On the Difference between Updating a Knowledge Base and Revising it: Survey Talk on the KR '1991 Paper by H. Katsuno and A. Mendelzon

Mathew Joseph ${ }^{1,2}$, Vadim Savenkov ${ }^{3}$

${ }^{1}$ Data and Knowledge Management unit, FBK-IRST, Trento, Italy

${ }^{2}$ DISI, University of Trento, Trento, Italy
${ }^{3}$ Vienna University of Technology, Vienna, Austria

Research School FCCOD '2014, Bolzano, Italy

Outline

(9) Introduction
(2) Revision and Update

- KB Revision
- KB Update
(3) Contraction and Erasure
- Contraction
- Erasure
(4) Unifying Revision and Update Operations: Time Aspect

KB Evolution: Revision vs. Update

A Knowledge Base (KB) can eventually become inadequate and require change.

Notation

- ψ is a KB. Models, $\operatorname{Mod}(\psi)$, of ψ describe possible worlds.
- μ specifies the change to be incorporated into ϕ.
- The authors argue that change caused by adding μ to ψ are mainly of two different kinds.

Possible Causes for KB Evolution

- The world described by the KB ψ changes. μ is called update in this case. Notation: $\psi \diamond \mu$.
- New knowledge about the world becomes available. ψ requires revision μ, denoted as $\psi \circ \mu$.

Update

Make each possible world a model of μ by some minimal change.

Revision

Invalidate possible worlds which are far enough from μ.

Possible Causes for KB Evolution

- The world described by the $\mathrm{KB} \psi$ changes. μ is called update in this case. Notation: $\psi \diamond \mu$.
- New knowledge about the world becomes available. ψ requires revision μ, denoted as $\psi \circ \mu$.

Example

$\psi=$ "Joe's GF often cancels their dates lately"
\wedge "She is 30 minutes late now"
\wedge (\bigcirc : "She is serious about Joe" $\vee \boldsymbol{\&}:$: \ldots far less than about her cat")
$\mu=$ "Came late because she was at a movie with another guy."
$\mu \Rightarrow \neg ๑:-($
Update: doesn't allow you to infer $\boldsymbol{\alpha}$
Revision: allows you to also infer $\boldsymbol{\alpha}$

Outline

Introduction

(2) Revision and Update

- KB Revision
- KB Update
(3) Contraction and Erasure
- Contraction
- Erasure
(4) Unifying Revision and Update Operations: Time Aspect

KB Revision

Suppose old KB is given by ψ and new knowledge μ, the knowledge revision operator \circ is defined as:

Definition (KB Revision)

$\psi \circ \mu$ is the propositional theory s.t. $\operatorname{Mod}(\psi \circ \mu)$ are the set of models of μ that are closest to the set of models of ψ

Closeness could be defined using Dalal's [Dalal, 1988] notion of distance, hence,

$$
\begin{aligned}
\operatorname{Mod}(\psi \circ \mu)= & \left\{I \in \operatorname{Mod}(\mu) \mid \nexists I^{\prime} \in \operatorname{Mod}(\mu)\right. \text { s.t. } \\
& \left.\operatorname{distance}\left(\operatorname{Mod}(\psi), I^{\prime}\right)<\operatorname{distance}(\operatorname{Mod}(\psi), I)\right\}
\end{aligned}
$$

Distance [Dalal, 1988]

$\operatorname{diff}\left(I_{1}, I_{2}\right)=\left\{p \in \mathbb{P} \mid I_{1}(p) \neq I_{2}(p)\right\}$,
$\operatorname{distance}\left(I_{1}, I_{2}\right)=\left|\operatorname{diff}\left(I_{1}, I_{2}\right)\right|$.

For a set of models M, $\operatorname{distance}\left(M, I_{1}\right)=\min \left\{\operatorname{distance}\left(I_{2}, I_{1}\right) \mid I_{2} \in M\right\}$.

Example

5 objects A, B, C, D, E and a table are in a room. The 5 Objects may be on or off the table. The sentence a intuitively means "Object A is on the table". Similarly b, c, d, e are interpreted. Suppose old KB ψ is the sentence

$$
\psi=(a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e) \vee(\neg a \wedge \neg b \wedge c \wedge d \wedge e)
$$

Example (Contd.)

