On the Difference between Updating a Knowledge Base and Revising it: Survey Talk on the KR '1991 Paper by H. Katsuno and A. Mendelzon

Mathew Joseph^{1,2}, Vadim Savenkov³

¹Data and Knowledge Management unit, FBK-IRST, Trento, Italy

²DISI, University of Trento, Trento, Italy

³Vienna University of Technology, Vienna, Austria

Research School FCCOD '2014, Bolzano, Italy

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

Outline

Introduction

- Revision and Update
 KB Revision
 KB Update
 - KB Update
- Contraction and Erasure
 Contraction
 - Erasure

Unifying Revision and Update Operations: Time Aspect

ヘロト ヘワト ヘビト ヘビト

KB Evolution: Revision vs. Update

A Knowledge Base (KB) can eventually become inadequate and require change.

Notation

- ψ is a KB. Models, $Mod(\psi)$, of ψ describe *possible worlds*.
- μ specifies the change to be incorporated into ϕ .
- The authors argue that change caused by adding μ to ψ are mainly of two different kinds.

イロン 不良 とくほう 不良 とうほ

Possible Causes for KB Evolution

- The world described by the KB ψ changes.
 μ is called update in this case. Notation: ψ ◊ μ.
- New knowledge about the world becomes available.
 ψ requires revision μ, denoted as ψ ο μ.

Update

Revision

ヘロン ヘアン ヘビン ヘビン

Make each possible world a model of μ by some minimal change.

Invalidate possible worlds which are far enough from μ .

Possible Causes for KB Evolution

- The world described by the KB ψ changes.
 μ is called update in this case. Notation: ψ ◊ μ.
- New knowledge about the world becomes available.
 ψ requires revision μ, denoted as ψ ο μ.

Example

- $\psi=\text{`'Joe's}\ \mathrm{GF}$ often cancels their dates lately"
 - \wedge "She is 30 minutes late now"
 - \land (\heartsuit : "She is serious about Joe" $\lor \clubsuit$: "... far less than about her cat")
- $\mu=$ "Came late because she was at a movie with another guy."

 $\mu \Rightarrow \neg \heartsuit$:-(

Update: doesn't allow you to infer ♣

Revision: allows you to also infer ♣

Revision and Update Unifying Revision and Update Operations: Time Aspect

- Revision and Update
 KB Revision
 KB Update
- Contraction and Erasure
 Contraction
 Frasure

Unifying Revision and Update Operations: Time Aspect

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

ヘロト ヘワト ヘビト ヘビト

э

KB Revision

KB Update

KB Revision

Suppose old KB is given by ψ and new knowledge μ , the knowledge revision operator \circ is defined as:

Definition (KB Revision)

 $\psi \circ \mu$ is the propositional theory s.t. $Mod(\psi \circ \mu)$ are the set of models of μ that are closest to the set of models of ψ

Closeness could be defined using Dalal's [Dalal, 1988] notion of distance, hence,

 $\begin{aligned} \textit{Mod}(\psi \circ \mu) &= \{\textit{I} \in \textit{Mod}(\mu) \mid \not\exists \textit{I}' \in \textit{Mod}(\mu) \text{ s.t.} \\ \textit{distance}(\textit{Mod}(\psi), \textit{I}') < \textit{distance}(\textit{Mod}(\psi), \textit{I}) \} \end{aligned}$

イロン 不良 とくほう 不良 とうほ

KB Revision

Revision and Update Unifying Revision and Update Operations: Time Aspect

KB Revision KB Update

Distance [Dalal, 1988]

 $diff(I_1, I_2) = \{ p \in \mathbb{P} \mid I_1(p) \neq I_2(p) \},\\ distance(I_1, I_2) = |diff(I_1, I_2)|.$

For a set of models M, distance $(M, I_1) = min\{distance(I_2, I_1) | I_2 \in M\}$.

