a log is a sequence of update transactions
- queries are processed wrt. the log
- transactions (esp. here) are virtual

Questions to be addressed

Given: Query Q, transaction sequence τ_1, \ldots, τ_n

- Is τ_1, \ldots, τ_n a legal sequence?
- What is the answer to Q, wrt. S_0 ?

• Illegal transaction sequences fairly exist:

Example

- *drop*(*Sue*, *C*100), *change*(*Bill*, *C*100, 60)
- Is false, if e.g. **Poss**(*drop*(*Sue*, *C*100), *S*₀)) is

Transaction sequence is legal iff:

• beginning in state S₀

 each transaction in the sequence is possible and results from the preceeding one

Ordering Relation < on states</td> $(\forall s) \neg s < S_0$ (1) $(\forall a, s, s') . s < do(a, s') \leftrightarrow Poss(a, s') \land s \le s'$ (2) Burger, Ruhroth and Sallinger () On Specifying Database Updates FCCOD '2014 21/44

• Illegal transaction sequences fairly exist:

Example

- *drop*(*Sue*, *C*100), *change*(*Bill*, *C*100, 60)
- Is false, if e.g. $Poss(drop(Sue, C100), S_0))$ is

Transaction sequence is legal iff:

- beginning in state S₀
- each transaction in the sequence is possible and results from the preceeding one

Ordering Relation < on states</td> $(\forall s) \neg s < S_0$ (1) $(\forall a, s, s') . s < do(a, s') \leftrightarrow Poss(a, s') \land s \le s'$ (2) $\Box \succ A \blacksquare \lor A \blacksquare$

• Illegal transaction sequences fairly exist:

Example

- *drop*(*Sue*, *C*100), *change*(*Bill*, *C*100, 60)
- Is false, if e.g. $Poss(drop(Sue, C100), S_0))$ is

Transaction sequence is legal iff:

- beginning in state S₀
- each transaction in the sequence is possible and results from the preceeding one

Ordering Relation < on states</th> $(\forall s) \neg s < S_0$ (1) $(\forall a, s, s') . s < do(a, s') \leftrightarrow Poss(a, s') \land s \le s'$ (2)

Common induction principle to be used later on:

 $(\forall P).P(S_0) \land (\forall a, s)[P(s) \rightarrow P(\operatorname{do}(a, s))] \rightarrow (\forall s)P(s).$ (3)

• Compare with the induction axiom for natural numbers:

 $(\forall P).P(0) \land (\forall x)[P(x) \rightarrow P(succ(x))] \rightarrow (\forall x)P(x).$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 22 / 44

< 日 > < 同 > < 回 > < 回 > < □ > <

• Common induction principle to be used later on:

 $(\forall P).P(S_0) \land (\forall a, s)[P(s) \rightarrow P(\operatorname{do}(a, s))] \rightarrow (\forall s)P(s).$ (3)

• Compare with the induction axiom for natural numbers:

 $(\forall P).P(0) \land (\forall x)[P(x) \rightarrow P(succ(x))] \rightarrow (\forall x)P(x).$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 22 / 44

Definition of database

- Given: sequence of transaction terms τ_1, \ldots, τ_n
- The sequence is legal iff

$$\mathcal{D} \models S_0 \leq do([\tau_1, \dots, \tau_n])$$

while Database \mathcal{D} is formalized as:

- $\mathcal{D} = \Sigma \cup \mathcal{D}_{ss} \cup \mathcal{D}_{tp} \cup \mathcal{D}_{uns} \cup \mathcal{D}_{unt} \cup \mathcal{D}_{S_{c}}$
 - Σ: set of the three state axioms
 - \mathcal{D}_{ss} : set of successor state axioms
 - \mathcal{D}_{tp} : set of transaction precondition axioms
 - D_{uns}: set of unique names axioms for states
 - \mathcal{D}_{unt} : set of unique names axioms for transactions
 - *D*_{S₀}: set of FO sentences with only S₀ referenced
 → initial database

