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1. INTRODUCTION

Consider a knowledge base represented by a theory % of some logic, say proposi-
tional logic. We want to incorporate into 1 a new fact, represented by a sentence
p of the same language. What should the resulting theory be? A growing body of
work (Dalal 1988, Katsuno and Mendelzon 1989, Nebel 1989, Rao and Foo 1989) takes
as a departure point the rationality postulates proposed by Alchourrén, Gardenfors
and Makinson (1985). These are rules that every adequate revision operator should
be expected to satisfy. For example: the new fact g must be a consequence of the
revised knowledge base.

In this paper, we argue that no such set of postulates will be adequate for every
application. In particular, we make a fundamental distinction between two kinds of
modifications to a knowledge base. The first one, update, consists of bringing the
knowledge base up to date when the world described by it changes. For example,
most database updates are of this variety, e.g. “increase Joe’s salary by 5%”. Another
example is the incorporation into the knowledge base of changes caused in the world
by the actions of a robot (Ginsberg and Smith 1987, Winslett 1988, Winslett 1990).
We show that the AGM postulates must be drastically modified to describe update.

The second type of modification, revision, is used when we are obtaining new infor-
mation about a static world. For example, we may be trying to diagnose a faulty
circuit and want to incorporate into the knowledge base the results of successive tests,
where newer results may contradict old ones. We claim the AGM postulates describe
only revision.

LA preliminary version of this paper was presented at the Second International Conference on
Principles of Knowledge Representation and Reasoning, Cambridge, Mass., 1991.



The distinction between update and revision was made by Keller and Winslett (1985)
in the context of extended relational databases. They distinguished change-recording
updates (which we call updates) and knowledge-adding updates (which we call revi-
sions). Our work extends theirs in several ways. We formalize the distinction, which
they made informally. We provide an axiomatization for update obtained from the
AGM. Keller and Winslett’s work does not treat inconsistent knowledge-bases or
addition of inconsistent knowledge, while ours does. And we treat arbitrary proposi-
tional knowledge-bases, while their setting is relational databases extended with null
values and disjunction.

Gardenfors (1988) considers two types of revision functions in the context of prob-
abilistic reasoning: imaging and conditionalization. We can regard imaging as a
probabilistic version of update, and conditionalization as a probabilistic version of
revision.

Morreau in this volume also recognizes the distinction between update and revision,
and shows how to use update in planning.

Rao and Foo (1989) extend the AGM postulates in order to apply them to reasoning
about action. They introduce the notion of time and consider a modal logic. However,
they do not identify the difference between revision and update. In this paper we
clarify exactly why the postulates apply to revision but not to update. We give a new
set of postulates that apply to update operators, and characterize the set of operators
that satisty the postulates in terms of a set of partial orders defined among possible
worlds.

The difference between the postulates for revision and for update can be explained
intuitively as follows. Suppose knowledge base ¥ is to be revised with sentence p.
Revision methods that satisty the AGM postulates are exactly those that select from
the models of u those that are “closest” to models of i, where the notion of closeness
is defined by an ordering relationship among models that satisfies certain conditions
(Katsuno and Mendelzon, 1989). The models selected determine the new theory,
which we denote by © o . On the other hand, update methods select, for each model
M of the knowledge base 1, the set of models of p that are closest to M. The
new theory describes the union of all such models. Suppose that i has exactly two
models, [ and J; that is, there are two possible worlds described by the knowledge
base. Suppose that pu describes exactly two worlds, K and L, and that K is “closer”
to I than L is, and K is also closer to [ than L is to J. Then K is selected for the
new knowledge base, but L is not. Note the knowledge base has effectively forgotten
that J used to be a possible world; the new fact p has been used as evidence for the
retroactive impossibility of J. That is, not only do we refuse to have J as a model
of the new knowledge base, but we also conclude that J should not have been in the
old knowledge base to begin with.

