Actions representation and reasoning in ontology languages

Integrating Description Logics and Action Formalities: First Results. Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, Frank Wolter

Group 10 - Asan Agibetov (asan.agibetov@ge.imati.cnr.it), Imon Banerjee (imon@ge.imati.cnr.it), Fahad Khan (fahad.khan@ilc.cnr.it)

January 30, 2014

< □ > < @ > < 注 > < 注 > ... 注

Overview of the problem

- Descriptive action formalism based on Situation Calculus (SitCalc) to support reasoning.
- Motive of this action formalism is to analysis that how the choice of DL influence the reasoning task.
 - Executability problem: determine whether a given sequence of ground actions is possible to be executed starting from the initial situation.
 - Projection problem: determine whether a given goal G is satisfiable after executing a sequence of ground actions starting from the initial situation.

Situation Calculus (SitCalc) [1]

- Situation calculus is designed for representing and reasoning about dynamic domains.
- Basic elements:

 Action that can be perform in the world Move(x,y) : robot is moving from position x to y
 Fluents that describe the world is_carrying(ball,S0)=false is_carrying(ball, do(pick_up(ball, S0))) = true
 Situation represent history of action occurrences do(move(2,3), S0) : denotes a new situation after performing action move(2,3) in initial situation S0

^[1] Reiter, R., "Knowledge in Action", MIT Press, 2001.

Reasoning for action in general is undecidable under "Open world assumption (OWA)"

Frame problem: How it can be decidable that after picking up an object, the robot stays in the same location?

It requires frame axioms like this,

 $\begin{array}{l} Poss(pickup(o),s) \cup location(s) = (x,y) \rightarrow \\ location(do(pickup(o),s)) = (x,y) \\ problem: too many of such axioms, difficult to specify all \end{array}$

(日) (四) (코) (코) (코)

Well established solution: frame problem[2]

 Successor state axioms: Specify all the ways the value of a particular fluent can be changed

$$Poss(a, s) \lor \gamma_{+F}(x, a, s) \to F(x, do(a, s))$$

 $Poss(a, s) \lor \gamma_{-F}(x, a, s) \to \neg F(x, do(a, s))$

 γ_{+F} describes the conditions under which action **a** in situation **s** makes the fluent **F** become true in the successor situation **do(a,s)**. γ_{-F} describes the conditions under which action **a** in situation **s** makes the fluent **F** become false in the successor situation.

- For each action A, a single action precondition axioms of the form: ∏_{A(s)} ⊃ Poss(A, s)
- Unique names axioms for the actions and for states

Reiter, R., "The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression", in Al and Mathematical Theory of Computation, Academic Press, 359–380, 1991.

Proposed work

Design an initial framework for integrating DLs and action formalisms into a decidable hybrid based on *DL ALCQIO* [3] and a number of it sub languages.

< □ > < @ > < 注 > < 注 > ... 注

6/14

i. Acyclic Tbox

A terminology (or TBox) is a set of definitions and specializations. Woman \equiv Person \sqcap Female

A terminology T is Acyclic if it does not contain a concept which uses itself.

 $Father \equiv Male \sqcap hasChild$ $hasChild \equiv Father \sqcup Mother$ Not an Acyclic TBox

< □ > < @ > < 注 > < 注 > ... 注

ii. ABox assertions

In an ABox one introduces <u>individuals</u>, by giving them <u>names</u>, and one *asserts* properties about them Assertion with concept C in the form: C(a), C(b) ... example: Woman(Shelly), Male(John), ... Assertion with role name s in the form: s(a,b), s(b,c), or \neg s(a,b) example: Father (John, haschild)

<ロト < 団 > < 巨 > < 巨 > 三 8/44~

Let $\mathbf{T} = \text{Acyclic Tbox}$ Atomic action $\alpha = (pre, occ, post)$

- a finite set *pre* of ABox assertions, the *pre-conditions*;
- a finite set occ of occlusions of the form A(a) or s(a, b)
- a finite set post of conditional post-conditions of the form ϑ/ψ , where ϑ is an ABox asertion and ψ is a primitive literal for \mathbf{T}

Example of action definition

 α_1 Opening a bank account in Italy Ok, can you deposit 1000 euro? Do you have proof of address

pre1
{Eligible_bank(a), ∃holds.Proof_address(a)}
post1
{T(a)/holds(a, b),
∃holds.letter(a)/B_acc_credit(b),
¬∃holds.letter(a)/B_acc_no_credit(b)}