Example

5 objects A, B, C, D, E and a *table* are in a room. The 5 Objects may be on or off the table. The sentence *a* intuitively means "Object A is on the table". Similarly *b*, *c*, *d*, *e* are interpreted. Suppose old KB ψ is the sentence

$$\psi = (a \land \neg b \land \neg c \land \neg d \land \neg e) \lor (\neg a \land \neg b \land c \land d \land e)$$

ヘロン ヘアン ヘビン ヘビン

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{I_1, I_2\}, \text{ where } I_1 = \{a\}, I_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ イロン 不良 とくほ とうせい

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{l_1, l_2\}, \text{ where } l_1 = \{a\}, l_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ イロン 不良 とくほ とうせい

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{I_1, I_2\}, \text{ where } I_1 = \{a\}, I_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{I_1, I_2\}, \text{ where } I_1 = \{a\}, I_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ $distance(I_1, I_3) = 4$, $distance(I_2, I_3) = 2$, イロン 不良 とくほ とうせい

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{l_1, l_2\}, \text{ where } l_1 = \{a\}, l_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ $distance(I_1, I_3) = 4$, $distance(I_2, I_3) = 2$,

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{l_1, l_2\}, \text{ where } l_1 = \{a\}, l_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ $distance(I_1, I_3) = 4$, $distance(I_2, I_3) = 2$, hence, distance($Mod(\psi), I_3$) = min{4, 2} = 2.

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{l_1, l_2\}, \text{ where } l_1 = \{a\}, l_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ $distance(I_1, I_3) = 4$, $distance(I_2, I_3) = 2$, hence, distance($Mod(\psi), I_3$) = min{4, 2} = 2. $diff(I_1, I_4) = \{a\}, diff(I_2, I_4) = \{c, d, e\},$

KB Revision

KB Update

Example (Contd.) $\mu = (a \land b \land c \land d \land e) \lor (\neg a \land \neg b \land \neg c \land \neg d \land \neg e)$ $Mod(\psi) = \{l_1, l_2\}, \text{ where } l_1 = \{a\}, l_2 = \{c, d, e\}$ $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{a, b, c, d, e\}, I_4 = \{\}.$ $diff(I_1, I_3) = \{b, c, d, e\}, diff(I_2, I_3) = \{a, b\},\$ $distance(I_1, I_3) = 4$, $distance(I_2, I_3) = 2$, hence, distance($Mod(\psi), I_3$) = min{4, 2} = 2. $diff(I_1, I_4) = \{a\}, diff(I_2, I_4) = \{c, d, e\},\$ イロン 不良 とくほ とうせい

KB Revision

KB Update

```
Example (Contd.)
distance(I_1, I_4) = 1, distance(I_2, I_4) = 3,
```

hence, $distance(Mod(\psi), I_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

```
which means Mod(\psi \circ \mu) = I_4.
```

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

<ロ> (四) (四) (三) (三) (三)

```
Example (Contd.)
distance(I_1, I_4) = 1, distance(I_2, I_4) = 3,
```

hence, $distance(Mod(\psi), l_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

```
which means Mod(\psi \circ \mu) = I_4.
```

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example (Contd.) $distance(I_1, I_4) = 1$, $distance(I_2, I_4) = 3$,

hence, $distance(Mod(\psi), I_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

which means $Mod(\psi \circ \mu) = I_4$.

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

イロン 不得 とくほ とくほう 一日

KB Revision

KB Update

Example (Contd.) distance(l_1, l_4) = 1, distance(l_2, l_4) = 3,

hence, $distance(Mod(\psi), I_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

```
which means Mod(\psi \circ \mu) = I_4.
```

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example (Contd.) distance(I_1 , I_4) = 1, distance(I_2 , I_4) = 3,

hence, $distance(Mod(\psi), I_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

```
which means Mod(\psi \circ \mu) = I_4.
```

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Example (Contd.) distance(I_1 , I_4) = 1, distance(I_2 , I_4) = 3,

hence, $distance(Mod(\psi), I_4) = min\{1, 3\} = 1$.

Recall, $distance(Mod(\psi), I_3) = 2$

which means $Mod(\psi \circ \mu) = I_4$.

Hence, $\psi \circ \mu \equiv \neg a \land \neg b \land \neg c \land \neg d \land \neg e$.

(日)

KB Revision KB Update

Revision Postulates [Alchourrón et al. 1985]

R1 $\psi \circ \mu$ implies μ .

R2 If $\psi \wedge \mu$ is satisfiable then $\psi \circ \mu \equiv \psi \wedge \mu$.

R3 If μ is satisfiable then $\psi \circ \mu$ is satisfiable.

R4 If $\psi_1 \equiv \psi_2$ and $\mu_1 \equiv \mu_2$ then $\psi_1 \circ \mu_1 \equiv \psi_2 \circ \mu_2$.

R5 If $(\psi \circ \mu) \land \phi$ implies $\psi \circ (\mu \land \phi)$.

R6 If $(\psi \circ \mu) \land \phi$ is satisfiable then $\psi \circ (\mu \land \phi)$ implies $(\psi \circ \mu) \land \phi$.