If we are doing revisions, this behaviour is rational. Since the real world has not



changed, and g has to be true in all the new possible worlds, we can forget about
some of the old possible worlds on the grounds that they are too different from what
we now know to be the case. On the other hand, suppose we are doing updates. The
models of ¥ are possible worlds; we think one of them is the real world, but we do
not know which one. Now the real world has changed; we examine each of the old
possible worlds and find the minimal way of changing each one of them so that it
becomes a model of . The fact that the real world has changed gives us no grounds
to conclude that some of the old worlds were actually not possible.

To illustrate this distinction between update and revision, let us consider two exam-
ples which are formally identical to the one above but have different intuitively desir-
able results. First, in the spirit of Ginsberg and Smith (1987) and Winslett (1988),
suppose our knowledge base describes five objects A.B,C,D,E inside a room. There
is a table in the room, and objects may be on or off the table. The sentence a means
“object A is on the table,” and similarly for sentences b.c,d, and e. The knowledge
base v is the sentence

(aAN=bA—ecA-dA—e)V(maA-bAcAdAe).

That is, either object A is on the table by itself, or objects C,D and E are. This
knowledge base has exactly two models [ and J. We send a robot into the room,
instructing it to achieve a situation in which all or none of the objects are on the
table. This change can be modelled by incorporating the following sentence p:

(aNbAcNdNe)V (maA—bA—eA—dA—e).

Let us take Dalal’s notion of “closeness” and the revision operator that results Dalal
(1988). According to this measure, the distance between two models is simply the
number of propositional letters on which they differ. The models selected for the new
KB will be those models of p which are at minimal distance from models of ). Now
K, the model where nothing is on the table, is at distance 1 from I (the model where
A is on the table) and at distance 3 from .J (the model where C,D and E are). On
the other hand L, the model where every object is on the table, is at distance 4 from
I and 2 from J. Dalal’s revision operator will therefore select K as the only model of
the new knowledge base. But intuitively, it seems clear that this is incorrect. After
the robot is done, all we know is that either all objects are on the table or all are off;
there is no reason to conclude that they are all off, which is what revision does.

Consider now an example that is formally identical, but where the desired result is
given by revision, not by update. Suppose the knowledge base describes the state
of a five bit register which we read through noisy communication lines. Each of the
propositional letters a.,b,c,d,e now represents one bit. The state of the register is
unchanging. Two different readings have been obtained: 10000 and 00111. By an
independent analysis of the circuits that control the register, we learn that all bits
must have the same value. That is, only 11111 and 00000 are possible patterns.



Dalal’s revision method tells us to keep 00000 as the new knowledge base; that is, we
conclude that 00111 is relatively too far from the possible patterns to be an acceptable
result. It might be argued that it is better to forget the two readings in the KB and
just keep both 00000 and 11111 as possible worlds. However, consider an example
in which the register is thousands of bits long, the two readings agree on every bit
except the first five, and the new fact only says that the first five bits must be all
0’s or all 1’s. It is clearly a waste of information now to discard the old KB and just
keep the new fact.

With this motivation, let us postulate that an update method should give each of
the old possible worlds equal consideration. One way of capturing this condition
syntactically is to require that the result of updating )V ¢ with p be equivalent to the
disjunction of ¥ updated with g and ¢ updated with p. Let us call this the disjunction
rule. This rule turns out to have far-reaching consequences. In particular, consider
the case where p is consistent with v, that is, no conflict exists. The AGM postulates
require the result of the revision to be simply the conjunction of ¢ and p. As we will
see, this apparently obvious requirement is inconsistent with the disjunction rule.

The outline of the paper is as follows. In Section 2 we give preliminaries. We review
the AGM postulates and our characterization from Katsuno and Mendelzon (1989)
of all revision methods that satisty the postulates in terms of a pre-order among
models. In Section 3 we define the update operation and give a set of rationality
postulates for it. We show that these postulates characterize all update operators
that select for each model I of ¥ those models of u that are “closest” to [ in a certain
sense. In Section 4, we discuss briefly how update and revision could be combined
for reasoning about action. In Section 5, we propose a new operation called erasure.
Erasure is the analogue of contraction (Alchourrén, Gardenfors and Makinson 1985,
Makinson 1985) for update operators. We show that Winslett’s Forget operator is a
special case of symmetric erasure, an operator defined in terms of erasure. Finally,
in Section 6 we sketch a way to unify update and revision by using a single theory
change operator parameterized by time.