Apply for child benefit in Italy

Ok, do you have child? Do you have a bank account?

 pre_{2} {parents_of(a, c), \exists hold. $B_{a}cc(a)$ }
post_{2}
{ $T(a)/receives_c_benefit_for(a, c)$ }
TBox

TBox $Eligible_bank \equiv \exists can_deposit.1000,$ $Proof_address \equiv$ $Passport \cup Carta_identita,$ $B_acc \equiv$ $B_acc_credit \cup B_acc_no_credit$

Where each primitive concept name: A, role name s:s(a,b), Interpretation : I

$$\begin{array}{lll} A^{+} &:= \{ b^{I} \mid \varphi / A(b) \in \text{post and } I \models \varphi \} \\ A^{-} &:= \{ b^{I} \mid \varphi / - A(b) \in \text{post and } I \models \varphi \} \\ I_{A} &:= (\Delta^{I} \setminus \{ b^{I} \mid A(b) \in \text{occ } \}) \cup (A^{+} \cup A^{-}) \\ s^{+} &:= \{ (a^{I}, b^{I}) \mid \varphi / s(a, b) \in \text{ post and } I \models \varphi \} \\ s^{-} &:= \{ (a^{I}, b^{I}) \mid \varphi / - s(a, b) \in \text{ post and } I \models \varphi \} \\ I_{s} &:= ((\Delta^{I} \times \Delta^{I}) \setminus ((a^{I}), b^{I}) \mid s(a, b) \in \text{occ }) \cup (s^{+} \cup s^{-}) \end{array}$$

Action α may transform I to I' iff, for each primitive concept A and role name s,

$$egin{aligned} A^+ \cap A^- &= m{s}^+ \cap m{s}^- &= \emptyset, \ A^{I'} \cap I_{\mathcal{A}} &= ig(egin{aligned} A^I \cup A^+ ig) \setminus A^- ig) \cap I_{\mathcal{A}} \ & m{s}^{I'} \cap I_{m{s}} &= ig(ig(m{s}^I \cup m{s}^+ ig) \setminus m{s}^-ig) \cap I_{m{s}} \end{aligned}$$

The composite action $\alpha_1 \dots \alpha_k$ may transform I to I' iff there exist models I_0, \dots, I_k of I with $T = I_0$, $I' = I_k$ and $I_{i-1} \implies \overset{T}{\alpha_i} I_i$

<ロト < 団 > < 臣 > < 臣 > 臣 13/4代

Due to the acyclic TBox, action with empty occlusions there can not exist more than one ${\bf I}'$ such that

$$I \implies {}^T_{\alpha}I'$$

Thus, actions are deterministic.

if
$$\vartheta_1/\psi$$
, $\vartheta_2/\neg\psi \in \mathsf{post}$

such that both ϑ_1 and ϑ_2 are satisfied in I, then there is no successor model I'. So action is inconsistent with I.

<ロト < 部 × モ × モ × モ 14/44~

Describe two main reasoning problems for actions. Given an acyclic TBox \mathcal{T} , a composite action $\alpha = \alpha_1, ..., \alpha_k$ and an ABox \mathcal{A} we want to know

• Executability: are all the preconditions of α satisfied in worlds considered possible?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Projection: does a given assertion hold after applying α ?

Recall:

An ABox \mathcal{A} is *consistent* with respect to a TBox \mathcal{T} if there exists an interpretation \mathcal{I} that is a model of both \mathcal{A} and \mathcal{T} .

Definition (Executability)

Given an acyclic TBox \mathcal{T} , a composite action $\alpha = \alpha_1, ..., \alpha_k$ where $\alpha_i = (pre_i, occ_i, post_i)$ and an ABox \mathcal{A} we say that α is *executable* in \mathcal{A} with respect to \mathcal{T} if for any model \mathcal{I} of \mathcal{A} and \mathcal{T} :

•
$$\mathcal{I} \models \textit{pre}_1$$

Definition (Executability)

Given an acyclic TBox \mathcal{T} , a composite action $\alpha = \alpha_1, ..., \alpha_k$ where $\alpha_i = (pre_i, occ_i, post_i)$ and an ABox \mathcal{A} we say that α is *executable* in \mathcal{A} with respect to \mathcal{T} if for any model \mathcal{I} of \mathcal{A} and \mathcal{T} :

- $\mathcal{I} \models \textit{pre}_1$
- For all *i* in 1 ≤ *i* < *k*, and all interpretations such that
 I ⇒^T_α *I'* we have *I'* ⊨ *pre_{i+1}*. (Recall that because we are
 dealing with acyclic ABoxes there is only one such
 interpretation *I'*.)

