
Artificial Intelligence 92 (1997) 13 l- 167

Artificial
Intelligence

How to progress a database *

Fangzhen Lin ‘, Ray Reiter *
Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 3H5

Received March 1996; revised October 1996

Abstract

One way to think about a STRIPS operator is as a mapping from databases to databases, in the
following sense: suppose we want to know what the world would be like if an action, represented
by the STRIPS operator (Y, were done in some world, represented by the STRIPS database Do.
To find out, simply perform the operator (Y on DO (by applying (Y’S elementary add and delete

revision operators to DO). We describe this process as progressing the database 230 in response
to the action (Y.

In this paper, we consider the general problem of progressing an initial database in response
to a given sequence of actions. We appeal to the situation calculus and an axiomatization of
actions which addresses the frame problem (Reiter (1991)). This setting is considerably more
general than STRIPS. Our results concerning progression are mixed. The (surprising) bad news is
that, in general, to characterize a progressed database we must appeal to second-order logic. The
good news is that there are many useful special cases for which we can compute the progressed
database in first-order logic; not only that, we can do so efficiently.

Finally, we relate these results about progression to STRIPS-like systems by providing a se-
mantics for such systems in terms of a purely declarative situation calculus axiomatization for
actions and their effects. On our view, STRIPS operators provide a mechanism for computing the
progression of an initial situation calculus database under the effects of an action. We illustrate
this idea by describing two different STRIPS mechanisms, and proving their correctness with
respect to their situation calculus specifications. @ 1997 Elsevier Science B.V.

Keywords: Situation calculus; Theories of actions; Regression; Progression; STRIPS; Strongest postconditions

*This paper revises, and combines, results that first appeared in E Lin and R. Reiter’s “How to progress a

database (and why) 1. Logical foundations” [121 and “How to progress a database II. The STRIPS connection”

1151.
* Corresponding author. E-mail: reiter@ai.toronto.edu. Fellow of the Canadian Institute for Advanced

Research.

’ E-mail: fl@ai.toronto.edu.

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved

PII SOOO4-3702(96)00044-6

132 F Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167

1. Introduction

One way to think about STRIPS operators is as a mapping from databases to databases,
in the following sense: suppose we want to know what the world would be like if an

action, represented by the STRIPS operator (Y, were done in some world, represented

by the STRIPS database 2%~. To find out, simply perform the operator cx on Do (by
applying LY’S elementary add and delete revision operators to Do). We describe this

process as progressing the database Do in response to the action CY (cf. Rosenschein

[251 and Pednault [161). The resulting database describes the effects of the action on
the world represented by the initial database. 2 However, it may not always be convenient
or even possible to describe the effects of actions as a simple process of progressing an
initial world description. As we shall see in this paper, once we go beyond STRIPS-like
systems, progression becomes surprisingly complicated.

In this paper, we consider the general problem of progressing an initial database
in response to a given sequence of actions. We appeal to the situation calculus and
an axiomatization of actions which addresses the frame problem (Reiter [211, Lin

and Reiter [131). This setting is considerably more general than STRIPS. Our results
concerning progression are mixed. The (surprising) bad news is that, in general, to
characterize a progressed database we must appeal to second-order logic. The good news

is that there are many useful special cases for which we can compute the progressed

database in first-order logic; not only that, we can do so efficiently.

Finally, we relate these results about progression to STRIPS-like systems by provid-
ing a semantics for such systems in terms of a purely declarative situation calculus

axiomatization for actions and their effects. On our view, a STRIPS operator is a mech-
anism for computing the progression of an initial situation calculus database under

the effects of an action. We illustrate this idea by describing two different STRIPS

mechanisms, and proving their correctness with respect to their situation calculus spec-

ifications.
The need to progress a database arises for us in a robotics setting. In our approach to

controlling a robot [8, lo], we must address the so-called projection problem: answer the
query Q(do(A, SO)) , where do(A, So) denotes the situation resulting from performing

the sequence of actions A beginning with the initial situation SO. This can be done using

regression (cf. Waldinger [281, Pednault [171, and Reiter [211) to reduce the projection
problem to one of entailment from the initial database, consisting of sentences about

the initial situation SO. Unfortunately, regression suffers from a number of drawbacks in

this application:
1. After the robot has been functioning for a long period, the sequence A, con-

sisting of all the actions it has performed since the initial situation, has become
extremely long, and regressing over such a sequence becomes computationally
expensive.

2 This is also the way that database practitioners think about database updates (Abiteboul [11). In fact,

the STRIPS action and the database update paradigms are essentially the same. Accordingly, this paper is

as much about database updates as it is about STRIPS actions and their generalizations. For more on the

database perspective, see Reiter [231.

E Lin, R. Reiter/Art$icial Intelligence 92 (1997) 131-167 133

2. Similarly, after a long while, the initial world state often becomes so rearranged
that significantly many final steps of the regression become entirely unneces-

SXY.

3. Most significantly, for robotics, perceptual actions (Scherl and Levesque [261)
lead to new facts being added to the database. But such facts are true in the current

situation-the one immediately following the perceptual action-whereas the other
(old) database facts are true in SO. Reasoning about databases containing mixed

facts-facts about the current and initial situations-is very complicated, and we

know of no satisfactory way to do this.

Our way of addressing these problems with regression is to periodically progress the

robot’s database. In particular, every perceptual action is accompanied by a progres-

sion of the database, coupled with the addition of the perceived fact to the resulting
database. We envisage that these database progression computations can be done off-

line, during the time when the robot is busy performing physical actions, like moving

about.

2. Logical preliminaries

The language L: of the situation calculus is first order, many sorted, with sorts situation

for situations, action for actions, and object for everything else. It has the following
domain independent predicates and functions: a constant SO of sort situation denoting

the initial situation; a binary function do(a, s) denoting the situation resulting from
performing the action a in the situation s; a binary predicate Poss(a, s) meaning that
the action a is possible (executable) in situation s; and a binary predicate <: situationx

situation. s < s’ means that s’ can be reached from s by a sequence of executable actions.

We assume a finite number of situation independent predicates with arity object”, n > 0,
a finite number of situation independent functions with arity object” --+ object, n 3 0,

and a finite number ofpuents which are predicate symbols of arity object” x situation,

n 2 0. We denote by .C2 the second-order extension of ,C. Our foundational axioms for
the situation calculus will be in ,C2 (Lin and Reiter [13]), because we need induction

on situations (Reiter [221) .
Often, we must restrict the situation calculus to a particular situation. For example,

the initial database is a finite set of sentences in C that do not mention any situation

terms except SO, and do not mention Poss and <. For this purpose, for any situation

term st, we define ,C,, to be the subset of L that does not mention any other situation
terms except st, does not quantify over situation variables, and does not mention Poss
or <. Formally, it is the smallest set satisfying:

I. cp E L,Y, provided cp E C does not mention any situation term.
2. F(t1,... , t,, st) E Lc,, provided F is a fluent of the right arity, and tl , . . , t, are

terms of the right sort.

3. If (o and C$ are in 13,,, so are 7Q9 40 v 40’9 9 A $0’7 cp 2 40’9 ‘p = q’, (V-x)$?
(3x) P, (Va) q, and (3a) 9, where x and a are variables of sort object and action,
respectively.

134 F: Lin, R. ReiterIArtificial Intelligence 92 (1997) 131-167

We remark here that according to this definition, (Vu) F(do(a, Se)) will be in C~oCn,soj.
This may seem odd when we want sentences in ,C,, to be propositions about situation st.
Fortunately, we shall use C,, only when sf is either a ground term or a simple variable

of sort situation.
We shall use ,C$ to denote the second-order extension of ,C,, by predicate variables

of arity object”, n > 0. So the second-order sentence (3~) (tlx).p(x) z F(x, So)

is in CzO, but (3~) (V’x) (3s).p(x, s) z F(x, SO) is not, since the latter quantifies

over a predicate variable of arity object x situation. Formally, ,Cz, is the smallest set

satisfying:
1.
2.

3.

Every formula in C,, is also in Cz,.

p(t1,... , t,,) E C$ provided p is a predicate variable of arity objecf, n 3 0, and

t1,. . . , t, are terms of sort object.

If (p and 9’ are in l:,, so are X+T, (o V p’, p A tp’, q 3 p’, p E q’, (VX)~, (3x)p,
(V’a)p, (31) 9, (Vp)p, and (Zlp)cp, where x and a are variables of sort object and
action, respectively, and p is a predicate variable of arity object”, n 3 0.

3. Basic action theories

We assume given a basic action theory D, having the following form (cf. Reiter 1231

and Lin and Reiter [131) : 3

where:
l ,X, given below, is the set of the foundational axioms for situations.
l Dss is a set of successor state axioms of the form: 4

Poss(a,s) > [F(x,do(u,s)) ~@F(X,U,S)l, (1)

where F is a fluent, and @F(x, a, s) is in L,T. Informally, a successor state axiom
about F specifies the truth values of F in the successor situation do(a, s) in terms

of properties of the current situation s.

’ D‘,, is a set of action precondition axioms of the form:

Poss(A(x),s) z PA(x,s),

7 We emphasize that a basic action theory is monotonic; we are not presenting here any nonmonotonic
approaches to solving the frame, ramification or qualification problems. An approach to such problems,
using a nonmonotonic logic, is described in [131. This sometimes allows one to derive a (monotonic)
basic action theory from state constraints, but it is important to note that the resulting theory does not
contain the original state constraints; it does, however, include the same “information content” as was present
in the original state constraints. Accordingly, the basic action theories of this paper do nor include state
constraints.

4 In the following, unless othenvise stated, all free variables in a formula are assumed to be prenex universally
quantified. Variables will always begin with a lower case Roman character; constants will always begin with
upper case.

E Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167 135

where A is an action, and PA (x, s) is in L,. An action precondition axiom specifies
necessary and sufficient conditions under which an action can be (physically)

performed.

l %,‘, is the set of unique names axioms for actions: for any two different actions

A(x) and A’(y), we have

A(x) =+ A’(Y),

and for any action A(xl, . . . , x,~), we have

A(x ,,..., x,) =A(y ,,..., yn) >xl =yl A...Ax,=yn.

l Ds,,, the initial database, is a finite set of first-order sentences in Ls,.
The following is an example of a basic action theory. Notice that 2, the foundational

axioms for the situation calculus given below, will be independent of any domain, and
ID~,,,~ can be automatically generated once the language has been specified, so to define

a basic action theory, one need only specify the successor state, action precondition, and

initial situation axioms.

Example 3.1. An educational database (Reiter [231) . There are two i&tents:
l enrolled(stu, course, s) : student stu is enrolled in course course in situation s.

l grade(stu, course, grade, s): the grade of stu in course is grade in situation s.

There are two situation independent predicates:
l prereq(pre, course) : pre is a prerequisite course for course course.
l better(grade1, grade2): grade grade1 is better than grade grade2.