2. PRELIMINARIES

Throughout this paper, we consider a finitary propositional language L, and we de-
note the finite set consisting of all the propositional letters in L by =. We represent a
knowledge base by a propositional formula v, since we need a finite fixed representa-
tion of a KB to store it in a computer. An interpretation of L is a function from = to
{T,F}. A model of a propositional formula 1 is an interpretation that makes ¢ true
in the usual sense. Mod (1)) denotes the set of all the models of ¢». The knowledge
base ¥ may be inconsistent, in which case Mod(¢)) = ). A propositional formula ¢ is
complete if for any propositional formula, g, ¢ implies p or ¢ implies —p.



2.1. Revision and the AGM Postulates

Given a knowledge base ¥ and a sentence p, ¥ o i denotes the revision of ¢ by u; that
is, the new knowledge base obtained by adding new knowledge p to the old knowledge
base 1. Note that other papers in this volume use the symbol 4+ to denote revision.
We, however, use o instead of 4 to clarify that we represent a KB by a propositional
formula t, while other papers use a (possibly infinite) set K of formulas.

Alchourrén, Gardenfors and Makinson propose eight postulates, (G*1)~(G*8), which
they argue must be satisfied by any reasonable revision function. By specializing
to the case of propositional logic and rephrasing them in terms of finite covers for
infinite “knowledge sets,” the postulates become the six rules below. See (Katsuno
and Mendelzon 1989, 1990) for a discussion of the intuitive meaning and formal
properties of these rules.

(R1) < oy implies s.

(R2) If ¥ A 1 is satisfiable then 1oyt < o A p.

(R3) If y is satisfiable then 1 o g is also satisfiable.
(R4) If vy < ¥y and p1y > pip then 1y o f11 < 13 0 piy.
(R5) (o p) A ¢ implies o (1 A @),

(R6) If (vp o pu) A ¢ is satisfiable then ¢ o (u A ¢) implies (¢ o ) A ¢.

2.2. Orders between Interpretations

The postulates (R5) and (R6) represent the condition that revision be accomplished
with minimal change. In Katsuno and Mendelzon (1989), we gave a model theoretic
characterization of minimal change.

Let 7 be the set of all the interpretations of L. A pre-order < over 7 is a reflexive
and transitive relation on Z. We define < as [ < [’ if and only if [ < I" and I' £ I.
A pre-order is total if for every I,J € T, either [ < J or J < I. Consider a function
that assigns to each propositional formula 1 a pre-order <, over Z. We say this
assignment is faithful® if the following three conditions hold:

L. If I,1I' € Mod(+) then [ <, I' does not hold.

2. If I € Mod(v) and I' ¢ Mod(+)) then [ <, I’ holds.

2The term persistent was used instead of “faithful” in Katsuno and Mendelzon (1989).



3. If 77/) — q§, then §¢:§¢.

That is, a model of 1) cannot be strictly less than any other model of ¢) and must be
strictly less than any non-model of ).

Let M be a subset of Z. An interpretation [ is minimal in M with respect to <,
if I € M and there is no I’ € M such that I' <, I. Let Min(M, <) be the
set of all I € M such that I is minimal in M with respect to <;. The following
characterization of all revision operators that satisfy the postulates was established

in Katsuno and Mendelzon (1989).

Theorem 2.1 Revision operator o satisfies Conditions (R1)~(R6) if and only if
there exists a faithful assignment that maps each KB 1 to a total pre-order <, such
that Mod (v o p1) = Min(Mod (1), <y).