Bürger, Ruhroth and Sallinger ()

Definition of database

- Given: sequence of transaction terms τ_1, \ldots, τ_n
- The sequence is legal iff

$$\mathcal{D} \models S_0 \leq \mathbf{do}([\tau_1, \dots, \tau_n])$$

while Database \mathcal{D} is formalized as:

$$\mathcal{D} = \Sigma \cup \mathcal{D}_{ss} \cup \mathcal{D}_{tp} \cup \mathcal{D}_{uns} \cup \mathcal{D}_{unt} \cup \mathcal{D}_{S_{cons}}$$

- Σ: set of the three state axioms
- \mathcal{D}_{ss} : set of successor state axioms
- \mathcal{D}_{tp} : set of transaction precondition axioms
- D_{uns}: set of unique names axioms for states
- \mathcal{D}_{unt} : set of unique names axioms for transactions
- *D*_{S₀}: set of FO sentences with only S₀ referenced
 → initial database

Regression Operator

Regression operator $\ensuremath{\mathcal{R}}$

- unfolding operation
- reduce complexity of ground terms¹
- application may lead to formula with S_0 as only state term
- $\bullet \rightsquigarrow$ reduced complexity in theorem proving

Usage:

- defined recursively using formula substitution
- recursively substitutes parts of a formular into their successor state axioms
- reduces depth of nesting function symbol do in formulae
- \mathcal{R}^n lets \mathcal{R} be applied in a nested way:

• For $n=1,2,\ldots$: $\mathcal{R}^{n}[G] = \mathcal{R}[\mathcal{R}^{n-1}[G]]$ aso.

¹terms not mentioning any variable

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

Regression Operator

Regression operator ${\mathcal R}$

- unfolding operation
- reduce complexity of ground terms¹
- application may lead to formula with S_0 as only state term
- ~> reduced complexity in theorem proving

Usage:

- defined recursively using formula substitution
- recursively substitutes parts of a formular into their successor state axioms
- reduces depth of nesting function symbol do in formulae
- \mathcal{R}^n lets \mathcal{R} be applied in a nested way:

• For $n=1,2,\ldots$: $\mathcal{R}^{n}[G] = \mathcal{R}[\mathcal{R}^{n-1}[G]]$ aso.

¹terms not mentioning any variable

Legal Transaction Sequences Legality wrt. D

Theorem [Rei95]:

The sequence τ_1, \ldots, τ_n [...] of sort transaction is legal wrt. \mathcal{D} iff

$$\mathcal{D}_{unt} \cup \mathcal{D}_{S_0} \models \bigwedge_{i=1}^n \mathcal{R}^{i-1}[precond(\tau_i, \mathbf{do}([\tau_1, \dots, \tau_{i-1}], S_0))].$$

precond(τ ,*s*) specifies circumstances under which ground transaction τ is possible in state *s*.

A (10) A (10)

Example: Legality Testing

Consider following transaction sequence:

Example register(Bill, C100), drop(Bill, C100), drop(Bill, C100)

 $\mathcal{R}^{0}[precond(register(Bill, C100), S_{0})] \land$ $\mathcal{R}^{1}[precond(drop(Bill, C100), \mathbf{do}(register(Bill, C100), S_{0}))] \land$ $\mathcal{R}^{2}[precond(drop(Bill, C100), \mathbf{do}(register(Bill, C100), S_{0}))]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Legality Testing

Consider following transaction sequence:

Example register(Bill, C100), drop(Bill, C100), drop(Bill, C100)