There are three database transactions:
l register(stu, course): register the student stu in course course, with precondition

that the student has satisfied all of the prerequisites for course by obtaining a grade

better than 50 in each prerequisite.
l change(stu, course, grade) : change the grade of the student stu in course course to

grade. This action can always be performed.
l drop(stu, course): drop the student stu from course course, with precondition that

the student is currently enrolled in course.
This setting can be axiomatized as follows.

DD,,Y consists of the following successor state axioms:

Poss(a, s) 3 [enrolled(stu, c, do(a, s)) E

a = register(stu, c) V enrolled(stu, c, s) A a # drop(stu, c)] ,

Poss(a,s) > [grade(stu,c,g,do(a,s)) f

a = change(stu, c, g) V

grade(stu,c,g,s) r\~(3g’)(g # g’Aa=change(stu,c,g’)].

VDop consists of the following action precondition axioms:

Poss(register(stu, c) , s) -

(Vpr) .prereq(pr, c) > (3g) (grade(stu,pr, g, s) A better(g, 50)))

136 E Lin, R. Reiter/Arti’cial Intelligence 92 (1997) 131-167

Poss(change(stu, c, g) , s) E True,

Poss(drop(stu, c) , s) = enrolled(stu, c, s) .

DsO, the initial database, can be any finite set of axioms about the initial situation, or
axioms which mention no situation, for example, the following:5

John f Sue # Cl00 # C200,

prereq(C 100, C200),

enrolled(Sue, C 100, SO),

enroZfed(John, C 100, SO) V enrolled(John, C200, SO).

We shall now present our domain independent foundational axioms z’ which specify

the structure of situations. Informally, 2 stipulates that the space of situations is a tree

with SO at the root and with actions the only way of generating new nodes (situations).
Formally, z‘ consists of the following axioms:

SO Sdo(a,s), (2)

do(al,sl) =do(a;?,sz) > (al =az~sl =sz.), (3)

(\dP).P(So) A (Va,s>[P(s) > P(do(a,s))l 3 (Vs)P(s), (4)

1s < So, (5)

s < do(a, s’) = (Poss(a, s’) A s 6 s’). (6)

Notice the similarity between 2 and Peano arithmetic. The first two axioms are
unique names assumptions; they eliminate finite cycles, and merging. The third axiom
is second-order induction; it amounts to a domain closure axiom which says that every
situation must be obtained by repeatedly applying do to SO. 6 The last two axioms define

< inductively.
2 are the only axioms in a basic action theory about the structure of situations. It

is often needed if we want to show, usually by induction, that a state constraint of the

form (Vs) C (s) is entailed by an action theory. For the purpose of temporal projection,
in particular progression as we shall see, D has exactly the same effect as D - 2: for

any formula p(s) in ~5,~, and any sequence A of ground action terms,

D /== p(do(A So))

iff

VS., u DL7p u %I” UR,, l= +$do(A,So)).

51ngeneral,rl + 12 + # f,,standsforthen(n-I) inequalities:tl # t2A...Afl + tnA...Atn_l + tn.

h For a discussion of the use of induction in the situation calculus, see Reiter [221.

E Lin, R. Reiter/Arti&ial Intelligence 92 (1997) 131-167 137

This follows directly from the following proposition which will be used throughout this

paper.

Proposition 3.2. Given any model M- of D - .Y, there is a model M of D such that:
1. M- and M have the same domains for sorts action and object, and interpret all

situation independent predicates and functions the same;
2. for any sequence A of ground action terms, anyJluent F, and any variable assign-

ment v:’

M,v k F(x,do(A,So)) if M-,v j= F(x,do(A,So)).

Proof. We begin with the observation that no sentence of 2) - 2 = VD,, UVap U ID,,, U IDS,

mentions an equality atom whose arguments are of sort situation, and (2) and (3) are
unique names axioms about situations. It follows from this that if M- is a model of

2, - _Z, then there is a model M of V,Y, U DOp U D,,, U Ds,, U { (2)) (3)) such that the
conditions of the proposition are satisfied. So without loss of generality, we can assume

that M- isamodel ofD,~,U~~,,U~~,,U~s,U{(2),(3)}.

In the following, we use [‘!” for the denotation of the symbol 5 in an interpretation
M. Given M-, construct a structure M as follows. First, let M’s domains be the same as

that of M- for sorts action and object. Next, let the domain dom$ for the sort situation
be the smallest subset of the situation domain of M- such that:

1. SF- E dam:,.
2. If u E dornz! and if LY is an element of the action domain of M-, then doM- (a, V)

E dom$
So, M has exactly the same domain of sorts action and object as does M-, and its
situation domain is a subset of that of M-.

To complete the specification of M, we describe how it interprets function and pred-

icate symbols.
1. M interprets all situation independent function and predicate symbols (including

the equality predicate) exactly as does M-.
2. M interprets the equality predicate over situation terms of dom$ exactly as does

M-.
3. M interprets do, Poss, and fluents over M’s domain exactly as does M- over this

domain.
4. Finally, we specify how M interprets the < relation on situations. <M is the

smallest set with the properties:
(a) If (T E domz and (cu, @) E Poss”, then (cr,do(cY,a)) E<~.
(b) If u,(+‘d’ E domy! and (a,g’) E<~ and (u’,(+“) E<~, then (u,~“) EC”“.

We prove that M is a model of D = Z U DD,, U D,, U Dun, U Ds,,, from which the
proposition follows.

1. To begin, consider any sentence of C of the form (V’s)+, where (p does not

mention <, where C$ does not mention an equality atom with situation arguments,
and where 4 does not quantify over situations. Then whenever M- is a model

’ M, v b rp means that M satisfies p under the variable assignment v

138 E Lin, R. Reiter/Art$icial Intelligence 92 (1997) 131-167

of (Y/s)+, so is M. This is so because M and M- interpret do, POD, fluents and
situation independent function and predicate symbols identically over the elements

of M’s domain, and M’s domain for sort sittlation is a subset of that for M-. Since

every sentence of V,,Y U DLlp U Duna U Ds, is of the form (‘v’~s)c,& or is situation

independent, it follows that M is a model for V,, U Dop U I&,,,, U l&,, since M- is.
2. It remains to prove that M is a model of X.

(a) M satisfies the unique names axioms (2) and (3) for situations because M-

does.
(b) M satisfies the induction axiom (4), because this says that M’s situation

domain is the smallest set containing Sf which is closed under the function
do”, and this is true of M’s situation domain.

(c) Finally, it is not hard to see that <M, as defined in 4 above, satisfies the
axioms (5) and (6) of 2.

The conditions of the proposition follow from the properties of M. Cl

4. Formal foundations

Let (Y be a ground simple action, e.g. enrolled(Sue, CIOO), and let S, denote the

situation term do(CY, SO). A progression VS,, of V so in response to (Y should have the
following properties:

1. Vs, is a set of sentences about situation S, only, i.e., in Cs, or in Ci,.
2. For all queries about the future of S,, V is equivalent (in a suitable formal sense)

to

In other words, Vs, acts like the new initial database with respect to all possible future

evolutions of the theory following the “performance” of the action cy.
Semantically, the models of Vs, should include those of 2). But since Vs,, is a set

of sentences about S, only, any structure that is “isomorphic at S,” to a model of V
should also be a model of Vs,, and these should be all the models of VsCr. Another way

of thinking about progressing Vs, to Vs, is that we want 2) to “forget about” what is
true of the initial situation and all those situations that are reachable from SO but not
from S,. This means we are interested in those models of VsO and of 2) which “don’t
care” about what is true in Vs,,. To make these intuitions precise, we first need to define
what we mean by “isomorphic at S,“. To that end, we introduce an equivalence relation

over structures. Let M and M’ be structures (for our language) with the same domains
for sorts action and object. Define M’ -s,, M, (“M and M’ are isomorphic at S,“) iff

the following two conditions hold:
1. M’ and M interpret all predicate and function symbols which do not take any

arguments of sort situation identically.
. 2. M and M’ agree on all fluents at S,. for every predicate fluent F, and every

variable assignment (T,

M’,(T k F(x,do(a,So)) iff M,a k F(x,do(a,So)).

E Lin, R. Reiter/ArtQicial Intelligence 92 (1997) 131-167 139

Clearly, -s, is an equivalence relation. If M’ ws, M, then M’ agrees with M on S,
on fluents and situation independent predicates and functions, but is free to vary its

interpretation of everything else on all other situations. In particular, they can interpret
Poss and do differently. We have the following simple lemma.

Lemma 4.1. If M ws, M’, then for any formula cp in Ls”, and any variable assignment

(+, M,o+piifSM’,o+p.

We can now make the following definition:

Definition 4.2. A set of sentences V’S, in Lza is a progression of the initial database

2)~~ to S, (with respect to V) iff for any structure M, M is a model of V, iff there is
a model M’ of 2, such that M -s, M’.

Notice that we define the new database only up to logical equivalence. We allow the

new database to contain second-order sentences because, as we shall see later, first-order
logic is not expressive enough for our purposes.

Proposition 4.3. Let Vs, be a progression of the initial database to S,. Then every

model of V is a model of 2 U V,,, U VL,p U VD,,,, U V,.

Proposition 4.4. Let Vs, be a progression of the initial database to S,. Then for every

model M of

2 u V$S u V,, u VD,ll, lJ V’s, 3

there exists a model M’ of V such that:

1. M’ and M interpret all situation independent predicate and function symbols

identically.

2. For every variable assignment (+, and every predicate fluent E

M’,abS,<sAF(x,s) iff M,o/=&<sAF(x,s).

Proof. Let M be a model of

2 u v.w u VD,,, u %,a u n”, .

Since M is a model of Vs,, there is a model M’ of

2 u ~s.7 u VU,> u %,, u Q”

such that M’ -s,, M. It can be easily seen that M’ has the desired properties. 0

From these two propositions, we conclude that V and 2 U V,,? U VL,rp U V,,,, U Vs,
agree on all situations > S,. So Vs,” really does characterize the result of progressing
the initial database in response to the action (Y. Furthermore, the following theorem says
that the new database, when it exists, entails the same set of sentences in L”s as V:

140 I? Lin, R. Reiter/Artijiciul Intelligence 92 (1997) 131-167

Theorem 4.5. Let Vsm be a progression of the initial database to S,. For any sentence
YEJ$~,V~, kviffVt=p.

Proof. If 2, b 9, then by Lemma 4.1, we have VS,, + rp. If VD, + 4p, then 2) + 9 by
Proposition 4.3. Cl

This theorem informs us that Vs, is a strongest postcondition (cf. Pednault [161,
Dijkstra and Scholten [3], and others) of the precondition VsO with respect to the

action (Y.
Pednault [161, by defining progression as the set of first-order sentences in Cs, that

are entailed by 27, shows that his definition of progression cannot in general be a finite
set of first-order sentences in)CS_. By Theorem 4.5, this result applies to our definition
as well. In the next section, we shall extend this result, and show that VS, need not

even be a set of first-order sentences in Cs,.