$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
distance $\left(I_{1}, I_{3}\right)=4$, distance $\left(I_{2}, I_{3}\right)=2$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)

$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
distance $\left(I_{1}, I_{3}\right)=4$, distance $\left(I_{2}, I_{3}\right)=2$,
hence, $\operatorname{distance}(\operatorname{Mod}(\psi), / 3)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
distance $\left(I_{1}, I_{3}\right)=4$, distance $\left(I_{2}, l_{3}\right)=2$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
$\operatorname{distance}\left(I_{1}, I_{3}\right)=4$, distance $\left(I_{2}, I_{3}\right)=2$,
hence, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
$\operatorname{distance}\left(I_{1}, I_{3}\right)=4, \quad \operatorname{distance}\left(I_{2}, I_{3}\right)=2$,
hence, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
$\operatorname{distance}\left(I_{1}, I_{3}\right)=4, \quad \operatorname{distance}\left(I_{2}, I_{3}\right)=2$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
$\operatorname{distance}\left(I_{1}, I_{3}\right)=4, \quad \operatorname{distance}\left(I_{2}, I_{3}\right)=2$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}$,

Example (Contd.)
$\mu=(a \wedge b \wedge c \wedge d \wedge e) \vee(\neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e)$
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{c, d, e\}$
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{a, b, c, d, e\}, I_{4}=\{ \}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{b, c, d, e\}, \operatorname{diff}\left(I_{2}, I_{3}\right)=\{a, b\}$,
$\operatorname{distance}\left(I_{1}, I_{3}\right)=4, \quad \operatorname{distance}\left(I_{2}, I_{3}\right)=2$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{3}\right)=\min \{4,2\}=2$.
$\operatorname{diff}\left(I_{1}, I_{4}\right)=\{a\}, \operatorname{diff}\left(I_{2}, I_{4}\right)=\{c, d, e\}$,

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, distance $\left(I_{2}, I_{4}\right)=3$,
hence, distance $\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.
Hence, $\psi \circ \mu \equiv \neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e$.

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, $\operatorname{distance}\left(I_{2}, I_{4}\right)=3$,
hence, distance $\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, $\operatorname{distance}\left(I_{2}, I_{4}\right)=3$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, $\operatorname{distance}\left(I_{2}, I_{4}\right)=3$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, $\operatorname{distance}\left(I_{2}, I_{4}\right)=3$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.

Example (Contd.)

$\operatorname{distance}\left(I_{1}, I_{4}\right)=1$, $\operatorname{distance}\left(I_{2}, I_{4}\right)=3$,
hence, $\operatorname{distance}\left(\operatorname{Mod}(\psi), I_{4}\right)=\min \{1,3\}=1$.
Recall, distance $\left(\operatorname{Mod}(\psi), I_{3}\right)=2$
which means $\operatorname{Mod}(\psi \circ \mu)=I_{4}$.
Hence, $\psi \circ \mu \equiv \neg a \wedge \neg b \wedge \neg c \wedge \neg d \wedge \neg e$.

Revision Postulates [Alchourrón et al. 1985]

R1 $\psi \circ \mu$ implies μ.

R2 If $\psi \wedge \mu$ is satisfiable then $\psi \circ \mu \equiv \psi \wedge \mu$.

R3 If μ is satisfiable then $\psi \circ \mu$ is satisfiable.

R4 If $\psi_{1} \equiv \psi_{2}$ and $\mu_{1} \equiv \mu_{2}$ then $\psi_{1} \circ \mu_{1} \equiv \psi_{2} \circ \mu_{2}$.

R5 If $(\psi \circ \mu) \wedge \phi$ implies $\psi \circ(\mu \wedge \phi)$.

R6 If $(\psi \circ \mu) \wedge \phi$ is satisfiable then $\psi \circ(\mu \wedge \phi)$ implies $(\psi \circ \mu) \wedge \phi$.

Orders between interpretations

Let \mathcal{I} be the set of all interpretations over a language \mathcal{L}. A preorder \leq over \mathcal{I} is a reflexive and transitive relation on \mathcal{I}. Define $<$ as $I<I^{\prime}$ iff $I \leq I^{\prime}$ and $I^{\prime} \notin I$.