3. UPDATE

In this section we axiomatize all update operators that can be defined by partial orders
or partial pre-orders over interpretations. The class of operators defined generalizes
Winslett’s Possible Models Approach (PMA) (Winslett 1988, 1989). Winslett argues
that the PMA is suitable for reasoning about action in certain applications. According
to our classification, the PMA is an update operator, because it changes each possible
world independently. For background, we review this approach first.

3.1. Possible Models Approach

Let ¢ be a KB and g a new sentence. We denote the PMA operator by ¢,,,,. For
each model I of ¢, the PMA selects from the models of p those which are “closest”
to I. The models of the new KB () ¢y, 1) are the union of these selected models.
Formally, the PMA is defined by

Mod( opma 1) = | ) Incorporate(Mod(u), 1),
1€ Mod (1))

where Incorporate( Mod(p), I) is the set of models that are “closest” to I in Mod(pu).

The closeness between two interpretations, I and .J is measured by the set Diff (I, .J)
of propositional letters that have different truth values under I and J. For two
interpretations, J; and Jy, Ji is closer to [ than Jy (denoted by Ji <jp,ma J2) if
and only if Diff (I, 1) is a subset of Diff (I,.J5). Then, Incorporate(Mod(u), I) is the
set of all the minimal elements with respect to <j .. in the set Mod(p), that is,
Min(Mod (1), <1 pma)-



Example 3.1 Let L have only two propositional letters, b and m. Let ¢ < (b A
—m)V (nbAm) and p < b. Then, I = (F,T) is a model of ¢. J; = (T,T) and
Jy = (T, F) are two models of p. Ji <j,ma J2 follows from the fact Diff (I, .J;) = {b}
is a subset of Diff (I, .Jz) = {b,m}. Similarly, by considering the case where .J; is a
model of ¥, we obtain 1 ¢,,,, it < b.

To interpret this example in the context of (Winslett 1988, 1989), let us go back to
a room with two objects in it, a book and a magazine. Suppose b means the book is
on the floor, and m means the magazine is on the floor. Then, i states that either
the book is on the floor or the magazine is, but not both. Now, we order a robot
to put the book on the floor. The result of this action should be represented by the
update of i with b. After the robot puts the book on the floor, all we know is b,
and this is in fact the result of appying the PMA. Note that ¢ is consistent with pu.
According to revision postulate (R2), the result of 1 o p should therefore be ¢ A g,
that is, b A =m. But why should we conclude that the magazine is not on the floor?

3.2. Postulates for Update

The PMA is defined in terms of a certain partial order over interpretations. This
subsection generalizes the PMA by axiomatizing all update operators that can be
defined by partial orders or partial pre-orders over interpretations.

We use ¢ o p to denote the result of updating KB v with sentence p. Our postulates
for update are:

(U1) o o p implies p.

(U2) If ¢ implies p then ¢ o p is equivalent to .

(U3) If both v and p are satisfiable then ¢ ¢ u is also satisfiable.
(U4) If oy <> thy and gy < pg then vy o gy < 1y © po.

(UB) (0 0) A implies o (1 A ).

(U6) If ¥ o pg implies o and ¢ © g implies g then ¢ o py = ¥ o po.
(UT) If ¢ is complete then (¢ o p1) A (¢ © pa) implies o (g V pz).
(U8) (1 Viahz)op « (brop)V (20 p).

Postulates (Ul)~(Ub) correspond directly to the the corresponding postulates for
revision given in Section 2. Note that postulate (U2) says that if a new sentence p
is derivable from KB ¢, then updating by p does not influence the KB. In the case
where @ is consistent, postulate (U2) is strictly weaker than (R2). An immediate
consequence of (U2) is the following.



Lemma 3.1 [f an update operator o satisfies (U2), and ¢ is inconsistent, then o u
is inconsistent for any p.