 $\begin{array}{l} \mathcal{R}^{0}[precond(register(Bill, C100), S_{0})] \land \\ \mathcal{R}^{1}[precond(drop(Bill, C100), \mathbf{do}(register(Bill, C100), S_{0}))] \land \\ \mathcal{R}^{2}[precond(drop(Bill, C100), \mathbf{do}(register(Bill, C100), S_{0})))] \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Legality Testing (cont'd)

which is

$$\begin{split} \mathcal{R}^0[(\forall p).prerequ(p, C100) \rightarrow (\exists g).grade(Bill, p, g, S_0) \land g \geq 50] \land \\ \mathcal{R}^1[enrolled(Bill, C100, \textbf{do}(register(Bill, C100), S_0))] \land \\ \mathcal{R}^2[enrolled(Bill, C100), \textbf{do}(register(Bill, C100), S_0))]) \end{split}$$

which leads to

 $\{(\forall p).prerequ(p, C100) \rightarrow (\exists g).grade(Bill, p, g, S_0) \land g \geq 50\} \land true \land false$

Example: Legality Testing (cont'd)

which is

$$\begin{split} \mathcal{R}^0[(\forall p).prerequ(p, C100) \rightarrow (\exists g).grade(Bill, p, g, S_0) \land g \geq 50] \land \\ \mathcal{R}^1[enrolled(Bill, C100, \textbf{do}(register(Bill, C100), S_0))] \land \\ \mathcal{R}^2[enrolled(Bill, C100), \textbf{do}(register(Bill, C100), S_0)))] \end{split}$$

which leads to

 $\{(\forall p).prerequ(p, C100) \rightarrow (\exists g).grade(Bill, p, g, S_0) \land g \ge 50\} \land true \land false$

Given: Sequence τ₁,..., τ_n of transaction terms
Query Q(s)

What is the answer to Q in the state that results by applying τ_1, \ldots, τ_i beginning with database in state S_0 ?

Formally:

Reiter's result

Given a legal transaction sequence τ_1, \ldots, τ_n ,

$$\mathcal{D} \models \mathcal{Q}(\mathsf{do}([\tau_1,\ldots,\tau_n],S_0))$$

iff

$\mathcal{D}_{unt} \cup \mathcal{D}_{S_0} \models \mathcal{R}^n[\mathcal{Q}(\mathsf{do}[\tau_1, \ldots, \tau_n], S_0))]$

Bürger, Ruhroth and Sallinger ()

Given: Sequence τ₁,..., τ_n of transaction terms
Query Q(s)

What is the answer to Q in the state that results by applying τ_1, \ldots, τ_i beginning with database in state S_0 ?

Formally:

$$\mathcal{D} \models Q(\mathsf{do}([\tau_1, \ldots, \tau_n], S_0))$$

Reiter's result

Given a legal transaction sequence τ_1, \ldots, τ_n ,

$$\mathcal{D} \models \mathcal{Q}(\mathsf{do}([\tau_1,\ldots,\tau_n],S_0))$$

iff

$\mathcal{D}_{unt} \cup \mathcal{D}_{S_0} \models \mathcal{R}^n[\mathcal{Q}(\mathbf{do}[\tau_1, \ldots, \tau_n], S_0))]$

Bürger, Ruhroth and Sallinger ()

Given: Sequence τ₁,..., τ_n of transaction terms
Query Q(s)

What is the answer to Q in the state that results by applying τ_1, \ldots, τ_i beginning with database in state S_0 ?

Formally:

$$\mathcal{D} \models Q(\mathsf{do}([\tau_1, \ldots, \tau_n], S_0))$$

Reiter's result

Given a legal transaction sequence τ_1, \ldots, τ_n ,

$$\mathcal{D} \models Q(\mathsf{do}([\tau_1, \ldots, \tau_n], S_0))$$

iff

$$\mathcal{D}_{unt} \cup \mathcal{D}_{\mathcal{S}_0} \models \mathcal{R}^n[Q(\mathbf{do}[\tau_1, \dots, \tau_n], \mathcal{S}_0))]$$

Bürger, Ruhroth and Sallinger ()

Given:

```
T = change(Bill, C100, 60), register(Sue, C200), drop(Bill, C100)
```

Query:

 $(\exists st).enrolled(st, C200, do(T, S_0)) \land \neg enrolled(st, C100, do(T, S_0)) \land (\exists g).grade(st, C200, g, do(T, S_0)) \land g \ge 50$