Suppose we assign every formula ψ, a preorder \leq_{ψ} over \mathcal{I}. This assignment is faithful iff:
(1) If $I, I^{\prime} \in \operatorname{Mod}(\psi)$ then $I<_{\psi} I^{\prime}$ does not hold.
(2) If $I \in \operatorname{Mod}(\psi)$ and $I^{\prime} \notin \operatorname{Mod}(\psi)$ then $I<_{\psi} I^{\prime}$ holds.
(3) If $\psi \equiv \phi$ then $\leq_{\psi}=\leq_{\phi}$.

For any $M \subseteq \mathcal{I}, \operatorname{Min}\left(M, \leq_{\psi}\right)$ be the set of all interpretations / s.t. I is minimal in M w.r.t. \leq_{ψ}.

Soundness and Completeness

Theorem (Soundness and Completeness)
Revision operator o satisfies postulates (R1)-(R6) iff there exists a faithful assignment that maps each $K B \psi$ to a total preorder \leq_{ψ} s.t. $\operatorname{Mod}(\psi \circ \mu)=\operatorname{Min}\left(\operatorname{Mod}(\mu), \leq_{\psi}\right)$.

KB Update

Suppose old KB is given by ψ and new knowledge μ, the knowledge update operator \diamond is defined as:

Definition (KB Update)

$\psi \diamond \mu$ is the propositional theory s.t.

$$
\operatorname{Mod}(\psi \diamond \mu)=\bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{closest}(\operatorname{Mod}(\mu), I)
$$

Closeness could be the following notion: for any interpretations $I, J_{1}, J_{2}, J_{1} \leq, J_{2}$ iff $\operatorname{diff}\left(J_{1}, l\right) \subseteq \operatorname{diff}\left(J_{2}, l\right)$.
$\operatorname{closest}(\operatorname{Mod}(\mu), I)=\operatorname{Min}\left(\operatorname{Mod}(\mu), \leq_{1}\right)$, i.e the set of all minimal elements in $\operatorname{Mod}(\mu)$ w.r.t. \leq_{I} relation.

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, l_{3}\right)=\{a, b\}$,

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{a, b\}, \operatorname{diff}\left(I_{1}, I_{4}\right)=\{b\}$,

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{a, b\}, \operatorname{diff}\left(I_{1}, I_{4}\right)=\{b\}$, hence, $I_{4} \leq_{I_{1}} I_{3}$

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{a, b\}, \operatorname{diff}\left(I_{1}, I_{4}\right)=\{b\}$, hence, $I_{4} \leq_{I_{1}} I_{3}$ $\operatorname{diff}\left(I_{2}, l_{3}\right)=\emptyset$,

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{a, b\}$, $\operatorname{diff}\left(I_{1}, I_{4}\right)=\{b\}$, hence, $I_{4} \leq_{I_{1}} I_{3}$ $\operatorname{diff}\left(I_{2}, I_{3}\right)=\emptyset, \quad \operatorname{diff}\left(I_{2}, I_{4}\right)=\{a\}$,

Example

Suppose now there are only two objects A, B, and the table. Proposition a means "object A is on the table", similarly for b. Now our KB ψ is s.t.
$\psi \equiv(a \wedge \neg b) \vee(\neg a \wedge b)$,
and the new knowledge μ is s.t. $\mu \equiv b$.
$\operatorname{Mod}(\psi)=\left\{I_{1}, I_{2}\right\}$, where $I_{1}=\{a\}, I_{2}=\{b\}$, and
$\operatorname{Mod}(\mu)=\left\{I_{3}, I_{4}\right\}$, where $I_{3}=\{b\}, I_{4}=\{a, b\}$.
$\operatorname{diff}\left(I_{1}, I_{3}\right)=\{a, b\}$, $\operatorname{diff}\left(I_{1}, I_{4}\right)=\{b\}$, hence, $I_{4} \leq_{1} I_{3}$ $\operatorname{diff}\left(I_{2}, I_{3}\right)=\emptyset, \quad \operatorname{diff}\left(I_{2}, l_{4}\right)=\{a\}$, hence, $I_{3} \leq I_{2} I_{4}$

Example (Contd.)