4.1. Progression is not always Jirst-order definable

At first glance, the fact that progression cannot always be expressed in first-order logic
may seem obvious in light of Theorem 4.5, and the fact that V includes a second-order
induction axiom. However, as we mentioned in Section 3, for the purpose of progression,

V is equivalent to V - 2, which is a finite set of first-order sentences.
We shall construct a basic action theory V and two structures Mt and M2 with the

following properties:

1. MI +V.
2. Mr and I& satisfy exactly the same set of sentences in &.

3. There is no model M’ of V such that M’ ws, M2.
It will then follow from our definition that for V, the progression of the initial

database to S, cannot be in Cs,. Suppose otherwise, then by property 1, Ml k V,;
by property 2 and the assumption that Vs* is a set of sentences in Cs,, we have
M2 k ‘Vs,, as well, but this contradicts property 3 and our definition of progres-

sion.
We now proceed to construct such a basic action theory, and the two associated

structures. Consider the following theory V with a unary fluent Fl, and a binary fluent

F2, one action constant symbol A, one constant symbol 0, and one unary function symbol

succ:

2) uno =0.

vs, = {(Vx>.x # 0 3 (3y)x = succ(y)}.

V,, = {(Ys).Poss(A,s) E True}.

V,, consists of the following pair of axioms:

Poss(a,s) > [F,(do(a,s)) s (3x)--F2(x,s)l,

E Lin, R. Reiter/Ari@cial Intelligence 92 (1997) 131-167 141

Poss(a,s) 3 {F*(x,do(a,s)) -

x=OAF2(O,s) v
x # OAF2(x,s) - (3y)[x=succ(y) AF2(y,s)]}.

For an intuitive reading of the successor state axioms, think of the constant symbol

0 as the number 0, and the unary function succ as the successor function. Then for
any x, Fz(~,do(a,s)) holds iff either x = 0 and Fz(O,s) holds, or F~(x,s) and
F2 (predecessor(x) , s) have the same truth value. The purpose of F, is to keep track of
the truth values of F2 in the previous situation.

We now proceed to construct the two models Ml and M:! that satisfy the above-

mentioned three properties. We first construct M2 which is a structure such that: 8

1. M2 is a standard model of arithmetic with respect to sort object. Thus the domain
for object in M2 is the set of nonnegative numbers, 0 is mapped to the number 0,

and succ is mapped to the successor function.

2. M2 + F~(do(A,So)l A Wx)F2(x,MA,So)).

We claim that there cannot be a model M’ of 2, such that M2 -s,, M’. Suppose

otherwise. Then M’ also satisfies properties 1 and 2 above. Since M’ k ID,,, and
M’ /= F, (&(A, SO)), we have

M’ t= (3x)+2(x,So).

Similarly, since M’ /= (Vx) F~(x, do(A, SO)), by the successor state axiom for F2, we
have M’ k F~(O,SO)AF~(SUCC(O),S~)A~~~. Thus M’ b (Vlx) F~(x, SO), a contradiction.
Therefore there is no model M’ of D such that M2 -s,, M’.

We now construct a model MI of 2, such that for any sentence q in CS,, Ml + p

iff M:! + q. The construction of MI is in two steps. First, by using Skolem’s theorem

for number theory, we construct a structure M* which satisfies exactly the same set of
sentences in Cs, as M2. We then revise M” into a model of D in such a way that the
above property continues to hold, thus obtaining the desired model Ml.

By Skolem’s theorem (cf. Kleene [7, p. 3261)) there is a first-order structure M*

such that for any sentence qo in Csa, M2 /= rp iff M* + p, and (M2,0,succ) and
(M*, 0, succ) are not isomorphic, i.e., M2 and M* are not isomorphic on sort object. In
particular, since

M t= Fi(do(A>So)) A (vx)Fz(x,do(ASo)),

and Fl(do(A,So)) A (Vx)F2(x,do(A,So)) is a sentence in Csn, we have

s We thank one of the referees for suggesting the following picture that may help the reader better un-

derstand the successor state axioms and the construction of Ma. Imagine an infinite row of lights labelled

0, 1.2,. (like floor indicators in an elevator). The lights come on or go off according to the follow-

ing rules: if the first light is on (off), it stays on (off) forever; any other light comes (stays) on if it

and its predecessor were both on or both off together, and goes (stays) off otherwise. Then the only way
that all the lights are on in the next step ((Vn) F2(X, do(A, SO)) holds) yet there was a light off initially

((3x)~F2(~, So), i.e., Fi (&(A, So)) holds) would be that the initially off light be “somewhere else”-a
nonstandard number!

142 F Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167

Now revise M* into a structure Mr such that:
1. MI and M* have the same domains for sorts action and object, and interpret

situation independent predicates and functions the same.

2. M] + (VJa,s)Poss(a,s).

3. Ml t= 2 u ‘o,,,, u no.

4. For the truth values of the fluents on So: Ml k Fl (So), and for the truth values
of Fz(x, SO), we have that for any variable assignment u:
(a) If a(x) is a standard number, i.e., there is an n 2 0 such that Mr, cr + x =

succ”(O), then Ml,cr k Fz(x,So).

(b) If a(x) is a nonstandard number, i.e., there is no n 2 0 such that Ml, a(x) +
x = succ”(O), then Ml,a b 7F2(x,Su). Notice that since M* and M2 are

not isomorphic on sort object with respect to Peano arithmetic, there must be
a nonstandard number in the domain of M*, and thus in the domain of MI.

5. For the truth values of the fluents on do(A, SO): for any fluent F, and any variable

assignment (+, M],a k F(x,do(A,So)) iff M*,(T b F(x,do(A,So)).

6. Inductively, for any variable assignment V, if

MI ,U /= do(A, So) < s,

then the truth values of the fluents on s will be determined according to the
successor state axioms and the truth values of the fluents on do(A, SO); if

M1,a + So < s A -do(A,So) < s,

then the truth values of the fluents on s will be determined according to the
successor state axioms and the truth values of the fluents on SO. This will define

the truth values of the fluents on every situation because MI k (‘ds) .SO < s, which

follows from the fact that Ml k (Vu, s)Poss(a, s).

Clearly, MI -s,, M*. It follows that Ml and M2 satisfy the same set of sentences in
Cs,. We now show that Ml satisfies the successor state axioms. By the construction of
MI, we only need to prove that it satisfies the successor state axioms instantiated to SO

and action A, i.e.,

MI +=oss(A,So) 3 [FI(MA,SO)) = (3~)+2(~,~0)1,

and

Ml + Poss(A, So) >

(V’X){F~(X,~O(A,SO)) =

x = 0 A F2(0, So) V

x # OA F2(x,So) = (3y)[x=succ(y) A F2(y,So)l}.

To show the first, we need to prove that MI + (3x)~F2(s, SO). This follows from our
construction of MI and the existence of nonstandard numbers in the domain of MI. To

show the second, we need to prove that

Ml + (‘dx){x = 0 A F2(0,So) V

x # Or\F2(x,So) -(3y)[x=succ(y)AF2(y,Sg)]}.

F: Lin, R. Reifer/Artijicial Inrelligence 92 (1997) 131-167 143

There are three cases:
1. If x = 0, then F2 (0, Se) follows from our construction.

2. If n = SUCC’~ (0) for some n > 0, then both F2 (SUCC” (0)) SO) and F2 (SUCC”-’ (0)) SO)
hold.

3. If x is a nonstandard number, then Fz(x, SO) does not hold. Furthermore, for any
y such that x = succ(y), y is also a nonstandard number, so Fz(y, SO) does not
hold either. Moreover, by the axiom in DsO, such a y exists.

Therefore, A41 satisfies the successor state axioms instantiated to SO and A. So Ml k Z&.

This means that Mi k D, and MI and M2 satisfy the same set of sentences in Cs,,.
Therefore we have constructed two models Mi and M:! that satisfy the three conditions
in the beginning of this subsection, so the progression to S, for D cannot be captured

by a set of first-order sentences,

4.2. Progression is always second-order dejinable

We now show that, by appealing to second-order logic, progression always exists. We
first introduce some notation.

Given a finite set VD,, of successor state axioms, define the instantiation of D,, on an
action term at and a situation term st, written D,ss [at, st] , to be the sentence:

A Poss(at,st) > (Vx).F(x,do(at,st)) E @F(x,at,st),

F is a fluent

where

(Va,s).Poss(a,s) > (Vx)[F(x,do(a,s)) =@~(x,a,s)]

is the successor state axiom for F in D$,.

Given a formula q in C2, the lifting of qo on the situation st, written qo t st, is the
result of replacing every fluent atom of the form F(t] , . . . , t,,, st) by a new predicate
variable p(tl , . . , tn) of arity object”. For example,

enrolled(John, C200, SO) A enrolled(John, ClOO, SO) t SO

is P(John,C200) Ap(John,C100).9

Lemma 4.6. The following are some simple properties of lifting:

1. If p is a sentence that does not mention st, then 9 T st is p.

2. If p is a sentence in LCg,, then 40 t st is a situation independent sentence.
3. If p does not mention quant$ers over situations, then cp k (3~1,. . . ,pk)p T st,

where pl , . . ,pk are the new predicate variables introduced during the lifting.

With the above notation in hand, we can describe a procedure for computing the
progression of the initial database VsO in response to the action LY:

‘) Lifting as we have defined it does not generally preserve logical equivalence. For example, [(Vs).F(s) 1 7 .So
is (Vs).F(s), but the logically equivalent IF(&) A (V’s).F(s)j T.5’0 is p A (V.s).F(s). Fortunately, we shall

only be lifting those sentences that do preserve logical equivalence.

144 E Lin, R. Reiter/Artifcial Intelligence 92 (1997) 131-167

1. Instantiate the successor state axioms with LY and SO to get VD,, [a, SO]. This will
be the only use made of the successor state axioms.

2. Replace Poss(cr, SO) in the above instantiation by the corresponding conditions on
the right hand side of the action precondition axiom for (Y. This will be the only

use made of the action precondition axioms.
3. The resulting formula and those in the initial database will generally mention SO,

but the progression needs to be about S, only, so we need to somehow “forget”
SO without losing any information. This is done by lifting SO from the formulas.

This procedure is justified, and described more precisely, by the following, which is

the main theorem of this section:

Theorem 4.7. Let Vs,, be the union of VU,,, together with the sentence:

(3PI*...,Pk)

N)

// cp ~Pw[~~~ol(P4~a) tso,
co~VD$ 1

where

1. Pl,..., pk are the new predicate variables introduced during the lifting.

2. W, is a sentence in ,Cs,, such that

Poss(a, So) E !P,

is an instance of the axiom in Vap corresponding to the action a.

2. VD,, [CY, SO] (Poss/?P~) is the result of replacing Poss(a, SO) by ?PU in V.YS [a, SO].
Then Vs, is a progression of ‘Ds, to S, with respect to V.