Definition (Projection)

Given an acyclic TBox \mathcal{T} , a composite action $\alpha = \alpha_1, ..., \alpha_k$ where $\alpha_i = (pre_i, occ_i, post_i)$, an ABox \mathcal{A} , we say that ϕ is a consequence of applying α in \mathcal{A} with respect to \mathcal{T} if for any model \mathcal{I} of \mathcal{A} and \mathcal{T} and any \mathcal{I}' such that $\mathcal{I} \Rightarrow_{\alpha}^{\mathcal{T}} \mathcal{I}'$ it is the case that $\mathcal{I}' \models \phi$.

- Executability is not sufficient to ensure that a composite action does not get stuck, i.e., that all the composite actions of an executable action will be carried out.
- It might be the case that we have a φ₁/ψ and φ₂/¬ψ where φ₁ and φ₂ are both satisfied in the model *I*. In this case the action is said to be *inconsistent* with respect to *I*.
- Therefore to guarantee that an executable action is carried out without getting stuck we stipulate that each of the basic actions are consistent with any model \mathcal{I} of \mathcal{A} and \mathcal{T} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Our aim is to find out complexity results for various (interesting) sublanguages of *ALCQIO*.
- Executability and Projection are mutually reducible in polynomial time. So we are free to focus on projection.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• First we will look at some upper bound results.

Strategy of proof: show upper complexity bounds by reducing projection to a standard reasoning problem in DL. **Preliminary**: Given a DL \mathcal{L} we will denote by \mathcal{LO} the extension of \mathcal{L} with nominals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

 $\mathcal{L} \in \{ \mathcal{ALC}, \mathcal{ALCI}, \mathcal{ALCO}, \mathcal{ALCIO}, \mathcal{ALCQ}, \mathcal{ALCQO}, \mathcal{ALCQI} \}$ Then the projection of composite actions in \mathcal{L} can be reduced in polynomial time to the problem of non-consistency in \mathcal{LO} of an ABox relative to an acyclic TBox.

(日) (四) (문) (문) (문)

- We define the complement of the projection problem wrt to an assertion φ, an action α an ABox A, a TBox T but this time we want to know whether there exist possible worlds I, J such that J follows from I after applying the action α and ¬φ holds at J.
- It turns out that we can reduce the complement of projection problem in \mathcal{L} to the consistency problem for Aboxes in \mathcal{LO} .
- Therefore solving the complement of the projection problem for \mathcal{L} cannot be more difficult than the consistency problem (since we can use an efficient algorithm for consistency to derive an efficient algorithm for the complement of projection).

- This gives us an upper bound result. But for logics such as *ALCO*, *ALCIO*, *ALCQO* where the complexity of ABox consistency for *L* is the same as in *LO* we also get matching lower bounds since it is very easy to reduce ABox non consistency to projection in *L*.
- (Since ¬⊤(a) is a consequence of applying the empty action (Ø, Ø, Ø) iff there exists no model of A and T).
- So
 - *ALC*, *ALCO*, *ALCIO*, *ALCQO* are PSPACE-complete.

- \mathcal{ALCIO} is EXPTIME-complete.
- \mathcal{ALCQIO} is co-NEXPTIME-complete.

• For the logics \mathcal{ALCI} and \mathcal{ALCQI} where adding nominals gives a corresponding increase in the complexity of the ABox consistency problem we can still get lower bound results by reducing the satisfiability problem for $\mathcal{ALCIO}(\mathcal{ALCQIO})$ with a single nominal and an empty TBox to the projection problem This gives us that

- *ALCI* is EXPTIME-complete.
- ALCQI is co-NEXPTIME-complete.