Hence, we have
$\operatorname{closest}\left(\operatorname{Mod}(\mu), I_{1}\right)=I_{4}$, and $\operatorname{closest}\left(\operatorname{Mod}(\mu), I_{2}\right)=I_{3}$.
Hence, $\operatorname{Mod}(\psi \diamond \mu)=\bigcup_{I \in \operatorname{Mod}(\psi)} \operatorname{closest}(\operatorname{Mod}(\mu), I)=\left\{I_{3}, I_{4}\right\}$, and hence, updated KB $\psi \diamond \mu \equiv b$

Whereas $\operatorname{Mod}(\psi \circ \mu)=I_{3}$, and
hence, revised KB $\psi \circ \mu \equiv \neg a \wedge b$.

Update Postulates

U1 $\psi \diamond \mu$ implies μ
U2 If ψ implies μ then $\psi \diamond \mu$ is equivalent to ψ
U3 If both ψ and μ are satisfiable then $\psi \diamond \mu$ is also satisfiable.
U4 If $\psi_{1} \equiv \psi_{2}$ and $\mu_{1} \equiv \mu_{2}$ then $\psi_{1} \diamond \mu_{1} \equiv \psi_{2} \diamond \mu_{2}$.
U5 $(\psi \diamond \mu) \wedge \phi$ implies $\psi \diamond(\mu \wedge \phi)$.
U6 If $\psi \diamond \mu_{1}$ implies μ_{2} and $\psi \diamond \mu_{2}$ implies μ_{1} then $\psi \diamond \mu_{1} \equiv \psi \diamond \mu_{2}$.
U7 If ψ is complete then $\left(\psi \diamond \mu_{1}\right) \wedge\left(\psi \diamond \mu_{2}\right)$ implies $\psi \diamond\left(\mu_{1} \vee \mu_{2}\right)$.
U8 $\left(\psi_{1} \vee \psi_{2}\right) \diamond \mu \equiv\left(\psi_{1} \diamond \mu\right) \vee\left(\psi_{2} \diamond \mu\right)$.

Lemma

If ψ is inconsistent, then $\psi \diamond \mu$ is inconsistent for any μ.

Orders between interpretations

Let \mathcal{I} be the set of all interpretations over a language \mathcal{L}. Suppose we assign, to each interpretation I, a partial preorder $\leq_{\text {, over }} \mathcal{I}$. This assignment is said to be faithful iff:

- For any $J \in \mathcal{I}$, If $J \neq I$ then $I<I J$.

Theorem (Soundness and Completeness)

The update operator \diamond satisfies postulates U1-U8 iff there exists a faithful assignment that maps each interpretation I to a partial pre-order \leq, s.t.

$$
\operatorname{Mod}(\psi \diamond \mu)=\bigcup_{l \in \operatorname{Mod}(\psi)} \operatorname{Min}(\operatorname{Mod}(\mu), \leq \imath) .
$$

Outline

Introduction

(2) Revision and Update

- KB Revision
- KB Update
(3) Contraction and Erasure
- Contraction
- Erasure
(4) Unifying Revision and Update Operations: Time Aspect

Example (Now Joe is certain.)

$\psi=$ "Joe's GF often cancels their dates lately"
\wedge "She is 30 minutes late now"
$\wedge \odot: " S h e ~ i s ~ s e r i o u s ~ a b o u t ~ J o e " ~$
$\mu=$ "Late because she was at a movie with another guy."

- $\psi \circ \mu=\psi \wedge \mu \wedge \neg \varnothing$ makes $\psi \circ \mu$ inconsistent.
- Contraction operator: give up compromised beliefs (\odot in our case).

Contraction

Eliminating sentences from the KB which are no longer trusted.
Postulates [Alchourrón et al. 1985]
C1 $\psi \Longrightarrow \psi \bullet \mu$
C2 $\psi \nrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
C3 $\mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
C4 $\psi_{1} \equiv \psi_{2} \wedge \mu_{1} \equiv \mu_{2} \Longrightarrow \psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
C5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$