KB Revision KB Update

Orders between interpretations

Let \mathcal{I} be the set of all interpretations over a language \mathcal{L} . A *preorder* \leq over \mathcal{I} is a *reflexive* and *transitive* relation on \mathcal{I} . Define < as I < I' iff $I \leq I'$ and $I' \leq I$.

Suppose we assign every formula ψ , a preorder \leq_{ψ} over \mathcal{I} . This assignment is faithful iff:

- If $I, I' \in Mod(\psi)$ then $I <_{\psi} I'$ does not hold.
- If $I \in Mod(\psi)$ and $I' \notin Mod(\psi)$ then $I <_{\psi} I'$ holds.

 $If \ \psi \equiv \phi \ then \ \leq_{\psi} = \leq_{\phi}.$

For any $M \subseteq \mathcal{I}$, $Min(M, \leq_{\psi})$ be the set of all interpretations *I* s.t. *I* is minimal in *M* w.r.t. \leq_{ψ} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

KB Revision KB Update

Soundness and Completeness

Theorem (Soundness and Completeness)

Revision operator \circ satisfies postulates (R1)-(R6) iff there exists a faithful assignment that maps each KB ψ to a total preorder \leq_{ψ} s.t. $Mod(\psi \circ \mu) = Min(Mod(\mu), \leq_{\psi})$.

イロン 不良 とくほう イロン しゅ

KB Update

Suppose old KB is given by ψ and new knowledge $\mu,$ the knowledge update operator \diamond is defined as:

Definition (KB Update)

 $\psi \diamond \mu$ is the propositional theory s.t.

$$\mathit{Mod}(\psi \diamond \mu) = igcup_{\mathit{I} \in \mathit{Mod}(\psi)} \mathit{closest}(\mathit{Mod}(\mu), \mathit{I})$$

KB Revision

KB Update

Closeness could be the following notion: for any interpretations $I, J_1, J_2, J_1 \leq_I J_2$ iff $diff(J_1, I) \subseteq diff(J_2, I)$.

 $closest(Mod(\mu), I) = Min(Mod(\mu), \leq_I)$, i.e the set of all minimal elements in $Mod(\mu)$ w.r.t. \leq_I relation.

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}$$
, where $I_1 = \{a\}, I_2 = \{b\}$, and

 $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{b\}, I_4 = \{a, b\}.$

 $\begin{array}{l} \textit{diff}(l_1, l_3) = \{a, b\}, \textit{diff}(l_1, l_4) = \{b\}, \textit{hence}, l_4 \leq_{l_1} l_3 \\ \textit{diff}(l_2, l_3) = \emptyset, \qquad \textit{diff}(l_2, l_4) = \{a\}, \textit{hence}, l_3 \leq_{l_2} l_4 \end{array}$

ヘロト ヘワト ヘビト ヘビト

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

 $Mod(\psi) = \{I_1, I_2\}$, where $I_1 = \{a\}$, $I_2 = \{b\}$, and

 $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{b\}, I_4 = \{a, b\}.$

 $\begin{array}{l} \textit{diff}(\textit{I}_1,\textit{I}_3) = \{\textit{a},\textit{b}\}, \textit{diff}(\textit{I}_1,\textit{I}_4) = \{\textit{b}\}, \textit{hence}, \textit{I}_4 \leq_{\textit{I}_1} \textit{I}_3 \\ \textit{diff}(\textit{I}_2,\textit{I}_3) = \emptyset, \quad \textit{diff}(\textit{I}_2,\textit{I}_4) = \{\textit{a}\}, \textit{hence}, \textit{I}_3 \leq_{\textit{I}_2} \textit{I}_4 \end{array}$

・ロン ・雪 と ・ ヨ と

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}$$
, where $I_1 = \{a\}$, $I_2 = \{b\}$, and

 $Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{b\}, I_4 = \{a, b\}.$

 $diff(I_1, I_3) = \{a, b\}, diff(I_1, I_4) = \{b\}, hence, I_4 \leq_{I_1} I_3 \\ diff(I_2, I_3) = \emptyset, \quad diff(I_2, I_4) = \{a\}, hence, I_3 \leq_{I_2} I_4$

ヘロト ヘワト ヘビト ヘビト

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}$$
, where $I_1 = \{a\}, I_2 = \{b\}$, and

$$Mod(\mu) = \{I_3, I_4\}$$
, where $I_3 = \{b\}$, $I_4 = \{a, b\}$.