- $\rightsquigarrow \mathcal{R}^3$ needs to be computed.
- Applying some simplifications (and assume $D_{S_0} \models C100 \neq C200$):

 $\exists st).[st = Sue \lor enrolled(st, C200, S_0)] \land$

 $[(\exists g).grade(st, C200, g, S_0) \land g \ge 50]$

3

Given:

```
\textbf{T} = \textit{change}(\textit{Bill}, \textit{C100}, 60), \textit{register}(\textit{Sue}, \textit{C200}), \textit{drop}(\textit{Bill}, \textit{C100})
```

Query:

 $(\exists st).enrolled(st, C200, do(T, S_0)) \land \neg enrolled(st, C100, do(T, S_0)) \land (\exists g).grade(st, C200, g, do(T, S_0)) \land g \ge 50$

- $\rightsquigarrow \mathcal{R}^3$ needs to be computed.
- Applying some simplifications (and assume $\mathcal{D}_{S_0} \models C100 \neq C200$):

 $(\exists st).[st = Sue \lor enrolled(st, C200, S_0)] \land$ $[st = Bill \lor \neg enrolled(st, C100, S_0)] \land$ $[(\exists g).grade(st, C200, g, S_0) \land g \ge 50]$

3

Proving Properties of Database States

Induction and the Verification of Integrity Constraints

- Recall analogy between natural numbers and database updates:
- let *S*₀ be identified with *0* and **do**(*Add* 1, *s*) as the successor of the natural number *s*

Reiter introduces two induction principles:

• $IP_{S_0 \leq s}$

• (a property holds all the time)

• $IP_{S_0 \leq s \land s \leq s'}$

• (a property holds between two states s, s')

- ~ Can be used to prove
 - functionial dependencies (when using *grade*, all the other grades remain unchanged)
 - dynamic integrity constraints (dynamically checking if salary of an employee ever decreases)

Proving Properties of Database States

Induction and the Verification of Integrity Constraints

- Recall analogy between natural numbers and database updates:
- let *S*₀ be identified with *0* and **do**(*Add* 1, *s*) as the successor of the natural number *s*

Reiter introduces two induction principles:

- $IP_{S_0 \leq s}$
 - (a property holds all the time)
- $IP_{S_0 \leq s \land s \leq s'}$
 - (a property holds between two states s, s')
- ~ Can be used to prove
 - functionial dependencies (when using *grade*, all the other grades remain unchanged)
 - dynamic integrity constraints (dynamically checking if salary of an employee ever decreases)

- Transaction Logs and Historical Queries
- Complexity of Query Evaluation
- Actualizing Transactions
- Updates in the Logic Programming Context
- Views
- State Constraints and the Ramification and Qualification Problems

Focus

Transaction Logs and Historical Queries

- Complexity of Query Evaluation
- Actualizing Transactions
- Updates in the Logic Programming Context
- Views
- State Constraints and the Ramification and Qualification Problems

Focus

Transaction Logs and Historical Queries

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 32 / 44

Action Example: Has some action happened in the history?

Has Mary dropped the course C100? *drop(Mary, C*100)

Property Example: Has some action happened in the history? Has Sue always worked in Department 13? amp(Sue, 13, s)

Action Example: Has some action happened in a part of the history?

Has Mary dropped the course C100 between situation s and s'? *drop*(*Mary*, C100)

・ロト ・四ト ・ヨト ・ヨト

Specific Point in History

 $(\exists s). S_0 \leq s \land s \leq s' \land some prop(s)$ $(\exists s). S_0 \leq s \land s \leq do(T, S_0) \land some prop(s)$

Whole History

 $(\forall s). S_0 \leq s \land s \leq s' \rightarrow someprop(s)$ $(\forall s). S_0 \leq s \land s \leq do(T, S_0) \rightarrow someprop(s)$

Part of History

$$(\textit{occurs} - \textit{between}(a, s, s') \stackrel{ riangle}{=} (\exists s'').s < \mathsf{do}(a, s'') < s'$$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 34 / 44

Has Mary dropped the course C100?