Proof. First, it is clear that the sentences in Vsn are in lge.
Let M be a structure. We need to show that A4 k Vs, iff there is a model M’ of V

such that M -s, M’.
Suppose that there is a model M’ of V such that A4 us, M’. By Lemma 4.6, V k Vs,,

thus M’ k Vs,. Therefore by Lemma 4.1, M k Vs,
Now suppose that M k V,. Then there is a variable assignment CY such that

M,ab

()

A P Avo,,[a,Sol(Poss/~~)t~o.
PEDS”

Now construct a structure M’ such that:
1. M and M’ have the same universe, and interpret all situation independent function

and predicate symbols identically.
2. For every fluent F, if F(x, SO) is lifted in ‘VS, as p, then

M’,(T b F(x,So) iff M,a bp(x).

3. M’ + VD,, uVO,.
4. If M’ + -pa, then for any fluent F, and any variable assignment u’,

M’,cr’ k F(x,&) iff M,a’ k F(x,S,).

F Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167 145

It is clear that such an M’ exists. We claim that it4 -s, M'. There are two cases:
1. If M' /= l!Pa, then it follows from our construction that for any fluent F, and any

variable assignment u’,

M',a' +F(r,S,) iff M,u' k F(x,S,).

2. If M' k Pa, then since M' k Vop, and VO,) b Poss((Y, SO) E pa, therefore M' k
Poss(a, SO). But M' f= V,y,. Thus for any fluent F, and any variable assignment

I
fl,

M',d k F(x,S,) iff M',u' /=@~(x,a,So), (7)

where @F is as in the successor state axiom (1) for F in VSS. Now since M' k P,,
by our construction of M', we have that M, (T k Pa 1 SO. But

M,(T + ~o,s[~,~ol(~~~~/~a) Tso.

Therefore for any fluent F, and any variable assignment g’ such that c’(p) = a(p)

for any predicate variable p,

M,u'kF(x,S,) iff M',cr'~@~(x,a,So)fSo. (8)

But for any variable assignment (+’ such that (T’(P) = a(p) for any predicate

variable p, since @F(x, (Y, SO) is in CsO, by our construction of M',

M,d ~@F(x,(Y,SO)~SO iff M',~'~@F(x,(Y,SO).

Therefore from (7) and (8), we see that for any fluent F, and any variable

assignment cr’,

M',a'~F(x,S,) iff M,a'/=F(x,S,).

It follows then that M us, M'. By the construction of M' and the fact that M k VU,,,
we have that M' k V,, U VQ,) U V,,,,. Thus from Proposition 3.2, there is a model M"
of V such that M' "so M". Then by the transitivity of ws,, we have that M -s,, M".
This concludes the proof that V s, as defined is a progressed database. 0

It is clear that the theorem still holds when the initial database VsO is a finite set
of second-order sentences in L&. Therefore, at least in principle, the theorem can be

repeatedly applied to progress the initial database in response to a sequence of actions.
The new database 2)s” as defined in the theorem can be unwieldy. However, it can

often be simplified by using the unique names axioms in VU,,, as we shall see in the
following example.

Example 4.8. Consider our educational database. The instantiation of the successor state

axioms on drop(Sue, C 100) and SO, VD,,Y [drop(Sue, C 100)) SO] is the conjunction of the
following two sentences, where a = drop(Sue, ClOO) and S, = do(cy, SO):

Poss(cy, SO) > [enrolled(stu, c, S,) E

cr = register(stu, c) V

enrolZed(stu, c, SO) A cy # drop(stu, c) 1,

146 E Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167

Poss(a,So) 3 [grude(stu,c,g,S,) z

a = chnnge(stu, c, g) v
grude(stu,c,g,S0) A-(3g’)(g f g’Aa=change(stu,c,g’))].

By unique names axioms, these two sentences can be simplified to

Poss(cf, SO) 3 [enroZZed(stu, c, S,) z

enroffed(stu,c,S0) A (Sue # stuVClO0 # c)],

Poss(a,S~) 3 [grude(stu,c,g,S,) 5 grude(stu,c,g,So)].

Poss(a, SO) sz enrofled(Sue, ClOO, SO).

Thus D,s,v [a, SO J (Poss/?P,) is the conjunction of the following two sentences:

enrolled(Sue, C 100, SO) > [enrolled(stu, c, S,) z

enrolZed(stu,c,So) A (Sue # stuVClO0 + c)],

enroiled(Sue,ClOO, So) 3 [grude(stu,c,g, S,) = grade(stu,c,g, So)].

Thus (~PI 3 ~2 > 1 (A,,,, 40) ~~,,~~,~~l~~~~~/~~~l TS0 is

(3p1,p2). John # Sue # Cl00 # C200 A

[p1 (John, c 100) v pi (John,C200)] A

pl(Sue,ClOO) Aprereq(ClOO,C200) A

pl(Sue,ClOO) > enrolled(stu,c,S,) s

[PI (stu, c) A (Sue Z stu V Cl00 # c)] A

pl(Sue,ClOO) > grude(stu,c,g,S,) s pz(stu,c,g).

This is equivalent to

John # Sue # Cl00 # C200Aprereq(C100,C200) A

(3pl,p2). [pl(John,ClOO) Vpl(John,C200)1 Apl(Sue,ClOO) A

enroZZed(stu,c,S,) E [p~(stu,c) A (Sue # stu VClOO # c)] A

grude(stu,c,g,S,) -p~(stu,c,g),

which is equivalent to

John Z Sue # Cl00 f C2OOAprereq(ClOO,C200) A

(3~~). [p~(John,ClOO) Vpl(John,C200)] A

p1 (Sue, Cl001 A

enrolled(stu,c,S,) E [pl(stu,c) A (Sue # stuVClO0 + c)].

F Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167 147

Now, enrolled(stu, c, S,) E [pl (stu, c) A (Sue Z stu V Cl00 f c)] can be broken into
two cases:

Sue = stu A Cl00 = c 3

enrolled(stu, c, S,) E [PI (stu, c) A (Sue # stu V C 100 # c)] A

Sue f stu V Cl00 # c 3

enrolled(stu, c, S,) E [pl (stu, c) A (Sue # stu V Cl00 # c) 1,

that is,

Sue = stu A Cl00 = c > Tenrolled(stu, c, S,) A

Sue f stu V Cl00 # c > [enrolled(stu, c, S,) E p1 (au, c) 1,

so we can continue simplifying (3pi ,p2) [(l\coED,To qop) A DD,,y [a, SO] (Pass/Pa)] T SO

into:

John # Sue # Cl00 # C200Aprereq(ClOO,C200) A

[enrolled(John, C 100, S,) V enroEled(John, C200, S,)] A

Tenrolled(Sue, C 100, S,) A

($1). PI (Sue, ClOO) A

Sue # stu V Cl00 # c > [enrolled(stu, c, S,) E p1 (stu, c)].

Therefore we have a first-order representation for Ds,, which is DD,,,, together with the

following sentences:

John # Sue # Cl00 Z C200.

prereq(ClOO,C200),

enrolled(John, ClOO, S,) V enrolZed(John, C200, S,),

Tenrolled(Sue, ClOO, S,).

4.3. More on first-order progression

Theorem 4.5 informs us that, in particular, the progression of VD, entails the same

set of @St-order sentences about S, as does V. In view of this, one may wonder why
we did not define progression to be the set of jirst-order sentences in Ls, entailed
by 2). Indeed, this is basically what Pednault did [161, and will, by definition, side
step our negative result that, in general, progression cannot be captured in first-order
logic. There are several reasons why we did not do this. First, such a definition is
purely syntactic, and hence has an arbitrary quality to it. What justifies the prior as-
sumption that progression is first order definable, especially in view of the fact that
many other notions, for example transitive closure, are not? Ideally, one should begin,

as we did, with a purely semantic characterization of one’s intuitions about database
progression, and see where that leads. Secondly, Peppas et al. [191 show that, for

148 F: Lin, R. Reiter/Art@cial Intelligence 92 (1997) 13I-167

quite general action theories, progression defined in terms of first-order entailments,
may lose information, in the sense that a first-order sentence about a future situa-
tion of S, may be a consequence of V but not of (V - V,S,,) U V,. While this

result by Peppas et al. is for more general action theories than ours, it does show
that it is not a priori obvious that a first-order definition of progression is warranted.

Unfortunately, we have not been able to find a result for basic theories of actions
comparable to that of Peppas et al. Nevertheless, we are convinced of the follow-

ing:

Conjecture 4.9. For an arbitrary basic action theory V, and an arbitrary ground action

a, let Fs, be the set offirst-order sentences in Ls, entailed by V. Then there is a basic

action theory V, a ground action term LY and a jirst-order sentence c such that cr is

entailed by (V - Vs”) U VS, but not by (2) - VsO) U Fs,.

If true, this conjecture would establish that a definition of progression in terms of

first-order entailments would be too weak.
However, for an important class of first-order sentences, this “weaker” definition of

progression is entirely adequate. Specifically, for addressing the projection problem,
first-order progression is sufficient.

Proposition 4.10. Suppose that 4(s) E L,7, and that A is a sequence of ground action
terms. Then

(V--s,) UVs,, t==s, <do(A,&) A&do(A,&)) (9)

iff

(V--s”) UPS,, I=& 6 do(A,&) A&do(A,&)). (10)

Proof. We make use of the soundness and completeness of regression, as described in

Reiter [241. Specifically, for sentences of the form S, < do(A, S,) A +(do(A, S,)),

Reiter shows how, using the regression operator, to determine a first-order sentence

CT E &, such that

V - Vs,, + u= [So < do(A,&) A+(do(A,Sa))l. (11)

Moreover, Reiter shows that (10) iff V,,,U.Fs, k CT iff (since Vu,, C .Fs,) Fs,, k c iff
(by the definition of .Fs~) 2, b CT iff (by the remarks following the proof of Proposition

4.4) (V - Vs,) u V’s, F aiff (by (11)) (9). •1

5. Progression with relatively complete initial databases

In the previous section we showed that, in general, progression is definable only in

second-order logic. However, there are some interesting and important special cases for
which progression is first-order definable. In this section and the next, we consider two
such cases.

E Lin, R. Reiter/ArtQicial Intelligence 92 (1997) 131-167 149

We say 23~~ is relatively complete if it is a set of situation independent sentences
combined with a set of sentences, one for each fluent F, of the form:

Wx).Ftx,So) = OF,

where UF(x) is a situation independent formula whose free variables are among x.
When VD, is relatively complete, the truth value of each fluent F in the initial

situation is completely determined by the truth value of the situation independent formula

L~F(x). It does not follow that the initial database must be logically complete. It will
be only when the initial situation uniquely determines the truth values of the situation

independent predicates. Hence the terminology “relative completeness”. For example, in
the blocks world, one may want to specify that initially all and only green blocks are
on the table, without saying which blocks are green:

ontable(x, SO) = green(x) .