The property above might appear undesirable: once an inconsistency is introduced in
the knowledge base, there is no way to eliminate it. However, all we are saying is there
is no way to eliminate it by using update. For example, revision does not have this
behaviour; in fact, (R3) guarantees that the result of a revision is consistent provided
that the new sentence introduced is itself consistent. This is another manifestation
of the difference between update and revision. An inconsistent knowledge base is the
result of an inadequate theory, and can be remedied with revision (or contraction) by
adding new knowledge that supersedes the inconsistency (or removing contradictory
knowledge using contraction). We can never repair an inconsistent theory using
update, because update specifies a change in the world. If there is no set of worlds
that fits our current description, we have no way of recording the change in the real
world.

We drop rule (R6), and add instead three new postulates, (U6)~(U8). (U6) says
that if updating a knowledge base with p; guarantees py, and updating the same
knowledge base with ps guarantees puq, then the two updates have the same effect.
This is similar to condition (C7) in Gardenfors’s analysis of minimal changes of belief
Géardenfors (1978) and to conditional logic axiom CSO in Nute (1984). (U7) applies
only to complete KB’s, in which there is no uncertainty over what are the possible
worlds. If some possible world results from updating a complete KB with g and
it also results from updating it with po, then this possible world must also result
from updating the KB with 1 V pg. Finally, (U8) is what we called the “disjunction
rule” in the Introduction. It guarantees that each possible world of the KB is given
independent consideration. (U8) can be regarded as a nonprobabilistic version of the
homomorphic condition about probabilistic revision functions in Gardenfors (1988).

The following lemma shows that we can obtain one direction of (R2) by using (U2)
and (U8)
Lemma 3.2 [f an update operator o satisfies (U2) and (US), then o Ap implies pou.

Proof. Since ¢ is equivalent to (¢» A p) V (0 A =), it follows from (U8) that ¢ o u
is equivalent to ((¢0 A ) o ) V (0 A —p) o p). By (U2), (¢ A p) o p is equivalent to
¥ A p. Hence, 0 A g implies ¥ o p.

However, as Example 3.1 showed, update operators do not necessarily satisfy that
1 o pimplies ¥ A p when @ is consistent with .

An interesting consequence of the postulates is monotonicity.

Lemma 3.3 [If an update operator o satisfies (US), and ¢ implies 1, then ¢ o u
implies o .



Monotonicity has been deemed undesirable by the philosophers of theory revision.
The reason is a result called “Gardenfors’s impossibility theorem” (Arlé Costa 1989,
Gardenfors 1988, Makinson 1989), which shows that monotonicity is incompatible
with postulates (R1)~(R4). More precisely, Theorem 7.10 of Géardenfors (1988)
implies that there is no non-trivial revision operator that satisfies monotonicity and
(R1)-(R4). Since update operators do not satisfy (R2), this result does not apply to
update.

(Gardenfors’s motivation in studying this problem is to use theory revision to define
the conditional connective used in counterfactual reasoning. The idea is to use the
Ramsey Test: interpret the conditional statement “given the state of the world de-
scribed by v, if u were true, then  would also be true” as ¥ o g implies 5. Intuitively,
it would seem that this kind of statement is better modelled by using update instead
of revision in the Ramsey Test. This intuition, together with the immunity of updates
to Gardenfors’s result, suggest further study of the connection between updates and
conditional reasoning may be fruitful. Preliminary results are reported by Katsuno

and Saoth (1991) and Grahne (1991).

We can now formalize a notion of closeness between models that generalizes the
particular measure used in the PMA. Instead of associating each KB with an ordering,
let us consider a function that maps each interpretation [ to a partial pre-order <j.
We say that this assignment is faithful it the following condition holds:

o Forany J € Z,if I # J then I <; J.

The following theorem shows that the postulates exactly capture all update operators
defined by a partial pre-order. It turns out that the classes of operators defined by
partial orders and partial pre-orders are the same.