 $diff(I_1, I_3) = \{a, b\}, diff(I_1, I_4) = \{b\}, hence, I_4 \leq_{I_1} I_3 \\ diff(I_2, I_3) = \emptyset, \quad diff(I_2, I_4) = \{a\}, hence, I_3 \leq_{I_2} I_4$

ヘロト ヘワト ヘビト ヘビト

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}, \text{ where } I_1 = \{a\}, I_2 = \{b\}, \text{ and }$$

$$Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{b\}, I_4 = \{a, b\}.$$

$$diff(I_1, I_3) = \{a, b\}, diff(I_1, I_4) = \{b\}, hence, I_4 \leq_{I_1} I_3 \\ diff(I_2, I_3) = \emptyset, \quad diff(I_2, I_4) = \{a\}, hence, I_3 \leq_{I_2} I_4$$

ヘロト ヘワト ヘビト ヘビト

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}, \text{ where } I_1 = \{a\}, I_2 = \{b\}, \text{ and }$$

$$Mod(\mu) = \{I_3, I_4\}, \text{ where } I_3 = \{b\}, I_4 = \{a, b\}.$$

$$\begin{array}{l} \textit{diff}(\mathit{I}_1,\mathit{I}_3) = \{a,b\}, \, \textit{diff}(\mathit{I}_1,\mathit{I}_4) = \{b\}, \, \textit{hence}, \, \mathit{I}_4 \leq_{\mathit{I}_1} \mathit{I}_3 \\ \textit{diff}(\mathit{I}_2,\mathit{I}_3) = \emptyset, \quad \quad \textit{diff}(\mathit{I}_2,\mathit{I}_4) = \{a\}, \, \textit{hence}, \, \mathit{I}_3 \leq_{\mathit{I}_2} \mathit{I}_4 \end{array}$$

ヘロト ヘワト ヘビト ヘビト

Suppose now there are only two objects *A*, *B*, and the table. Proposition *a* means "object *A* is on the table", similarly for *b*. Now our KB ψ is s.t. $\psi \equiv (a \land \neg b) \lor (\neg a \land b)$,

and the new knowledge μ is s.t. $\mu \equiv b$.

$$Mod(\psi) = \{I_1, I_2\}$$
, where $I_1 = \{a\}, I_2 = \{b\}$, and

$$Mod(\mu) = \{I_3, I_4\}$$
, where $I_3 = \{b\}$, $I_4 = \{a, b\}$.

$$\begin{array}{l} \textit{diff}(\textit{I}_1,\textit{I}_3) = \{\textit{a},\textit{b}\}, \textit{diff}(\textit{I}_1,\textit{I}_4) = \{\textit{b}\}, \textit{hence}, \textit{I}_4 \leq_{\textit{I}_1} \textit{I}_3 \\ \textit{diff}(\textit{I}_2,\textit{I}_3) = \emptyset, \qquad \textit{diff}(\textit{I}_2,\textit{I}_4) = \{\textit{a}\}, \textit{hence}, \textit{I}_3 \leq_{\textit{I}_2} \textit{I}_4 \end{array}$$

ヘロト ヘワト ヘビト ヘビト

Example (Contd.)

Hence, we have

$$closest(Mod(\mu), I_1) = I_4$$
, and $closest(Mod(\mu), I_2) = I_3$.

Hence, $Mod(\psi \diamond \mu) = \bigcup_{I \in Mod(\psi)} closest(Mod(\mu), I) = \{I_3, I_4\},\$

and hence, updated KB $\psi \diamond \mu \equiv b$

Whereas $Mod(\psi \circ \mu) = I_3$, and

hence, revised KB $\psi \circ \mu \equiv \neg a \wedge b$.

イロン 不良 とくほう 不良 とうほ

Update Postulates

- U1 $\psi \diamond \mu$ implies μ
- U2 If ψ implies μ then $\psi \diamond \mu$ is equivalent to ψ
- U3 If both ψ and μ are satisfiable then $\psi \diamond \mu$ is also satisfiable.

KB Revision

KB Update

- U4 If $\psi_1 \equiv \psi_2$ and $\mu_1 \equiv \mu_2$ then $\psi_1 \diamond \mu_1 \equiv \psi_2 \diamond \mu_2$.
- U5 $(\psi \diamond \mu) \land \phi$ implies $\psi \diamond (\mu \land \phi)$.
- U6 If $\psi \diamond \mu_1$ implies μ_2 and $\psi \diamond \mu_2$ implies μ_1 then $\psi \diamond \mu_1 \equiv \psi \diamond \mu_2$.
- U7 If ψ is complete then $(\psi \diamond \mu_1) \land (\psi \diamond \mu_2)$ implies $\psi \diamond (\mu_1 \lor \mu_2)$.