Theorem 5.1. Let V be an action theory with a relatively complete initial database

Vs”, and let a be a ground action term such that V k Poss(a, SO). Then the following

set:

V,,,, u {cp 1 p E Vs,, is situation independent} U

((Yx).F(x,do(o,SO)) = @r(x,a,So)[So] 1 F is ajuent}

is a progression of VsO to S,, where
1. @F is as in the successor state axiom (1) for F in V,Y,;

2. @r(x, a, SO) [SO] is the result of replacing, in @F(x, a, So), every occurrence of
F’(t, SO) by I7rf (t) , where nrf is as in the corresponding axiom for F’ in VD,,

and this replacement is pelformed for every fluent F’ mentioned in @F(x, a, SO).

Proof. Denote the set of the sentences of the theorem by S. Clearly, S is a set of

first-order sentences in Cs,. It is easy to see that S b 23,. Conversely, it is clear that
V b S. Thus by Theorem 4.5, VsO k S. 0

Clearly, the progressed database at S, as given by the theorem is also relatively

complete. Thus the theorem can be repeatedly applied to progress a relatively complete
initial database in response to a sequence of executable actions. Notice that the new
database will include VU,,, and the situation independent axioms in Vs,,; therefore we
can use these axioms to simplify @F (x, LY, SO) [SO].

Example 5.2. Consider again our educational database example. Suppose now that the

initial database 27s” consists of the following axioms:

John f Sue # C 100 # C200,

better(70,50),

prereq (C 100, C200),

150 I? Lin, R. Reiter/Art$cial Intelligence 92 (1997) 131-167

enrolled(stu,c,&) = (stu=JohnAc=C100) V(stu=SueAc=C200),

grade(stu, c, g, So) z stu = Sue A c = Cl00 A g = 70.

Ds, is relatively complete, and D k Poss((Y, So), where LY = drop(John, ClOO). From
the axiom for enrolled in Vs,,, we see that IZenrollrd(~&, c) is the formula:

(stu=JohnAc=C100)V(stu=SueAc=C200).

Now from the successor state axiom for enrolled in Example 3.1, we see that
Qrnrolled(stu, c, a, s) , the condition under which enrolled(stu, c, do(a, s)) will be true,
is the formula:

a = register(stu, c) V (enrolled(stu, c, s) A a # drop(stu, c)).

Therefore Genrollpd(stu, c, cy, SO) [SO] is the formula:

drop(John, C 100) = register(stu, c) V

{[(stu=.fohnAc=ClOO)V(stu=SueAc=C200)] A

drop(John, ClOO) # drop(stu, c)}.

By the unique names axioms in V,,,, this can be simplified to

[(stu = John A c = C 100) V (stu = Sue A c = C200)] A

l(stu =.fohn AC = ClOO).

By the unique names axioms in DsO, this can be further simplified to

stu = Sue A c = C2OO.

Therefore we obtain the following axiom about do(a, SO):

enrolled(stu, c, do(a, SO)) 3 stu = Sue A c = C200.

Similarly, we have:

grade(stu,c,g,do(cu,So)) = stu = Sue A c = ClOOAg = 70.

Therefore a progression to do (drop(John, C 100)) SO) is V U,,u together with the following

sentences:

John # Sue # Cl00 # C200,

better(70,50),

prereq(ClOO,C200),

enrolled(stu, c, do(a, So)) E stu = Sue A c = C200,

grude(stu, c, g, do(a, SO)) - stu = Sue A c = C 100 A g = 70.

FI Lin, R. Reiier/Artijicial Intelligence 92 (1997) 131-167 1.51

6. Progression in the context free case

In this section we consider progression with respect to context free action theories. A
successor state axiom for F is context free iff it has the form:

Poss(a,s) 1 [F(x,do(~s)) =$(x,4 V (F(x,s) A ~F(x>a))l, (12)

where yf (x, a) and y; (x, a) are situation independent formulas whose free variables
are among those in x, a. The successor state axioms in our educational database are all

context free. So is the following successor state axiom:

Poss(a, s) 3 [broken(x, do(a, s)) = a = drop(x) Afrugile(x) V

broken(x, s) A a # repair(x)] .

The following successor state axiom is not context free:

Puss(u,s) > [deud(x,do(u,s)) =

(3~) (a = explode_bombat(y) A close(x, y, S)) V deud(x, s) 1.

Intuitively, a successor state axiom for fluent F is context free iff F’s truth value in

the next situation &(a, S) depends on F’s truth value in the current situation S, but is

independent of the truth values of any other fluents in S.

Now assume that:
I. Ds,, is a set of situation independent sentences, and sentences of the form

E 1 ItF(x~,...,x,,So), (13)

where F is a fluent and E is a situation independent formula. For example,

ontuble(x, SO),

x # A > wntuble(x, SO),

frugile(x) 3 broken(x, SO)

are all of this form. The following are not of this form:

ontuble(x, SO) V orzJEoor(x, SO),

(3x)ontuf7le(x, SO).

2. ‘DD, is coherent in the sense that for every fluent F, whenever (Vx) .E1 > F(x, SO)

and (b’x).Eg > ~F(x,&) are in D,, then

{q~ / qo E DD, is situation independent} b (Vx) .-(El A E2)

This means that D>sO cannot use axioms of the form (13) to encode situation
independent sentences: for any situation independent sentence qb, Ds,, b 4 iff
{q 1 40 E Vs,, is situation independent} + 4.

3. D,, is a set of context free successor state axioms.

1.52 I? Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167

4. a is a ground action term, and is possible initially: V b POSS((Y, SO).

5. For each fluent F, the following consistency condition (Reiter [211) is satisfied:

vl7p U %Kl != l(3 x,a,s).Poss(a,s) Q&a) AY;(X,a), (14)

where F’s successor state axiom has the form (12).

The consistency condition (14) deserves a brief explanation. Following Pednault [181
and Schubert [271, Reiter [211 provides a solution to the frame problem in the absence

of state constraints which syntactically transforms a pair of effect axioms for a given
fluent F into a successor state axiom for F. The effect axioms are assumed to have the
syntactic forms: ‘O

Poss(u,s) ~y$(x,u,s) > F(x,do(u,s)),

and

Poss(a,s) Ay;(x,u,s) > ~F(x,do(u,s)).

Reiter applies the explanation closure idea of Schubert [27] to obtain the following

frame axioms for F:

Poss(u,s) A ~F(x,s) A F(x,do(u,s)) > y;(x,u,s),

Poss(u,s) A F(x,s) A ~F(x,do(u,s)) > y,(x,u,s).

The successor state axiom

Poss(u,s) > F(x,do(u,s)) = $(~,a) V (F(x,s) A ~y,(x,a))

is logically equivalent to the conjunction of the above four sentences, whenever the

consistency condition holds. Notice that the consistency condition makes good sense:

if it were violated, so that for some X, A, S we have Poss(A, S), yi(X, A, S), and
y; (X, A, S), then we could derive an immediate inconsistency from the above two

effect axioms.
It is easy to verify that each fluent in our educational database satisfies the consistency

condition.
Under these assumptions, to compute Ds,, use Theorem 4.5 to construct a set S,

initially empty, of sentences as follows:
1. If 9 E Ds, is situation independent, then 40 E S.

2. For any fluent F, add to S the sentences

$(~,a) 1 F(x,do(a,So)), (15)

y;(x,a> 3 +‘(x,do(a,So)). (16)

3. For any fluent F, if (Vx).E > F(x,So) is in Ds,,, then add to S the sentence

EA-yF(x,c~) > F(x,do(a,Sg)). (17)

“’ In general, y: and y, may be situation dependent.

F: Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167 153

4. For any fluent F, if (Vx).E > lF(x,So) is in Vs,,, then add to S the sentence

E A &(~,a) > ~F(x,do(cu,So)). (18)

Theorem 6.1. Under the afore-mentioned assumptions, S U D,,, is a progression of
V, to s,.

Proof. We use Theorem 4.5. First we show that V b S U Vu,,. V f= V,,, trivially.
Suppose (o E S, we show by cases that 2) b (D:

1. c,o E Vs,, is situation independent. Trivial.

2. (o is (15). By the successor state axiom (12) of F in V, we have

Poss(a,So) A$(X,CY) > F(x,do(a,So)).

From this and our assumption that V k Poss(LY, SO), we have

y;(x+) 1 F(x,do(o,So)),

that is, 4p.
3. q~ is (16). Again by the successor state axiom (12) of F in V, we have

Poss(a,So) 1 [Y;(x,(Y) A-$(X,“) 2 -F(x,do(a,So))l.

Now by the consistency condition (14), we have

Poss(a, So) > [r; (x, (Y) > TF(x,do(a, So)) I.

So we have

y;(x,a> 3 -Ftx,do(a,So)),

that is, q.
4. +Y is (17). By the successor state axiom (12) of F in V, we have

Poss(cu,So) 1 [F(x,So) A~Y;(x,Q) 3 F(x,do(a,So))l.

so

F(x,So) A ly,(x,cu) 3 F(x,do(a,So)).

But (Yx)(E > F(x,So)) is in VsO, so we have

E A yy,(x,a) 1 F(x,do(cu,So)),

that is, 9.
5. 40 is (18). By the successor state axiom (12) of F in V, we have

Poss(~~,So) > [lF(x,So) A~y~(x,cu) > -F(x,do(cr,So))l.

so

+(x, So) A 1$(x, a) 3 F(x,do(a, So)).

154 I? Lin, R. Reiter/Art@ial Intelligence 92 (1997) 131-167

But (V’x)(E > -JF(x,&,)) is in z)sO, so we have

that is, 9.

By our construction of S, this proves that D b S. But DD,,, U S is a set of sentences in
Ls,. Therefore by Theorem 4.5, 27, k S U DunL,.

To prove the converse, we show that for any model M of S U ‘Du,,, there is a model

M’ of 2) such that A4 ws, M’. Suppose now that M is a model of SUD,,,. We construct
M’ as follows:

1. M’ and A4 have the same domains for sorts action and object, and interpret all
situation independent predicates and functions the same.

2. For each fluent F, M’ interprets F on SO as follows:

(a) For every variable assignment g, if (V’x) .E > F (x, SO) is in Ds,,, and M, g k

E (thus M’,m b E as well), then M’,u k F(x,So).
(b) Similarly, for every variable assignment, if (V’x).E > ~F(x, SO) is in DsO,

and M,g b E (thus M’,u k E as well), then M’,a k ~F(x,$).
(c) For every variable assignment (T, if F(x, SO) has not been assigned a truth

value by one of the above two steps, then M’, c k F(x, SO) iff M, u k

F(x,Ma,So)).
Notice that by our coherence assumption for Ds,,, our construction is well defined.

3. M’ interprets Poss according to VOp, and interprets the truth values of the fluents

on reachable situations according to D)ss.
4. M’ + _Z. This can be done according to Proposition 3.2.