Theorem 3.4 Let o be an update operator. The following conditions are equivalent:

1. The update operator o satisfies Conditions (Ul)~(US).

2. There exists a faithful assignment that maps each interpretation I to a partial
pre-order <y such that

Mod(pop)=|J Min(Mod(p),<;).
TeMod ()

3. There exists a persistent assignment that maps each interpretation I to a partial
order <; such that

Mod(pop)=|J Min(Mod(p),<y).
T€Mod ()



We give a proof sketch here. A detailed proof can be found in the Appendix.

Proof Sketch. (1 = 2) We assign to each interpretation I a relation <; defined as
follows. For any interpretations J and J', J <; J' if and only if either J = [ or
Mod(form(I)o form(J, J")) = {J}. We verify that Conditions (Ul)~(U8) imply that
this mapping is a faithful assignment such that

Mod(pop)=|J Min(Mod(p),<y).
T€Mod ()

(2 = 3) For a pre-order <;, we define a relation <} as J <} J'if and only if J = .J'
or J <y J'. It is easy to show that </ is a partial order and that J <; J' if and only
it J <% J'. Hence, Statement 3 follows from Statement 2 by changing <; to <.

(3 = 1) Assume that there is a faithful assignment mapping each interpretation I to
a partial order <;. We define an update operator ¢ by

Mod(pop)=|J Min(Mod(p),<y).
T€Mod ()

We show that the update operator ¢ satisfies (U1)~(US).

Comparing this result with Theorem 2.1, we see two differences between revision and
update from a model-theoretic point of view. First, Theorem 3.1 refers to partial
preorders while Theorem 2.1 uses total preorders. It turns out that a version of the
revision postulates that accommodates partial preorders can be given, and we show
this in Katsuno and Mendelzon (1990). It is also possible to design a class of update
operators based on total pre-orders. If we replace (U6) and (UT) by postulate (U9)
below, then we can prove the total pre-order analogue of Theorem 3.1. The proof
is similar to that of Theorem 3.1, by defining, for any two interpretations .J and .J,

J <y J'if and only if either J = [ or J € Mod(form(I) < form(J,J")).
(U9) If ¢ is complete and (¢ o p) A ¢ is satisfiable then ¢ o (u A ¢) implies (o p) A ¢.

It is worth pointing out that a total preorder associated with interpretation [ is
what Lewis (1973) calls a system of spheres centered at I. Systems of spheres play
a central role in the semantics of Lewis’s conditional logic; this brings up again the
suggested connection between updates and conditional logic, which is explored further

by Grahne (1991).

The second and more important difference between revision and update is that, in
the case of update, a different ordering is induced by each model of . while for
revision, only one ordering is induced by the whole of . This “local” behaviour
of update, contrasted with the “global” behaviour of revision, is essential to the
difference between the two operators.



4. REASONING ABOUT ACTION

For the purposes of reasoning about action, the usual approach is to represent a
particular action as a pair of a precondition and a postcondition. The precondition for
the action encodes what the world must be like in order for the action to be executable.
The postcondition describes the immediate consequences resulting from the action.
Any update operator that satisfies our postulates can be used for reasoning about
action by regarding postconditions for an action as new knowledge and by assuming
that preconditions for the action are satisfied by the current KB. That is, the effect
on KB # of performing action with precondition « and postcondition 3 will be ) if
?» does not imply «, and v o 3 otherwise. Winslett (1989) discusses how the frame,
qualification and ramification problems are handled by this approach.®

Let us extend this idea by examining more closely what happens when 1 does not
satisfy the precondition . Presumably, the robot will return and report one of two
outcomes: either a was true, and the action was carried out, or « failed and the
action was not carried out. If we want a more elaborate model, we can also allow
other outcomes, such as: a was true but the action could not be carried out for
other reasons, or a could not be either verified or falsified. In each case, we can
take advantage of the distinction between revision and update to incorporate into
all the information gained by the robot. For example, if the action was carried out,
we can change the KB to (¢ o ) ¢ 3. If the precondition was found false, we use
1 o na. If the truth value of the precondition could not be determined, we use 1  «
(contraction is discussed in the next section).