U8
$$(\psi_1 \lor \psi_2) \diamond \mu \equiv (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu).$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

KB Revision KB Update

Lemma

If ψ is inconsistent, then $\psi \diamond \mu$ is inconsistent for any μ .

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

イロン 不得 とくほ とくほう 一日

KB Revision KB Update

Orders between interpretations

Let \mathcal{I} be the set of all interpretations over a language \mathcal{L} . Suppose we assign, to each interpretation *I*, a partial preorder \leq_I over \mathcal{I} . This assignment is said to be faithful iff:

• For any $J \in \mathcal{I}$, If $J \neq I$ then $I <_I J$.

Theorem (Soundness and Completeness)

The update operator \diamond satisfies postulates U1-U8 iff there exists a faithful assignment that maps each interpretation I to a partial pre-order \leq_I s.t.

$$Mod(\psi \diamond \mu) = \bigcup_{l \in Mod(\psi)} Min(Mod(\mu), \leq_l).$$

イロト イポト イヨト イヨト

Outline

- Revision and Update
 KB Revision
 KB Update
- Contraction and Erasure
 - Contraction
 - Erasure

Unifying Revision and Update Operations: Time Aspect

ヘロト ヘワト ヘビト ヘビト

-

Contraction

Frasure

Contraction Erasure

Example (Now Joe is certain.)

- $\psi =$ "Joe's GF often cancels their dates lately"
 - \wedge "She is 30 minutes late now"
 - $\land \heartsuit$:"She is serious about Joe"
- $\mu =$ "Late because she was at a movie with another guy."
 - $\psi \circ \mu = \psi \land \mu \land \neg \heartsuit$ makes $\psi \circ \mu$ inconsistent.
 - Contraction operator: give up compromised beliefs (♡ in our case).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Contraction

Eliminating sentences from the KB which are no longer trusted.

Contraction

Frasure

Postulates [Alchourrón et al. 1985] C1 $\psi \Longrightarrow \psi \bullet \mu$ C2 $\psi \nleftrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ C3 $\mu \not\equiv \top \Longrightarrow \psi \bullet \mu \nrightarrow \mu$ C4 $\psi_1 \equiv \psi_2 \land \mu_1 \equiv \mu_2 \Longrightarrow \psi_1 \bullet \mu_1 \equiv \psi_2 \bullet \mu_2$ C5 $(\psi \bullet \mu) \land \mu \Longrightarrow \psi$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Contraction vs. Revision [Alchourrón et al. 1985]

R1 $\psi \circ \mu \Longrightarrow \mu$.

. . .

- **R2** $\psi \wedge \mu \not\equiv \bot \Longrightarrow \psi \circ \mu \equiv \psi \wedge \mu$.
- **R3** $\mu \not\equiv \bot \Longrightarrow \psi \circ \mu \not\equiv \bot$.
- $\begin{array}{ll} \mathsf{R4} & \psi_1 \equiv \psi_2 \land \mu_1 \equiv \mu_2 \\ \implies \psi_1 \circ \mu_1 \equiv \psi_2 \circ \mu_2. \end{array}$

- C1 $\psi \Longrightarrow \psi \bullet \mu$
- $\textbf{C2} \hspace{0.2cm} \psi \not\rightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
- $\mathsf{C3} \ \mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\rightarrow \mu$

C4
$$(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2)$$

 $\implies \psi_1 \bullet \mu_1 \equiv \psi_2 \bullet \mu_2$

C5
$$(\psi \bullet \mu) \land \mu \Longrightarrow \psi$$

Revision \Rightarrow Contraction

 If ∘ is a revision operator satisfying properties (R1)–(R4), then • defined as ψ • μ ≡ ψ ∨ (ψ ∘ ¬μ) satisfies (C1)–(C5)

Contraction \Rightarrow Revision

If • is a contraction operator satisfying (C1)–(C5), then ∘ defined as ψ ∘ μ ≡ (ψ • ¬μ) ∧ μ satisfies (P1)–(P4)

Contraction Erasure

Erasure: Contracting All Possible Worlds

Contraction only works for facts known for sure:

• Recall the postulate (C2) $\psi \not\rightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$

Example (Original version)

 ψ = "Joe's GF often cancels their dates lately" \wedge "She is 30 minutes late now" \wedge (\heartsuit :"She is serious about Joe" $\lor \clubsuit$: "... far less than about her cat")

Contraction of \heartsuit does nothing here: $\psi \bullet \heartsuit = \psi$, since $\psi \not\rightarrow \heartsuit$. That is, \heartsuit is not part of all possible worlds.