Clearly M’ /= D. We show now that M ws,, M’. For any fluent F, suppose the successor

state axiom for F is

Poss(a,s) > F(x,do(a,s)) = y;(x,a) V (F(x,s) A’yF(x,a)).

Given a variable assignment (T, suppose M’, CT k F(x, do(a, SO)). Since 27 k

Poss(a, SO), by the above successor state axiom, there are two cases:
1. M’,(T b yFf(x,a). This implies M,a k ys(x,a). Now since rFf(x,n) >

F(x,do(a,So)) E S, and M is a model of S, thus M,cr b F(x,do(a,Sg))
as well.

2. M’,cr k F(x,So) A ly;(x,a). Since M’,(T k F(x,&), by our construction,

either M,a k F(x,do(a,S~)), or there is a sentence E > F(x,So) in V,s, such
that M, CT k E. Suppose the latter. Then by our construction of S, it contains

EA-y;(x,cr) 3 F(x,do(a,So)). Thus M,cr k F(x,do(a,&)) as well.
Similarly, if M’,a + -F(x,do(a,Sg)), then M,a k ~F(x,do(a,&)) as well. There-
fore M wS,, M’. 0

Note the following:
1. The new database S has the same syntactic form as Vs,,, so this process can be

iterated.
2. The computation of S is very efficient, and the size of S is bounded by the sum

of the size of VsO and twice the number of fluents.

I? Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167 IS.5

We emphasize that the results of this section depend on the fact that the initial database
has a certain specific form. In fact, a result by Pednault [161 shows that for context free
actions and arbitrary D,, progression is not always guaranteed to yield finite first-order

theories.

7. STRIPS

Ever since STRIPS was first introduced (Fikes and Nilsson [6]), its logical se-

mantics has been problematic. There have been many proposals in the literature (e.g.
Lifschitz [111, Erol, Nau and Subrahmanian [41, Bacchus and Yang [21). These all

have in common a reliance on meta-theoretic operations on logical theories to cap-
ture the add and delete lists of STRIPS operators, but it has never been clear ex-
actly what these operations correspond to declaratively, especially when they are ap-

plied to logically incomplete theories. In the sequel, we shall provide a semantics for
STRIPS-like systems in terms of a purely declarative situation calculus axiomatiza-

tion for actions and their effects. On our view, a STRIPS operator is a mechanism

for computing the progression of an initial situation calculus database under the ef-
fects of an action. We shall illustrate this idea by describing two different STRIPS
mechanisms, and proving their correctness with respect to their situation calculus spec-

ifications.
Following Lifschitz [111, define an operator description to be a triple (8 D, A),

where P is a sentence of a first-order language .Cp~lps and D (the delete list) and A
(the add list) are sets of sentences of L: n~lps. A world description W is any set of

sentences of Cn~fps. A STRIPS system consists of:
I. a world description WO, called the initial world description,
2. a binary relation DC 2LsrR/ps x Ln~~ps,”

3. a set Op of symbols called operators, and

4. a family of operator descriptions {(Pa, D,, Aa)}ruEop.
With each operator LY is associated a world description W,, the successor world descrip-

tion of Wo, defined by W, = (WO - 0,) U A,. A successor world description W, is

admissible iff WO D P,.

Sometimes, but not always, D will be the standard entailment relation for the first-

order language C.rr~~p.r. In this case, admissibility simply corresponds to the fact that
the precondition Pa is entailed by the initial world description WO, in which case, on
the standard view of STRIPS, the operator (Y is applicable. However, our intuitions
about STRIPS are not standard, and we prefer to leave open the interpretation of the
“entailment” relation D.

Our semantics for STRIPS systems is indirect; we define certain classes of theories
in the situation calculus and show how to associate suitable STRIPS systems with those
theories. Only STRIPS systems associated with such situation calculus theories will, on

our account of STRIPS, be assigned a semantics. This leaves many STRIPS systems

‘I In his treatment of STRIPS, Lifschitz does not provide for the relation D

156 l? Lin, R. Reiter/Ariijicial Intelligence 92 (1997) 131-167

(namely those without an associated situation calculus theory) without a semantics; we
are not very distressed by this, given that STRIPS systems, in their full generality, do
not currently have coherent semantics anyway.

8. Two versions of STRIPS

The STFUPS systems we derive apply only to a restricted class of situation calculus
action theories for which the successor state axioms have a particular syntactic form,

which we now define. A successor state axiom is strongly context free iff it has the

form:

Poss(a,s) 3 [F(x,do(a,s)) =

(3d’))a = A1(&')) V ... V (%‘““‘)a = A,,&“‘)) V
(19)

Here the A and B are function symbols of sort action, not necessarily distinct from
one another. The 6 and q are sequences of distinct variables which include all of the
variables of x; the remaining variables of the 6 and q are those being existentially
quantified by the v and W, respectively. x could be the empty sequence. Notice that

strongly context free successor state axioms are special cases of context free successor
state axioms defined in Section 6. The successor state axioms of our running blocks
world example given below are strongly context free. The following successor state

axiom is context free but not strongly context free:

Poss(u, s) > [ontuble(x,do(u, s)) E a =putontuble(x) V

ontuble(x, s) A a f tiptuble A a # pickup(x) 1.

This is because the action tiptuble does not have x as a parameter.
The STRIPS systems which we shall characterize will be for languages L2 whose only

function symbols of sort object are constants. Therefore, consider a ground action term
(Y, and the strongly context free successor state axiom (19) for fluent F, relativized to the

initial situation So. How does LY affect the truth value of fluent F in the successor situation
do(a, So)? By the unique names axioms for actions, together with the assumption that
the successor state axioms are strongly context free, this relativized axiom will be

logically equivalent to a sentence of the form:

Poss(a,So) > [F(x,do(a,So)) E
x = x(I) v . . . v -& = _p’) i”/

F(x,So) Ax # Y”)A...Ax # Y(“)].

Here the X and Y are tuples of constants of C2 obtained from those mentioned by the
ground action term cy. If we assume further that the action LY is possible in the initial
situation, i.e., that D b Poss(CY, SO), this is equivalent to:

E Lin, R. Reiter/Artificial Intelligence 92 (1997) 131-167 157

F(x,do(a,So)) =

x = x”’ v . . . v x = x(n’) v F(x, So) A x # Y(l) A ‘. . Ax # YCfl).
(20)

Example 8.1. The following blocks world will provide a running example for the rest

of this paper:

Actions
l move(x, y, z) : move the block x from block y onto block z, provided both x and

z are clear and block x is on top of block y.

l movefromtable(x, y): move the block x from the table onto block y, provided x is
clear and on the table, and block y is clear.

l movetotuble(x, y) : move block x from block y onto the table, provided x is clear
and x is on y.

Flue&s
l clear(x, s) : block x has no other blocks on top of it, in state S.
l on(x, y, s): block x is on (touching) block y, in state S.

l ontable(x, s): block x is on the table, in state s.

This setting can be axiomatized as follows:

Action precondition axioms

Poss(move(x,y,z),s) =

clear-(x, s) A clear(z, s) A on(x, y, s) A x # y A x # z A y # z,

Poss(movefromtabZe(x, y) , s) E

clear(x, s) A clear(y, s) A ontable(x, s) A x Z y,

Poss(movetotable(x, y) , s) 5 clear-(x, s) A on(x, y, s) A x + y.

Successor state axioms

Poss(a,s) > [clear(x,do(a,s)) I

(3y, z)a = move(y, x, z) V (3y)a = movetotable(y, x) V

clear(x,s) A7(3y,z)a=move(y,z,x) A

7 (3~) a = movefromtable(y, x)] ,

Poss(a,s) > [on(x,y,do(a,s)) =

(32) a = move(x, z, y) V a = movefromtable(x, y) V

on(x,y,s) Au $1 movetotable(x,y) A~(3z)a=move(x,y,z)],

Poss(a, s) > [ontable(x, do(a, s)) E

(3y) a = movetotable(x, y) V

ontable(x, s) A -(3y)a = movefromtable(x, y) 1.

1% E Lin, R. Reiter/Arti$cial Intelligence 92 (1997) 131-167

NOW consider the “generic” ground action move(X, I: 2). The corresponding instances
of (20) for the fluents clear, on and ontable are logically equivalent to:

clear(x,do(move(X,I:Z),So)) rx=YVclear(x,&)Ax # Z,

on(x,y,do(move(X,I:Z),So)) =

x=XAy=ZVon(x,y,S())A~[x=XAy=Y],

ontable(x,do(move(X,Y,Z),So)) E ontable(x,So).

For the generic ground actions movefromtable(X, Y) and movetotable(X, Y) we ob-
tain:

clear(x, do(movefromtable(X, Y) , So) > E clear(x, So) A x f E:

on(x,y,do(movefromtable(X,Y),So)) -x=XAy=YVon(x,y,So),

ontable(x, do(movefromtable(X, Y) , So)) E ontable(x, SO) A x # X,

clear(x, do(movetotable(X, Y) , SO)) s x = Y V clear(x, SO),

on(x,y,do(movetotable(X,Y),So)) =on(x,y,So) Al[x=XAy=Y],

ontable(x, do(movetotable(X, Y) , SO)) E x = X V ontable(x, SO).

8.1. OCF-STRIPS: open world, context free STRIPS

In this section we characterize an open world version of STRIPS-open world in

the sense that its database is a set of ground literals (not atoms with a closed world
assumption, as in most versions of STRIPS), and moreover, this database need not be
logically complete. In other words, a certain degree of information incompleteness is

permitted. Our point of departure is an action theory D = 2 U V,,y U V,,, U I&,,, U ‘Ds,,,

with
1.

2.

3.

4.

5.
6.

the following properties:
The only function symbols of sort object that the second-order language L2 pos-
sesses are constants. i2
Each situation dependent sentence of DsO is a ground fluent literal, i.e., of the form
F(C, SO) or -F(C, So) for fluent F and constants C of sort object.

Ds,, contains unique names axioms for constants of sort object: for each pair of

distinct constant names C and C’ of sort object, the axiom C + C’.

DsO contains no pair of complementary literals (and hence is consistent).

Each successor state axiom of V,,v is strongly context free.
We are progressing with respect to a, a ground action term, and (Y is possible

initially:

D t= Poss(a,So).

I2 Recall that L? is the language in which V is expressed.

E Lin. R. Reiter/Artijicial Intelligence 92 (1997) 131-167 159

7. For each fluent F, the consistency condition (14) is satisfied. It is easy (but
tedious) to verify that each fluent of Example 8.1 satisfies this condition.

In keeping with our intuition that STRIPS systems are mechanisms for progressing
situation calculus databases, we want now to characterize the result of progressing DsO

under the effects of the ground action a in the case of action theories of the above kind.

Our basis for this will be Theorem 6.1.
Let S be the following set of sentences:
1. Initialize S to {‘p E Ds,, 1 p is situation independent}.