 $(\exists s, s'). S_0 \leq s \land s \leq \mathsf{do}(T, S_0) \land s = \mathsf{do}(\mathit{drop}(\mathit{Mary}, C100), s')$

Has Sue always worked in Department 13?

 $(\forall s). S_0 \leq s \land s \leq do(T, S_0) \rightarrow emp(Sue, 13, s)$

Has Mary dropped the course C100 between two situation s and s'?

(occurs - between(drop(Mary, C100), s, s')

Transform into "Action-Form" $emp(Sue, 13, S_0) \land$ $\neg occurs - between(fire(Sue), S_0, do(T, S_0)) \land$ $\neg occurs - between(quit(Sue), S_0, do(T, S_0))$

Execution of query

Use induction and/or simple list processing

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 36 / 44

4 A N 4

State Constraints and the Ramification and Qualification Problems

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 37 / 44

 $(\forall s, st). S_0 \leq s \land enrolled(st, C200, s) \rightarrow enrolled(st, C100, s)$

Solution 1: extend successor-state axioms Enforce next action to be register in missing course

Solution 2: extend transaction-precondition axioms Ensure that register in C200 is only possible if enrolled in C100

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 38 / 44

Original successor-state

Extended successor-state

```
\begin{array}{l} \textbf{Poss}(a,s) \rightarrow \{ \textit{enrolled}(st,c,\textbf{do}(a,s)) \leftrightarrow \\ a = \textit{register}(st,c) \\ \forall c = C100 \land a = \textit{register}(st,C200) \\ \forall \textit{enrolled}(st,c,s) \land a \neq \textit{drop}(st,c) \land [c = C200 \rightarrow a \neq \textit{drop}(st,C100)] \} \end{array}
```

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 39 / 44

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Original transaction-preconditionPoss(register(st, c), s) \leftrightarrow { $(\forall p).prerequ(p, c) \rightarrow (\exists g).grade(st, p, g, s) \land g \ge 50$ }

Extended transaction-precondition

 $\begin{array}{l} \textbf{Poss}(\textit{register}(st,c),s) \leftrightarrow \\ \{(\forall p)[\textit{prerequ}(p,c) \rightarrow (\exists g).\textit{grade}(st,p,g,s) \land g \geq 50] \\ \land [c = C200 \rightarrow \textit{enrolled}(st,C100,s)] \} \end{array}$

Bürger, Ruhroth and Sallinger ()

On Specifying Database Updates

FCCOD '2014 40 / 44

く 同 ト く ヨ ト く ヨ ト

$(\forall s, st). \textit{S}_{0} \leq s \land \textit{enrolled}(st, \textit{C200}, s) \rightarrow \textit{enrolled}(st, \textit{C100}, s)$

can be proofed (e.g., using Induction) to be fulfilled by the extended axioms.

周 ト イ ヨ ト イ ヨ ト

- Transaction Logs and Historical Queries
- Complexity of Query Evaluation
- Actualizing Transactions
- Updates in the Logic Programming Context
- Views
- State Constraints and the Ramification and Qualification Problems

Conclusion

Database updates specified using situation calculus
 Situation Calculus
 Database Transactions
 Transaction Logs and Evaluation
 Proving Properties of Database States
 Extensions
 Conclusion

Questions?

∃ ► < ∃</p>

A b

References

- Fangzhen Lin, *Situation calculus*, Handbook of Knowledge Representation (Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, eds.), Elsevier, 2008.
- John McCarthy, *Situations, actions and causal laws*, Semantic Information Processing (1968), 410–417.
- John McCarthy and Patrick Hayes, *Some philosophical problems from the standpoint of artificial intelligence*, Machine Intelligence (1969), 463–502.
- Raymond Reiter, On specifying database updates, J. Log. Program. 25 (1995), no. 1, 53–91.

, *Knowledge in action*, MIT Press, 2001.