The version of contraction that works on all possible worlds is called erasure. It is a form of *update*.

Contraction Erasure

Erasure: Contracting All Possible Worlds

Contraction only works for facts known for sure:

• Recall the postulate (C2) $\psi \not\rightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$

Example (Original version)

- $\psi=\text{``Joe's}\ \text{GF}$ often cancels their dates lately"
 - \wedge "She is 30 minutes late now"
 - \land (\heartsuit :"She is serious about Joe" $\lor \clubsuit$: "... far less than about her cat")

Contraction of \heartsuit does nothing here: $\psi \bullet \heartsuit = \psi$, since $\psi \not\rightarrow \heartsuit$. That is, \heartsuit is not part of all possible worlds.

Suppose Joe is fed up and decides to break up. He is determined and therefore sure that \heartsuit should not be implied by any possible world.

The version of contraction that works on all possible worlds is called erasure. It is a form of *update*.

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator E1 $\psi \Longrightarrow \psi \bullet \mu$ E2 $\psi \to \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ (C2) $\psi \not\Rightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ E3 $\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ (C3) $\mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ E4 $(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow \psi_1 \bullet \mu_1 \equiv \psi_2 \bullet \mu_2$ E5 $(\psi \bullet \mu) \land \mu \Longrightarrow \psi$ E8 $(\psi_1 \lor \psi_2) \bullet \mu \iff (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$

Example (Erasure works on every possible world = disjunct) Let $\psi = \theta \land (\heartsuit \lor \clubsuit)$. $\psi \bullet \heartsuit \stackrel{(E8)}{=} ((\theta \land \heartsuit) \bullet \heartsuit) \lor ((\theta \land \clubsuit) \bullet \heartsuit) \stackrel{(E3)}{=} \theta \lor (\theta \land \clubsuit) \bullet \heartsuit$

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator E1 $\psi \Longrightarrow \psi \bullet \mu$ E2 $\psi \to \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ (C2) $\psi \not\to \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ E3 $\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ (C3) $\mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ E4 $(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow \psi_1 \bullet \mu_1 \equiv \psi_2 \bullet \mu_2$ E5 $(\psi \bullet \mu) \land \mu \Longrightarrow \psi$ E8 $(\psi_1 \lor \psi_2) \bullet \mu \iff (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$

Example (Erasure works on every possible world = disjunct) Let $\psi = \theta \land (\heartsuit \lor \clubsuit)$. $\psi \diamond \heartsuit \stackrel{(E8)}{=} ((\theta \land \heartsuit) \diamond \heartsuit) \lor ((\theta \land \clubsuit) \diamond \heartsuit) \stackrel{(E3)}{=} \theta \lor (\theta \land \clubsuit) \diamond \heartsuit$

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

Contraction Erasure

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator E1 $\psi \Longrightarrow \psi \bullet \mu$ E2 $\psi \to \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ (C2) $\psi \not \Rightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$ E3 $\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ (C3) $\mu \not\equiv \top \Longrightarrow \psi \bullet \mu \not\Rightarrow \mu$ E4 $(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow \psi_1 \bullet \mu_1 \equiv \psi_2 \bullet \mu_2$ E5 $(\psi \bullet \mu) \land \mu \Longrightarrow \psi$ E8 $(\psi_1 \lor \psi_2) \bullet \mu \iff (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$

Example (Erasure works on every possible world = disjunct) Let $\psi = \theta \land (\heartsuit \lor \clubsuit)$. $\psi \bullet \heartsuit \stackrel{(E8)}{=} ((\theta \land \heartsuit) \bullet \heartsuit) \lor ((\theta \land \clubsuit) \bullet \heartsuit) \stackrel{(E3)}{=} \theta \lor (\theta \land \clubsuit) \bullet \heartsuit$