2. For each fluent F do (with reference to the instance (20) of F’s successor state

axiom) :
(a) Add to S the sentence F(X”‘,do(a,&~)), i = 1,. . . ,m.
(b) For each ground instance F(C, SO) E Vs,, add to S the sentence F(C,

&(a, SO)), whenever C is a tuple of constants different from each Y(j),

i= l,... , n. (Here, we invoke the unique names axioms for constants of sort

object.)
(c) Add to S the sentence lF(Yci), &I(a, SO)), i = 1,. . , n.
(d) For each ground instance -F(C, SO) E VS,, add to S the sentence

-F(C, du(cu, SO)), whenever C is a tuple of constants different from each

x(i), i = 1,. . .) m. (We again invoke the unique names axioms for constants

of sort object.)
By Theorem 6.1, the resulting set S enjoys the property that S U DD,,?, is a pro-

gression of DD, under action LY. Moreover, the situation dependent sentences of S are
all ground literals, and S contains no pair of complementary literals. It follows that S
can serve as a new initial database for the purposes of iterating the above progression

mechanism.
Now we interpret the above construction of the set S as a STRIPS operator. Imag-

ine suppressing the situation argument SO of all the ground literals of 2)~~. Now ask

what sequence of deletions and additions of ground literals must be performed on
the situation-suppressed version of Vs,, in order to obtain the situation-suppressed
version of S (i.e. S with the situation argument &(LY, SO) suppressed in its sen-

tences) . The deletions and additions necessary to achieve this situation-suppressed
transformation of D)s,, to S will define the delete and add lists for the STRIPS op-

erator cy.
It is easy to see that the following deletions and additions, when applied to DO, the

situation-suppressed version of Ds,,, yields the situation-suppressed version of S:

For each fluent F do (with reference to the instance (20) of F’s successor state
axiom) :

1. Delete from Da the sentences 1 F(Xci)) , i = 1, . , m.
2. Delete from Da the sentences F(Y(“)), i = 1,. . . , n.
3. Add to Da the sentences F(X(‘)), i = 1,. . , m.
4. Add to Z& the sentences -F(Y(‘)) , i = 1, . . . , II.

It is now clear how to define a STRIPS system and its associated operator for LY: ”

I3 See Section 7 for the relevant definitions

160 E Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167

1.
2.

3.

4.

5.

The language Ln~~ps is the situation-suppressed version of L2. I4
The initial world description is Do.

D is ordinary logical entailment; for a world description W and sentence c E

Lflip~ps, W D g iff W b g.
a’s precondition is the situation-suppressed version of the right hand side of the
equivalence in (Y’S situation calculus action precondition axiom.
For each fluent F, include in LY’S add and delete lists those literals specified above

for obtaining the situation-suppressed version of S.

To our knowledge, OCF-STRIPS is the only variant of STRIPS which specifically
provides for an incomplete database of ground literals, and which is provably correct
with respect to a logical specification.

Example 8.2. Continuing with our blocks world example, we can “read off” the OCF-

STRIPS operator schema for move from the instances of the successor state axioms
given in Example 8.1:

moue(X,I:Z) I5

P: clear(X) A clear(Z) A on(X, Y) A X # Z A X # Y A Y # Z.

D: ~clear(Y),cfear(Z),~on(X,Z),on(X,Y).

A: clear(Y), -dear(Z), on(X, Z), ~on(X, Y).

The operator description schemas for movefromtable and movetotable are obtained in
the same way:

movefromtable(X, Y)

P: clear(X) A cfear(Y) A ontable(X) A X f I:

D: ~on(X, Y) , ontable(X) , clear(Y) .

A: on(X, Y) , lontable(X) , dear(Y).

movetotable(X, Y)

P: dear(X) Aon(X,Y) AX f P

D: 4ear(Y) , on(X, Y) , lontuble(X) .

A: clear(Y) , ~on(X, Y) , ontable(X).

8.2. RCF-STRIPS: relational, context free STRIPS

In this section, we characterize a relational version of STRIPS-relational in the sense
that its database is a conventional relational database. This version of STRIPS derives

from action theories D of the form 2) = E U V,, U Vop U V,,, U I&, , with the following
properties:

l4 We take it as self evident what is meant formally by the language obtained by suppressing objects of sort

situation from the language L2.
I5 Notice that these are schemas, standing for the family of operators obtained by instantiating the “variables”

X, Y and 2 of the schema by constants of our situation calculus language.

E Lin, R. Reiter/Arti&ial Intelligence 92 (1997) 131-167 161

1. The only function symbols of sort object that the second-order language L2 pos-
sesses are constants.

2. Vs,, contains one sentence of the following form, for each fluent F:

F(x,&,) s x =C(l) V...Vx =@, (21)

where the Cci) are tuples of constant symbols of sort object. These are the only

situation dependent sentences of D so. Notice that initial databases of this form are
special cases of the relatively complete databases defined in Section 5. The case
12 = 0 is permitted, in which case this axiom is F(x, SO) 3 false. For example, if

an agent’s hand is initially empty:

holding(X, So) 3 false.

If initially, block A is on B, D is on A, C is on E, and no other block is on a

block:

on(x,y,So) =x=AA~=BVX=DA~=AVX=CA~=E.

3. 27s” contains unique names axioms for constants of sort object.
4. Each successor state axiom of D,, is strongly context free.

5. We are progressing with respect to LY, a ground action term, and LY is possible
initially:

27 k Poss(GJ,So).

Notice that the single sentence (21) is logically equivalent to:

F(C”‘,So),. . . , F(C(“),So), (22)

x # C(‘)A...AX # 6’) > lF(x,So). (23)

Notice also that, given all the positive instances (22) of F, we can trivially determine

the sentence (23). So it is sufficient to represent a database of this form (say for
computational purposes) by the set of all positive instances of F. This, we claim, is
what some versions of STRIPS do (but suppressing the situation argument). This is
also what relational databases do; in fact, the unique names assumption together with
the condition (2 1) on Ds, are the defining properties for a relational database (Reiter

[201). The relational tables are just the ground instances of the fluents F. (But bear
in mind that logically, the database consists of the table for F, together with the axiom

(23) and unique names axioms.)

As we did in the previous section, we want now to characterize the result of progress-
ing 27~~ under the effects of the ground action (Y in the case of action theories of the

above kind. To do so, we appeal to the results in Section 5. Consider the context free
successor state axiom (20) for fluent F which we relativized to the initial situation SO.
By our assumption (21) on the syntactic form of Vs,, (20) is equivalent to:

F(x,do(a,So)) E

x = XC’) v . . . v -# = x(nr) v

[x = C(I) v.. . v X = C(n)] Ax # Y(l) A.. . A 3 # y(n).

162 E Lin, R. Reiter/Artifciul Intelligence 92 (1997) 131-167

Let C(t),..., C”’ be all the C”’ that are different tuples than all of the Y(j). Then, by
unique names axioms for constant symbols of sort object, the above sentence will be

logically equivalent to

F(x,du(a,So)) f
x = $1) v . v x = X’“” v x = c(I) v . . . v x = C”‘. (24)

Let S be the following set of sentences:
1. Initialize S to (9 E DsO 1 p is situation independent}.
2. For each fluent F do: add the sentence (24) to S.

The resulting set S enjoys the property that SUl&,,, is a progression of D,s,, under action
(Y (Theorem 5.1) . Moreover, S has the same syntactic form as DsO, and so can serve as

a new initial database for the purposes of iterating the above progression mechanism.
Now we interpret the above construction of the set S as a STRIPS operator. Imagine

representing the situation dependent sentences

F(x, So) E x = C(l) V . . . V x = C@) (25)

by the situation-suppressed relational database of ground instances F(C”‘), . . . ,

F(C(“)). We emphasize that this representation is merely a shorthand for the sen-

tence (25). Now ask what sequence of deletions and additions of ground literals must
be performed on 270, the situation-suppressed relational database version of Vs,, in order

to obtain the situation-suppressed relational version of S. The deletions and additions

necessary to achieve this transformation of DO to the corresponding representation of S

will define the delete and add lists for the STRIPS operator a.
It is easy to see that the following deletions and additions, when applied to ‘Da, yield

the situation-suppressed, relational database representation of S:
For each fluent F do (with reference to (20)) :
1. Delete from De the sentences F(Y(‘)), i = 1,. . . , n.

2. Add to De the sentences F(Xc’)), i = 1,. . . , m.
It is now clear how to define a STRIPS system and its associated operator for (Y: l6

1. The language L,~-RIPS is the situation-suppressed version of L2.

2. The initial world description is Z&.
3. For a sentence u E Lr~,ps, W D CT iff R(W) b u. Here, W is a world description

in relational database form for all its fluents, i.e., the only sentences in W that

mention a fluent are ground atoms of that fluent. R(W) is the translation of the
relational database part of W to its full logical form as follows: R(W) consists of
the sentences of W that do not mention a fluent, together with those sentences of

the form

F(x) E x = C(l) V . . . V x = Ccn)

where F(C(‘)) .
4. LY’S precondition

. , F(C”“) are alE the ground instances of a fluent F in W.

is the situation-suppressed version of the right hand side of the
equivalence in a’s situation calculus action precondition axiom.

I6 See Section 7 for the relevant definitions

E Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167 163

5. For each fluent F, include in (Y’S add and delete lists those literals specified above
for obtaining the situation-suppressed relational database representation of S.

Example 8.3. Consider the same actions, fluents and axioms as in Example 8.1, except

treat this setting now as an instance of an RCF-STRIPS situation calculus specification.

In this case, as before, we can “read off” the RCF-STRIPS operator schema for move
from the instances of the successor state axioms of Example 8.1:

move(X, x Z)

P:clear(X)Aclear(Z)Aon(X,Y)AX#ZAx#YYY#Z.

D: clear(Z),on(X,Y).

A: clear(Y),on(X,Z).

The operator description schemas for movefromtable and movetotable are obtained in

the same way:

movefromtable(X, Y)

P: clear(X) A clear(Y) A ontubZe(X) A X # I!

D: clear(Y) , ontable(X).

A: on(X,Y).

movetotable(X, Y)

P: clear(X) Aon(X,Y) AX # K

D: on(X, Y) .

A: cfear(Y) , ontuble(X).