5. CONTRACTION AND ERASURE

Contraction is a change of belief or knowledge state induced by the loss of confidence
in some sentence. For example, if we believed that a paper was written by Turing, but
new evidence has cast doubt on this belief, we contract the corresponding sentence
from our knowledge base.

Alchourrén et al. (1985) proposed rationality postulates for contraction. We denote
by 1> e i a new knowledge base obtained from an old knowledge base ¥ by contracting
. The postulates for contraction, rephrased in our terms, are as follows.

(C1) o implies ¢ o p.
(C2) If 4> does not imply g then v e y is equivalent to .

(C3) If i is not a tautology then > e i does not imply .

3Actually, Winslett uses for this purpose a variant of the PMA that orders interpretations in a
way similar to the partial pre-order used in prioritized circumscription. Such variants are included
in our class of update operators.



(C4) If 77Z)1 — 77Z)2 and H1 < U2 then 77Z)1 ® (i1 77Z)2 ® [io.

(C5) (¢ e u) A pimplies .

Alchourrén et al. (1985) showed that contraction and revision are closely related:
they proved that, given a revision operator o that satisfies (R1)~(R4), if we define a
contraction operator e by

Yoo V(o
then the operator e satisfies (C1)~(C5). Conversely, given a contraction operator e
that satisfies (C1)~(C4), if we define a revision operator o by

o e (Yo Ap
then the operator o satisfies (R1)~(R4).

We propose a new operator, erasure, which is to contraction as update is to revision.
Erasing sentence p from ¥ means adding models to 1; for each model I, we add all
those models closest to I in which p is false. Intuitively, erasing g means the world
may have changed in such a way that g is not true. In contrast, contracting y means
our description of the set of possible worlds must be adjusted to the possibility of p
being false.

The erasure operator & for a given update operator ¢ is defined by

hep e V(o) (U — E).

This erasure operator satisfies the following postulates (E1)~(E5) and (ES8) if the
update operator satisfies (Ul)~(U4) and (US).

(E1) + implies 1> & p.

(E2) If ¢ implies =y then ¢ & p is equivalent to ).

(E3) If ) is satisfiable and p is not a tautology then ¢ & p does not imply p.
(E4) If 11 < 1y and py < po then oy & gy — by & pio.

(E5) (¢ p) A p implies 1.

(E8) (t1 V 12) & u is equivalent to (1 & p) V (102 & p).

There are two differences between contraction and erasure in terms of postulates.
One is that (E2) is weaker than (C2); since contraction of a sentence u does not
influence a KB v if ¢b does not imply p, but erasure of g might modify ¢ if ¥ does
not imply —g. The other one is that erasure needs the disjunctive rule (E8), but
contraction does not.



Example 5.1 Consider Example 3.1 again. Recall we have a room with two objects
in it, a book and a magazine, b means the book is on the floor, and m means the
magazine is on the floor. The knowledge base i states that either the book is on
the floor or the magazine is, but not both. Suppose that a contraction operator e
satisfies (C2). If we contract ¢ by b then ¢ e b is equivalent to 1, since b does not
imply 6. This means that since the sentence that the book is on the floor is already
questionable under v, contraction does not change .

On the other hand, let an erasure operator & be defined based on the PMA ©,,,,. If
we erase b from 1) then i b is equivalent to (bA—m)V =b. This can be interpreted as
follows. ) represents two possible worlds, My and M,. In world M;, the book is on
the floor but the magazine is not. Since b holds in My, M; is altered to two worlds,
M; itself and the world M5 represented by —b A =m, that is, neither the book nor
the magazine is on the floor. In world M;, the magazine is on the floor but the book
is not. Since b does not hold in My, M, is retained as itself. Hence, i & y1 represents

the three worlds, My, My and Ms.