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Erasure vs. Update

$$U1 \quad \psi \diamond \mu \Longrightarrow \mu$$

$$U2 \quad \psi \to \mu \Longrightarrow \psi \diamond \mu \equiv \psi$$

$$U3 \quad \psi \land \mu \not\equiv \bot \Longrightarrow \psi \diamond \mu \not\equiv \bot$$

$$U4 \quad (\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

$$\psi_1 \diamond \mu_1 \equiv \psi_2 \diamond \mu_2.$$

U8 $(\psi_1 \lor \psi_2) \diamond \mu \equiv (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu).$

E1
$$\psi \Longrightarrow \psi \bullet \mu$$

E3
$$\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \blacklozenge \mu \not\Rightarrow \mu$$

E4
$$(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

 $\psi_1 \blacklozenge \mu_1 \equiv \psi_2 \blacklozenge \mu_2$

E5
$$(\psi \bullet \mu) \land \mu \Longrightarrow \psi$$

E8
$$(\psi_1 \lor \psi_2) \bullet \mu \equiv (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$$

イロト 不得 とくほ とくほ とうほ

Theorem

. . .

If an update operator ◊ satisfies (U1)–(U4) and (U8), then the erasure operator • defined by ψ • μ ≡ ψ ∨ (ψ ◊ ¬μ) satisfies (E1)–(E5) and (E8).

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Erasure vs. Update

U1
$$\psi \diamond \mu \Longrightarrow \mu$$

U2 $\psi \to \mu \Longrightarrow \psi \diamond \mu \equiv \psi$
U3 $\psi \land \mu \not\equiv \bot \Longrightarrow \psi \diamond \mu \not\equiv \bot$
U4 $(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$

U8 $(\psi_1 \lor \psi_2) \diamond \mu \equiv (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu).$

E1
$$\psi \Longrightarrow \psi \bullet \mu$$

E3
$$\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \blacklozenge \mu \not\Rightarrow \mu$$

E4
$$(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

 $\psi_1 \blacklozenge \mu_1 \equiv \psi_2 \blacklozenge \mu_2$

E5
$$(\psi \bullet \mu) \land \mu \Longrightarrow \psi$$

E8
$$(\psi_1 \lor \psi_2) \bullet \mu \equiv (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

. . .

If an erasure operator ◆ satisfies (E1)–(E4) and (E8), then the update operator ◊ defined by ψ ◊ μ ≡ (ψ ◆ ¬μ) ∧ μ satisfies (U1)–(U4) and (U8).

Revision and Update Contraction and Erasure

Contraction Frasure

Unifying Revision and Update Operations: Time Aspect

Erasure vs. Update

U1
$$\psi \diamond \mu \Longrightarrow \mu$$

U2 $\psi \to \mu \Longrightarrow \psi \diamond \mu \equiv \psi$
U3 $\psi \land \mu \not\equiv \bot \Longrightarrow \psi \diamond \mu \not\equiv \bot$
U4 $(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow \psi_1 \diamond \mu_1 \equiv \psi_2 \diamond \mu_2.$

U8 $(\psi_1 \lor \psi_2) \diamond \mu \equiv (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu).$

E1
$$\psi \Longrightarrow \psi \bullet \mu$$

E3
$$\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \blacklozenge \mu \not\Rightarrow \mu$$

E4
$$(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

 $\psi_1 \blacklozenge \mu_1 \equiv \psi_2 \blacklozenge \mu_2$

E5
$$(\psi \bullet \mu) \land \mu \Longrightarrow \psi$$

E8
$$(\psi_1 \lor \psi_2) \bullet \mu \equiv (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$$

ヘロン ヘアン ヘビン ヘビン

-

Theorem

. . .

Suppose that an update operator \diamond satisfies (U1)–(U4) and (U8). Then, we can define an erasure operator by $\psi \bullet \mu \equiv \psi \lor (\psi \diamond \neg \mu)$. The update operator obtained from the erasure operator by $\psi \diamond \mu \equiv (\psi \bullet \neg \mu) \land \mu$ is equal to the original update operator.