8.3. Pednault’s ADL

The only prior literature similar to our progression semantics for STRIPS-like systems
is by Pednault [16,181. Like us, Pednault relates a STRIPS database to the initial
situation of a situation calculus axiomatization. But our interpretation of such a database,
namely as a situation-suppressed situation calculus theory, distinguishes our approach

from Pednault’s, in which these databases are first-order structures. So for Pednault,
a STRIPS operator is a mapping from first-order structures to first-order structures,

where this mapping is defined by the addition and deletion of tuples applied to the

relations of the structure. ADL, Pednault’s generalization of STRIPS, is defined by just
such a mapping between structures. For us, as for Lifschitz [111, a STRIPS operator
is a mapping from first-order theories to (possibly second-order) theories, where this
mapping is effected by add and delete lists of sentences applied to the theory. The
problem with the ADL view on STRIPS is that it does not provide a feasible mechanism
for applying a STRIPS operator in the case that the database is a logically incomplete
theory (e.g. OCF-STRIPS of Section 8.1). For in such a case, every model of this
theory must be mapped by an ADL operator into its transformed structure, and it is the
set of all such transformed structures which represents the effect of the ADL operator.
When there are infinitely many such models, or even when they are finite in number

164 E Lin, R. Reiter/Art@cial Intelligence 92 (1997) 131-167

but plentiful, ADL becomes an unattractive STRIPS mechanism. In contrast, our focus
is on STRIPS operators that apply to logical theories, and hence operate on the single
sentential representations of these many models.

9. Summary and future problems

Although progression is a widespread notion in the database and AI literatures, in
its full generality it is a surprisingly complex idea. This paper has explored some of

the properties of progression, and related them to STRIPS systems. Here we summarize

what we take to be the main contributions of the paper.

1. We have argued the need for progressing a database, both from the perspective of
STRIPS, and for the purposes of cognitive robotics.

2. We have semantically defined a notion of progression, and shown that in general,
to capture it, second-order logic is required. Moreover, we have shown how to

determine a second-order sentence for the progression of an arbitrary finite first-
(or second-) order initial database.

3. We have explored two special cases for which progression is first order definable,
namely, the case of relatively complete initial databases with arbitrary successor
state axioms, and the case of a limited form of open world initial database, with

context free successor state axioms. In both cases, we gave efficient procedures for

computing the progression. On the other hand, as Pednault has shown [161, even
for context free successor state axioms, when the initial database is an arbitrary
finite first-order theory, progression need not be finitely first-order axiomatizable.

4. On our view a STRIPS operator is a mechanism for progressing a situation calcu-

lus theory, and its semantics can best be understood with reference to a suitable
situation calculus axiomatization of actions and their effects. Under this intuition,

it becomes possible to formulate various STRIPS-like systems, and prove their cor-
rectness with respect to our progression semantics. In this paper we have done just
that for two different STRIPS systems (OCF- and RCF-STRIPS) . In this connec-

tion OCF-STRIPS is of particular interest because it provides for a (limited) form
of logical incompleteness of the database. To our knowledge, OCF-STRIPS is the

only variant of STRIPS which specifically provides for an incomplete database of
ground literals, and which is provably correct with respect to a logical specification.

5. It is a completely mechanical process to obtain the OCF-STRIPS operators from

the action precondition and successor state axioms of a situation calculus ax-
iomatization of some domain. Similarly for RCF-STRIPS. In other words, these
purely declarative situation calculus specifications can be compiled into appropriate
STRIPS systems. Moreover, Reiter’s [211 solution to the frame problem provides
an algorithm for computing the successor state axioms from the effect axioms
specifying the causal laws of the domain being modeled. In other words, the ax-
iomatizer can describe the action precondition axioms, and the domain’s causal
laws, and have those axioms automatically transformed into suitable STRIPS oper-

ators for that domain (assuming the successor state axioms and the initial situation
have the right syntactic forms).

E Lin, R. Reiter/Artijicial Intelligence 92 (1997) 131-167 165

The results of this paper suggests a variety of topics for future research:
1. There are other cases for which progression can be done in first-order logic. One

such case concerns actions with finitary effects, namely, when for every fluent, the
action changes the fluent’s truth value at only a finite number of instances. This

and other special cases of progression need to be explored.
In this connection, Etzioni et al. [5] have recently proposed an extension of

STRIPS to accommodate sensing actions, i.e., actions that obtain (at plan execution

time) information about the world. As Levesque [9] has observed, the resulting

planner suffers from a number of limitations and drawbacks, stemming primarily

from the lack of a declarative specification of their system. As it happens, a
situation calculus account of sensing actions already exists (Scherl and Levesque

[261). Accordingly, it should be possible to incorporate sensing actions into our
notion of progression, and use this to generalize STRIPS to include such actions.
It should then be possible to prove the correctness of this version of STRIPS with
respect to its progression semantics, much as we did in this paper for RCF- and

OCF-STRIPS.
2. We have considered only systems that compute the full result of progression.

Sometimes, for example for computational purposes, it may be better to compute
only that part of the progression that is relevant to the goals of interest. For
example, if our blocks world includes a fluent for the colors of blocks, then there

is no need to progress this fluent if our goals have nothing to do with colors. It is

still an open problem how such partial progressions can be specified and computed
in a principled way.

3. The connection of RCF-STRIPS to relational databases (Section 8.2) suggests a
natural generalization of STRIPS operators to allow for arbitrary relational algebra

operators (not just adds and deletes) in defining the operator’s effects. This can

indeed be done, and an appropriate semantics is defined in terms of a situation
calculus axiomatization that relaxes the context free restriction on successor state
axioms of Section 8.2. In this connection, Pednault’s ADL [181 provides for just
such a generalized relational STRIPS, but without the relational algebra.

4. In a sense, progressing a database to 5, amounts to forgetting about the initial
situation and all those situations that are reachable from SO but not from S,. This

view of progression leads to an interesting notion of what it means for a knowledge
base to forget about some of its contents that is investigated further in (Lin and

Reiter [141).

Acknowledgements

For their generous advice and feedback, we wish to thank the other members of the
University of Toronto Cognitive Robotics Group: Yves Lesptrance, Hector Levesque,
Daniel Marcu, and Richard Scherl. One of the referees made a number of valuable
suggestions for improving the paper. This research was funded by the Government
of Canada National Sciences and Engineering Research Council, and the Institute for

Robotics and Intelligent Systems.

166 I? Lin, R. Reiter/Arttficial Intelligence 92 (1997) 131-167

References

I 1 J S. Abiteboul, Updates, a new frontier, in: Proceedings Second International Conference on Database
Theory (Springer, New York, 1988) l-1 8.

121 E Bacchus and Q. Yang, Downward refinement and the efficiency of hierarchical problem solving, Artif
Intell. 71 (1994) 41-100.

131 E.W. Dijkstra and C.S. Scholten, Predicate Calculus and Program Semantics (Springer, New York,

1990).

141 K. Erol, D. Nau and V. Subrahmanian, On the complexity of domain independent planning, in:

Proceedings AAAI-92, San Jose, CA (1992) 381-386.

IS] 0. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh and M. Williamson, An approach to planning with

incomplete information, in: Proceedings Third Infernational Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, MA (1992) 115-125.

161 R.E. Fikes and N.J. Nilsson, STRIPS: a new approach to theorem proving in problem solving, Artif:
Intell. 2 (1971) 189-208.

171 S.C. Kleene, Mathematical Logic (Wiley, New York, 1967).

[81 Y. Lesperance, H.J. Levesque, E Lin, D. Marcu, R. Reiter and R. Scherl, Foundations of a logical

approach to agent programming, in: M. Wooldridge, J. Muller and M. Tambe, eds., Intelligent Agents
Wmune II-Proceedings of the 1995 Workshop on Agent Theories, Architectures, and Languages (ATAL -
95) (Springer, New York, 1996) 331-346.

191 H.J. Levesque, What is planning in the presence of sensing?, Tech. Rept., Department of Computer

Science, University of Toronto, Toronto, Ont. (1995).

[10 1 H.J. Levesque, R. Reiter, Y. Lesptrance, E Lin and R. Scherl, GOLOG: a logic programming language

for dynamic domains, J. Logic Program. (to appear).

[1 I I V. Lifschitz, On the semantics of STRIPS, in: Proceedings Workshop on Planning and Reasoning about
Action, Timberline, OR (1986) l-9.

[121 E Lin and R. Reiter, How to progress a database (and why) I. Logical foundations, in: Proceedings
Fourth International Conference on Principles of Knowledge Representation and Reasoning, Bonn

(1994) 425-436.

I 131 F. Lin and R. Reiter, State constraints revisited, J. Logic Comput. 4 (1994) 655-678.

[141 E Lin and R. Reiter, Forget it!, in: R. Greiner and D. Subramanian, eds., Working Notes of AAAI Fall
Symposium on Relevance (American Association for Artificial Intelligence, Menlo Park, CA, 1994)

154-159.

[15 J E Lin and R. Reiter, How to progress a database II. The STRIPS connection, in: Proceedings IJCAI-95,
Montreal, Que. (1995) 2001-2007.

[161 E.P. Pednault, Toward a mathematical theory of plan synthesis, PhD thesis, Department of Electrical

Engineering, Stanford University, Stanford, CA (1986).

[17] E.P Pednault, Synthesizing plans that contain actions with context dependent effects, Comput. Intell. 4
(1988) 356-372.

1 E.P. Pednault, ADL: exploring the middle ground between STRIPS and the situation calculus, in:

Proceedings First International Conference on Principles of Knowledge Representation and Reasoning,
Toronto, Ont. (1989) 324-332.

1 P. Peppas, N. Foo and M.-A. Williams, On the expressibility of propositions, Logiyue Anal. 139-140
(1992) 251-272.

I R. Reiter, Towards a logical reconstruction of relational database theory, in: M. Brodie, J. Mylopoulos

and J. Schmidt, eds., On Conceptual Modelling: Perspectives,from ArtiJicial Intelligence, Databases and
Programming Languages (Springer, New York, 1984) 191-233.

[2 I] R. Reiter, The frame problem in the situation calculus: a simple solution (sometimes) and a completeness
result for goal regression, in: V. Lifschitz, ed., Artificial Intelligence and Mathemafical Theory of
Computation: Papers in Honor of John McCarthy (Academic Press, San Diego, CA, 1991) 418-420.

1221 R. Reiter, Proving properties of states in the situation calculus, Arttf Intell. 64 (1993) 337-3.51.
[23] R. Reiter, On specifying database updates, J. Logic Program. 25 (1995) 53-91.
[241 R. Reiter, Some soundness and completeness results for regression in the situation calculus (to appear).

E: Lin, R. Reiter/Art$icial Intelligence 92 (1997) 131-167 161

[25 1 S.J. Rosenschein, Plan synthesis: A logical perspective, in: Proceedings IJCAI-81, Milan (1981) 33 I-

331.

1261 R. Scherl and H.J. Levesque, The frame problem and knowledge-producing actions, in: Proceedings
AAAI-93, Washington, DC (1993).

I27] L.K. Schubert, Monotonic solution to the frame problem in the situation calculus: an efficient method

for worlds with fully specified actions, in: H.E. Kyberg, R.P. Loui and G. Carlson, eds., Knowledge
Representation and Defeasible Reasoning (Kluwer Academic Publishers, Boston, MA, 1990) 23-67.

[28 1 R. Waldinger, Achieving several goals simultaneously, in: E.W. Elcock and D. Michie, eds., Machine
/ntelligence 8 (Ellis Horwood, Chichester, 1977) 94-136.