Contraction vs. Revision [Alchourrón et al. 1985]

$$
\begin{array}{ll}
\text { R1 } \psi \circ \mu \Longrightarrow \mu . & \text { C1 } \psi \Longrightarrow \psi \bullet \mu \\
\text { R2 } \psi \wedge \mu \not \equiv \perp \Longrightarrow \psi \circ \mu \equiv \psi \wedge \mu . & \text { C2 } \psi \nrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi \\
\text { R3 } \mu \not \equiv \perp \Longrightarrow \psi \circ \mu \not \equiv \perp . & \text { C3 } \mu \not \equiv \top \Longrightarrow \psi \bullet \mu \nrightarrow \mu \\
\text { R4 } \psi_{1} \equiv \psi_{2} \wedge \mu_{1} \equiv \mu_{2} & \text { C4 }\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \\
\Longrightarrow \psi_{1} \circ \mu_{1} \equiv \psi_{2} \circ \mu_{2} . & \Longrightarrow \psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2} \\
\ldots & \text { C5 }(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi
\end{array}
$$

Revision \Rightarrow Contraction

- If \circ is a revision operator satisfying properties (R1)-(R4), then • defined as $\psi \bullet \mu \equiv \psi \vee(\psi \circ \neg \mu)$ satisfies (C1)-(C5)

Contraction \Rightarrow Revision

- If \bullet is a contraction operator satisfying (C1)-(C5), then \circ defined as $\psi \circ \mu \equiv(\psi \bullet \neg \mu) \wedge \mu$ satisfies (P1)-(P4)

Erasure: Contracting All Possible Worlds

Contraction only works for facts known for sure:

- Recall the postulate (C2) $\psi \nrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$

Example (Original version)

$\psi=$ "Joe's GF often cancels their dates lately"
\wedge "She is 30 minutes late now"
\wedge (\bigcirc :"She is serious about Joe" $\vee \boldsymbol{\alpha}$: ". . . far less than about her cat")
Contraction of \odot does nothing here: $\psi \bullet \odot=\psi$, since $\psi \nrightarrow \odot$. That is, \circlearrowleft is not part of all possible worlds.

Erasure: Contracting All Possible Worlds

Contraction only works for facts known for sure:

- Recall the postulate (C2) $\psi \nrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$

Example (Original version)

$\psi=$ "Joe's GF often cancels their dates lately"
\wedge "She is 30 minutes late now"
\wedge ($($:"She is serious about Joe" $\vee \boldsymbol{\&}$: ". . . far less than about her cat")
Contraction of \odot does nothing here: $\psi \bullet \odot=\psi$, since $\psi \nrightarrow \odot$. That is, \odot is not part of all possible worlds.
Suppose Joe is fed up and decides to break up. He is determined and therefore sure that \odot should not be implied by any possible world.

The version of contraction that works on all possible worlds is called erasure. It is a form of update.

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow \psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \Longleftrightarrow\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \bullet \mu\right)$

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi \quad$ (C2) $\psi \nrightarrow \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu \quad$ (C3) $\mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow \psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \Longleftrightarrow\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \vee \mu\right)$

Erasure: Contraction-like Counterpart to Update

Postulates of the Erasure operator

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow \psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \Longleftrightarrow\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \bullet \mu\right)$
Example (Erasure works on every possible world = disjunct)
Let $\psi=\theta \wedge(\Omega \vee \boldsymbol{\phi})$.
$\psi \bullet \odot \stackrel{(E 8)}{=}((\theta \wedge \odot) \bullet \nabla) \vee((\theta \wedge \boldsymbol{\infty}) \bullet \odot) \stackrel{(E 3)}{=} \theta \vee(\theta \wedge \boldsymbol{\phi}) \bullet \odot$

Erasure vs. Update

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow$ $\psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \equiv\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \bullet \mu\right)$

Theorem

© If an update operator \diamond satisfies (U1)-(U4) and (U8), then the erasure operator • defined by $\psi \diamond \mu \equiv \psi \vee(\psi \diamond \neg \mu)$ satisfies (E1)-(E5) and (E8).

Erasure vs. Update

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \mathrm{T} \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow$ $\psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \equiv\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \bullet \mu\right)$

Theorem

(2) If an erasure operator * satisfies (E1)-(E4) and (E8), then the update operator \diamond defined by $\psi \diamond \mu \equiv(\psi \vee \neg \mu) \wedge \mu$ satisfies (U1)-(U4) and (U8).