Contraction Erasure

Unifying Revision and Update Operations: Time Aspect

Erasure vs. Update

$$U1 \quad \psi \diamond \mu \Longrightarrow \mu$$

$$U2 \quad \psi \to \mu \Longrightarrow \psi \diamond \mu \equiv \psi$$

$$U3 \quad \psi \land \mu \not\equiv \bot \Longrightarrow \psi \diamond \mu \not\equiv \bot$$

$$U4 \quad (\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

$$\psi_1 \diamond \mu_1 \equiv \psi_2 \diamond \mu_2.$$

U8 $(\psi_1 \lor \psi_2) \diamond \mu \equiv (\psi_1 \diamond \mu) \lor (\psi_2 \diamond \mu).$

E1
$$\psi \Longrightarrow \psi \bullet \mu$$

E3
$$\psi \not\equiv \bot \land \mu \not\equiv \top \Longrightarrow \psi \blacklozenge \mu \not\Rightarrow \mu$$

E4
$$(\psi_1 \equiv \psi_2) \land (\mu_1 \equiv \mu_2) \Longrightarrow$$

 $\psi_1 \blacklozenge \mu_1 \equiv \psi_2 \blacklozenge \mu_2$

E5
$$(\psi \bullet \mu) \land \mu \Longrightarrow \psi$$

$$\mathsf{E8} \ (\psi_1 \lor \psi_2) \bullet \mu \equiv (\psi_1 \bullet \mu) \lor (\psi_2 \bullet \mu)$$

Theorem

. . .

Suppose that an erasure operator ◆ satisfies (E1)–(E5) and (E8). Then, we can define an update operator by ψ ◊ μ ≡ (ψ • ¬μ) ∧ μ. The erasure operator obtained from the update operator by ψ ◆ μ ≡ ψ ∨ (ψ ◊ ¬μ) is equal to the original erasure operator.

Outline

Erasure

Unifying Revision and Update Operations: Time Aspect

ヘロト ヘワト ヘビト ヘビト

-

How to tell if μ is a revision or an update?

- Time parameter: *t*.
- Parameterized KB has the form $\langle \psi, t \rangle$.
- New operator: $Tell(\mu, t')\langle \psi, t \rangle = \begin{cases} \langle \psi \circ \mu, t \rangle & \text{if } t' = t \\ \langle \psi \diamond \mu, t' \rangle & \text{if } t' > t \end{cases}$

In this framework, the type of the change is done automatically based on the relationship between the time instant of the KB and that of the change:

- Change now $(t' = t) \Longrightarrow$ That's about the knowledge.
- Change in the future $(t' > t) \Longrightarrow$ That's about the world.

イロト 不得 とくほ とくほ とうほ

Example

Recall the example with two objects A, B on the table.

•
$$\langle \psi = (\mathbf{a} \land \neg \mathbf{b}) \lor (\neg \mathbf{a} \land \mathbf{b}), 10:00 \rangle.$$

- New knowledge: it's surely the object B on the table. $Tell(b, 10:00)\langle \psi, 10:00 \rangle$ $\implies \langle \psi \circ b, 10:00 \rangle = \langle (b \land \neg a), 10:00 \rangle$
- Sent robot to put the object B on the table. $Tell(b, 10:05)\langle \psi, 10:00 \rangle$ $\Longrightarrow \langle \psi \diamond b, 10:05 \rangle = \langle b, 10:05 \rangle$

イロト 不得 とくほ とくほ とうほ

Example

Recall the example with two objects A, B on the table.

•
$$\langle \psi = (\mathbf{a} \land \neg \mathbf{b}) \lor (\neg \mathbf{a} \land \mathbf{b}), 10:00 \rangle.$$

- New knowledge: it's surely the object B on the table. $Tell(b, 10:00)\langle \psi, 10:00 \rangle$ $\implies \langle \psi \circ b, 10:00 \rangle = \langle (b \land \neg a), 10:00 \rangle$
- Sent robot to put the object B on the table. $Tell(b, 10:05)\langle \psi, 10:00 \rangle$ $\implies \langle \psi \diamond b, 10:05 \rangle = \langle b, 10:05 \rangle$

イロト 不得 とくほ とくほ とうほ

Thanks for your attention Questions?

Mathew Joseph, Vadim Savenkov Survey of the paper [Katsuno & Mendelzon. 1991]

イロト イポト イヨト イヨト

ъ

[Katsuno & Mendelzon. 1991] On the logic of theory change: partial meets contraction and revision functions Katsuno H. and Mendelzon A.O., 1991 In Proceedings of KR '1991 (387-394). [Alchourrón et al. 1985] On the logic of theory change: partial meets contraction and revision functions Alchourrón C.E. and Gardenfors P.E. and Makinson D., 1985 Journal of Symbolic Logic 50 (510-530). [Dalal, 1988] Investigations into a theory of knowledge base revision: Preliminary Report *Dalal, M.*, 1988, AAAI 17 (475-479).

Mathew Joseph, Vadim Savenkov

Survey of the paper [Katsuno & Mendelzon. 1991]

イロト イポト イヨト イヨト 三日