Semantics of services

Service

Let \mathcal{T} acyclic TBox, atomic service $\mathcal{S} = (\textit{pre},\textit{occ},\textit{post})$ for \mathcal{T}

- *pre* ABox assertions, all must be true in order to execute service,
- occ assertions that should not change by $\mathcal{S},$ only allow primitive concepts,
- $\textit{post}\xspace$ finite set of $\textit{conditional post-conditions }\varphi/\psi,$ only allow primitive concepts

How the application of an atomic service changes the world? Assumption - interpretation domain is never changed by the application of a service

ldea

Interpretation of atomic concepts and roles should change as little as possible while still making *post-condition* **true**

Possible Models Approach

Precedence relation $\preceq_{\mathcal{I},\mathcal{S},\mathcal{T}}$ on interpretations, characterizes their *proximity* to a given \mathcal{I} .

We use $M_1 \nabla M_2$ to denote symmetric difference between sets M_1 and M_2 .

Preferred interpretations

 $\mathcal{I}' \preceq_{\mathcal{I}, \mathcal{S}, \mathcal{T}} \mathcal{I}''$ iff

$$egin{aligned} & \mathcal{A}^\mathcal{I} igar \wedge \{ a^\mathcal{I} | \mathcal{A}(a) \in occ \}) \subseteq \mathcal{A}^\mathcal{I}
abla \mathcal{A}^{\mathcal{I}'} \ s^\mathcal{I}
abla s^\mathcal{I}' \setminus \{ (a^\mathcal{I}, b^\mathcal{I}) | s(a, b) \in occ \}) \subseteq s^\mathcal{I}
abla s^\mathcal{I''} \end{aligned}$$

の*身後、 물 (福*祉) 동리 / 특히 / 막石 /

Service application

Satisfaction of post-conditions

Pair $\mathcal{I}, \mathcal{I}'$ satisfies set of post-conditions $post(\mathcal{I}, \mathcal{I}' \vDash post)$ iff

$$\forall (\varphi/\psi) \in post, \mathcal{I}' \vDash \psi, \text{ whenever } \mathcal{I} \vDash \varphi$$

We say that S may transform \mathcal{I} to $\mathcal{I}'(I \Rightarrow_{S}^{\mathcal{T}} I')$ iff

1.
$$\mathcal{I}, \mathcal{I}' \models \text{post}, \text{ and}$$

2. $\nexists \mathcal{J}, \mathcal{I}, \mathcal{J} \models \text{post}, \mathcal{J} \neq \mathcal{I}', \text{ and } \mathcal{J} \preceq_{\mathcal{I}, \mathcal{S}, \mathcal{T}} \mathcal{I}'.$

Since TBoxes are acyclic and *post-conditions* allow primitive concepts only, services without occlusions are *deterministic*, i.e.

$$\forall \mathcal{I} \in \mathcal{M}(\mathcal{T}), \exists_{\leq 1} \mathcal{I}', I \Rightarrow^{\mathcal{T}}_{\mathcal{S}} I'$$

·아// 등 · (동) / 동) / 등 / 영종/ 미/아

Application of services without occlusions

Let \mathcal{T} - acyclic TBox, $S = (pre, \emptyset, post)$ a service for \mathcal{T} , and for $\mathcal{I}, \mathcal{I}' \in \mathcal{M}(\mathcal{T}), I \Rightarrow_{S}^{\mathcal{T}} I'$. \mathcal{A} - primitive concept, s - role name, then

$$\begin{split} A^{\mathcal{I}'} &:= (A^{\mathcal{I}} \cup \{b^{\mathcal{I}} | \varphi / A(b) \in \textit{post and } \mathcal{I} \vDash \varphi\}) \setminus \\ & \{b^{\mathcal{I}} | \varphi / \neg A(b) \in \textit{post and } \mathcal{I} \vDash \varphi\}, \\ s^{\mathcal{I}'} &:= (s^{\mathcal{I}} \cup \{(a^{\mathcal{I}}, b^{\mathcal{I}}) | \varphi / s(a, b) \in \textit{post and } \mathcal{I} \vDash \varphi\}) \setminus \\ & \{(a^{\mathcal{I}}, b^{\mathcal{I}}) | \varphi / \neg s(a, b) \in \textit{post and } \mathcal{I} \vDash \varphi\}, \end{split}$$

のみ後 言 不能い 能 とうゆう いしい

Syntactic restrictions adopted in this approach:

- 1. Transitive roles are disallowed (although available in OWL-DL)
- 2. Only acyclic TBoxes are allowed
- 3. No complex concepts in post-conditions,(i.e $\varphi/C(a)$ or $\varphi/\neg C(a)$ only)

Relaxing first restriction leads to *semantic* problems, removing second and third leads to *semantic* and *computational* problems.