Erasure vs. Update

E1 $\psi \Longrightarrow \psi \bullet \mu$
E2 $\psi \rightarrow \neg \mu \Longrightarrow \psi \bullet \mu \equiv \psi$
E3 $\psi \not \equiv \perp \wedge \mu \not \equiv \top \Longrightarrow \psi \bullet \mu \nrightarrow \mu$
E4 $\left(\psi_{1} \equiv \psi_{2}\right) \wedge\left(\mu_{1} \equiv \mu_{2}\right) \Longrightarrow$ $\psi_{1} \bullet \mu_{1} \equiv \psi_{2} \bullet \mu_{2}$
E5 $(\psi \bullet \mu) \wedge \mu \Longrightarrow \psi$
E8 $\left(\psi_{1} \vee \psi_{2}\right) \bullet \mu \equiv\left(\psi_{1} \bullet \mu\right) \vee\left(\psi_{2} \bullet \mu\right)$

Theorem

(3) Suppose that an update operator \diamond satisfies (U1)-(U4) and (U8). Then, we can define an erasure operator by $\psi \bullet \mu \equiv \psi \vee(\psi \diamond \neg \mu)$. The update operator obtained from the erasure operator by $\psi \diamond \mu \equiv(\psi \bullet \neg \mu) \wedge \mu$ is equal to the original update operator.

Erasure vs. Update

Outline

Introduction
(2) Revision and Update

- KB Revision
- KB Update
(3) Contraction and Erasure
- Contraction
- Erasure

4 Unifying Revision and Update Operations: Time Aspect

How to tell if μ is a revision or an update?

- Time parameter: t.
- Parameterized KB has the form $\langle\psi, t\rangle$.
- New operator: $\operatorname{Tell}\left(\mu, t^{\prime}\right)\langle\psi, t\rangle= \begin{cases}\langle\psi \circ \mu, t\rangle & \text { if } t^{\prime}=t \\ \left\langle\psi \diamond \mu, t^{\prime}\right\rangle & \text { if } t^{\prime}>t\end{cases}$

In this framework, the type of the change is done automatically based on the relationship between the time instant of the KB and that of the change:

- Change now $\left(t^{\prime}=t\right) \Longrightarrow$ That's about the knowledge.
- Change in the future $\left(t^{\prime}>t\right) \Longrightarrow$ That's about the world.

Example

Recall the example with two objects A, B on the table.

- $\langle\psi=(a \wedge \neg b) \vee(\neg a \wedge b), 10: 00\rangle$.
- New knowledge: it's surely the object B on the table. Tell(b, 10:00) $\langle\psi, 10: 00\rangle$
$\Longrightarrow\langle\psi \circ b, 10: 00\rangle=\langle(b \wedge \neg a), 10: 00\rangle$
- Sent robot to put the object B on the table. $\operatorname{Tell}(b, 10: 05)\langle\psi, 10: 00\rangle$

Example

Recall the example with two objects A, B on the table.

- $\langle\psi=(a \wedge \neg b) \vee(\neg a \wedge b), 10: 00\rangle$.
- New knowledge: it's surely the object B on the table.

Tell $(b, 10: 00)\langle\psi, 10: 00\rangle$
$\Longrightarrow\langle\psi \circ b, 10: 00\rangle=\langle(b \wedge \neg a), 10: 00\rangle$

- Sent robot to put the object B on the table.

$$
\begin{aligned}
& \text { Tell }(b, 10: 05)\langle\psi, 10: 00\rangle \\
& \Longrightarrow\langle\psi \diamond b, 10: 05\rangle=\langle b, 10: 05\rangle
\end{aligned}
$$

THANKS

Thanks for your attention Questions?

围［Katsuno \＆Mendelzon．1991］
On the logic of theory change：partial meets contraction and revision functions
Katsuno H．and Mendelzon A．O．， 1991
In Proceedings of KR＇1991（387－394）．
目［Alchourrón et al．1985］
On the logic of theory change：partial meets contraction and revision functions
Alchourrón C．E．and Gardenfors P．E．and Makinson D．， 1985
Journal of Symbolic Logic 50 （510－530）．
囯［Dalal，1988］
Investigations into a theory of knowledge base revision： Preliminary Report
Dalal，M．，1988，AAAI 17 （475－479）．