· 마니 · 제 제 · 말을 · · 말을 · · 물 · · 영영영

interpretation of transitive roles in \mathcal{ALCQIO}

transitive role $r \in N_{tR} \subset N_R$ is interpreted as transitive relation $r^{\mathcal{I}}$ in all models \mathcal{I}

Addition of *transitive roles* N_{tR} no longer guarantees *determinism* for services without occlusions, i.e.

$$I \Rightarrow_{\mathcal{S}}^{\mathcal{T}} I' \text{ and } I \Rightarrow_{\mathcal{S}}^{\mathcal{T}} I'' \text{ may not necessarily imply } I' = I''$$

のA& 특 (福祉)(통)(原)(中)(-)

Due to the fact that $\Rightarrow_{\mathcal{S}}^{\mathcal{T}}$ does not take into account $r \in \mathcal{N}_{tR}$

Transitive roles (contd.)

Consider $S = (\emptyset, \emptyset, \{has_part(car, engine)\}), has_part \in \mathcal{N}_{tR},$ and a model \mathcal{I}

$$\Delta^{\mathcal{I}} := \{ car, engine, valve \}$$

 $has_part^{\mathcal{I}} := \{ (engine, valve) \}$
 $z^{\mathcal{I}} := z \text{ for } z \in \Delta^{\mathcal{I}}.$

We may have $I \Rightarrow_{\mathcal{S}}^{\mathcal{T}} I'$, $I \Rightarrow_{\mathcal{S}}^{\mathcal{T}} I''$ and $I' \neq I''$, where

$$\mathsf{has}_{-}\mathsf{part}^{\mathcal{I}'} := \{(\mathsf{car}, \mathsf{engine}), (\mathsf{engine}, \mathsf{valve}), (\mathsf{car}, \mathsf{valve})\},$$

and

$$has_part^{\mathcal{I}''} := \{(car, engine)\},\$$

applying S in {has_part(engine, valve)} ⊭ has_part(car, engine) (counterintuitive)

Cyclic TBoxes and GCIs (general concept inclusion)

Problems

- 1. For *acyclic* TBoxes, the interpretation of primitive concepts uniquely determines the extension of defined ones, which is not the case for cyclic ones.
- 2. $\Rightarrow_{\mathcal{S}}^{\mathcal{T}}$ only takes into account primitive concepts

Consider the following example:

$$\mathcal{A} := \{ Dog(a) \}$$

 $\mathcal{T} := \{ Dog \equiv \exists parent.Dog \}$
 $post := \{ Cat(b) \}$

(application of $S = (\emptyset, \emptyset, post)$ in \mathcal{A} w.r.t. $\mathcal{T}) \nvDash Dog(a)$ (as one would intuitively expect)

Counter model construction

Define interpretation ${\mathcal I}$ as follows:

$$\Delta^{\mathcal{I}} := \{b\} \cup \{d_0, d_1, d_2, \ldots\}$$

 $Dog^{\mathcal{I}} := \{d_0, d_1, d_2, \ldots\}$
 $Cat^{\mathcal{I}} := \varnothing$
 $parent^{\mathcal{I}} := \{(d_i, d_{i+1} | i \in \mathbb{N}\}$
 $a^{\mathcal{I}} := d_0$
 $b^{\mathcal{I}} := b$

Define \mathcal{I}' as \mathcal{I} except for $Cat^{\mathcal{I}'} := \{b\}$ and $Dog^{\mathcal{I}} := \emptyset$.

Semantic issue

Dog - defined concept, not considered in \Rightarrow_{S}^{T} , hence

$$\mathcal{I} \vDash \mathcal{A}, I \Rightarrow^{\mathcal{T}}_{\mathcal{S}} I', \text{ and } \mathcal{I}' \nvDash Dog(a)$$

Possible solutions

- ▶ Include defined concepts in the minimization of changes, i.e. treat them in $\Rightarrow_{S}^{\mathcal{T}}$
 - infeasible, even minimization of Boolean concepts induces technical problems
- Use semantics that regains the "definitorial power" of acyclic TBoxes (Fixpoint semantics)
 - in the case of least or greatest fixpoint semantics proposed by Nebels, indeed primitive concepts uniquely determine defined ones

Complex Concepts in Post-Conditions

Post conditions are of the form φ/ψ , if we allow arbitrary (complex) assertions φ and ψ we run into Semantic problems.

Example

Let $a : \exists r.A$ be a post-condition, not satisfied before the execution of the service, then $any \ x \in \Delta^{\mathcal{I}}$ may be chosen to satisfy $(a^{\mathcal{I}}, x) \in r^{\mathcal{I}}$ and $x \in A^{\mathcal{I}}$ after execution. e.g.

$$S := (\emptyset, \emptyset, \{mary : \exists has_child.\neg Female\})$$

 $\mathcal{A} := \{Female(mary)\}$

888 를 서로한 전문에 다 다 다 다

(applying S in A) \nvDash Female(mary)

Computational problems with GCIs

GCI is an expression $C \sqsubseteq D$, with C and D (possibly complex) concepts. It generalizes cyclic TBoxes, i.e. $A \equiv C$ may be rewritten as two GCIS $A \sqsubseteq C$ and $C \sqsubseteq A$

Minimization of all concepts

- GCIs do not allow obvious partitioning of complex concepts into primitive and defined.
- Thus ⇒^T_S has to minimize all concepts (infeasible as mentioned before)

Executability and projection for generalized services become undecidable

Proven by redaction of the *domino* problem to non-consequence and non-executability

Conclusion and Future work

Main technical results

- Standard problems in reasoning about actions (projection, execution) become decidable
- Complexity of inferences is determined by the complexity of standard DL reasoning in L extended by nominals

Possible extensions of formalism

- Consider cyclic TBoxes and *fixpoint* semantics
- Decide projection problem through progression instead of regression
- Check for which of the extensions of Reiter's action formalism these results still hold
- Allow for more complex composition of actions
- Support automatic composition of services, how planning fits in this formalism

Polynomial reduction from *executability* to *projection* and vice versa

Lemma. Executability and projection can be reduced to each other in polynomial time

Proof

 S_1, \ldots, S_k with $S_i = (pre_i, occ_i, post_i)$ composite service for \mathcal{T} . S is executable in \mathcal{A} iff

 $(i) \forall M \in \mathcal{M}(A, T), pre_1 \text{ satisfied in } M$ $(ii) \forall i \in [1, k), (application of S_1, \dots, S_i \text{ in } A) \vDash pre_{i+1}$

Condition (*ii*) is a *projection* problem, (*i*) is a *projection* problem for $S = (\emptyset, \emptyset, \emptyset)$

のタの 雪 (語)/ 彩えるい ゆうしい

Polynomial reduction from *executability* to *projection* and vice versa (contd)

Proof (contd)

Conversely, assume we want to know whether (application of S_1, \ldots, S_k in \mathcal{A}) $\models \varphi$? Consider, S'_1, \ldots, S'_k, S' , where $S'_i = (\emptyset, occ_i, post_i), \forall i \in [i, k]$, and $S' = (\{\varphi, \emptyset, \emptyset\})$. Then

application S_1, \ldots, S_k in $\mathcal{A} \vDash \varphi$ iff S'_1, \ldots, S'_k, S' is executable

のA& 특 (4만)(4만)(5만)(5만)

Relationship to SitCalc

Services without occlusions - instance of SitCalc

- Expand \mathcal{T} and replace in \mathcal{A} and in S_1, \ldots, S_k
- ► Translate ⇒^T_S into first-order logic (action pre-conditions and successor state axioms)
- Primitive concepts and roles regarded as *fluents*
- ABox first-order translation is the initial state
- ► projection and executability are instances of Reiter's definitions However this translation leads to a standard first-order theory, which is not in the scope of what GOLOG can handle

· 마니 · 제 제 · 말을 · · 말을 · · 물 · · 영영영

References

Franz Baader, Carsten Lutz, Ulrike Sattler and Frank Wolter. Integrating description logics and actionformalisms: First Results.

In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005), 572-577, 2005.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider. The description logic handbook: theory, implementation, and applications.

Cambridge University Press New York, NY, USA, 2003.

Raymond Reiter.

The frame problem in situation the calculus: a simple solution (sometimes) and a completeness result for goal regression. Artificial intelligence and mathematical theory of computation, 359-380, 1991.