The intuitive difference between contraction and erasure can be explained in this
example as follows. Contracting b means nothing has changed in the room, but if the
KB believes that the book is on the floor, make sure this belief is retracted. Since
the KB has no such belief, the contraction has no effect. Erasing b means the state of
the room has changed in such a way that, if the book was on the floor before, it has
now been moved in an unpredictable way. This affects only those possible worlds in
which the book was on the floor. The result is that we can no longer deduce anything
about the location of the magazine from the fact that the book is not on the floor.

There is another operation which appears perhaps more natural than erasure. Sup-
pose the state of the room has changed in such a way that the location of the book
is now unpredictable, and we want to reflect this change in the knowledge base. We
formalize this operation, called symmetric erasure, after the Theorem below.

The following theorem, proved in the Appendix, gives a correspondence between
update and erasure similar to the correspondence between revision and contraction.

Theorem 5.1

1. If an update operator o satisfies (Ul)~(U4) and (U8), then the erasure operator
o defined by (U — F) satisfies (E1)~(FE5) and (ES).

2. If an erasure operator & satisfies (E1)~(FE4) and (ES), then the update operator
o defined by

hop e (Yeap)Ap (£ —U)
satisfies (Ul)~(U4) and (US).



3. Suppose that an update operator o satisfies (Ul)~(Uj) and (US8). Then, we can
define an erasure operator by (U — F). The update operator obtained from the
erasure operator by (F — U) is equal to the original update operator .

4. Suppose that an erasure operator ¢ satisfies (E1)~(E5) and (ES). Then, we
can define an update operator by (£ — U). The erasure operator obtained from
the update operator by (U — F) is equal to the original erasure operator .

Winslett (1989) discusses an operator called Forget, which she compares with con-
traction. It turns out that Forget, given an update operator ¢, is equivalent to

(hou)V(o-p).

We call this operator symmetric erasure because p and its negation play the same
role in its definition. The main difference between erasure and symmetric erasure is
that erasure does not affect the possible worlds in which —u holds, but symmetric
erasure does. Going back to Example 5.1, the symmetric erasure of b from v reflects
the fact that someone has picked up the book and unpredictably decided to place it
on the floor or on the table. The result of this symmetric erasure is the knowledge
base with no information, since there is nothing we can say about either the book or
the magazine after this change.

We can show similar postulates for symmetric erasure to those for erasure, and prove a
similar theorem to Theorem 5.1. A natural definition of symmetric contraction tollows
from the above discussions, and similar results can be shown for it. Gardenfors (1981)
defines an operator similar to symmetric contraction, which he calls complete con-
traction, and proposes to use it to model “even if” conditionals.

6. TIME, REVISION AND UPDATE

So far in this paper we have devoted our efforts to distinguishing update from revision.
We would like now to suggest how they can be unified. The essential difference
between revision and update is a temporal one: revision is a change to our description
of a world that has not itself changed, while update is the incorporation into our world
description of the fact that the world has changed. Suppose now that we make this
hidden temporal parameter explicit in the knowledge base. That is, instead of just a
theory, a knowledge base is now a pair (¢, 1) where v is a theory and ¢ denotes a time
instant. This is in the spirit of the situation calculus MaCarthy and Hayes (1969) and
other temporal formalisms. It is not important for our purposes what exactly is the
ontology of time, whether it is discrete or continuous, etc. For example, returning to
our familiar book and magazine example, the knowledge base that says exactly one
of them is on the table at 10am is ((b A =m) V (=b A m), 10am).

Instead of two distinct change operations, update and revision, let us introduce a
single one called Tell(y,t) where g is the new formula to be incorporated and ¢ is



a time instant. The effect of applying Tell(x,t) to a knowledge base is to replace
the knowledge base with a new one that incorporates the sentence p and has time
parameter ¢, unless t is earlier than the KB’s time. More precisely, we define the
result of applying Tell(,t') to (,t) as (¢ o p,t) if t = ', and (¢ o p,t') if ' >
t. For now, the result will be left undefined when ¢ < ¢. So, when we send the
robot into the room to put the book on the table, and the robot returns at 10:05
reporting mission accomplished, we apply Tell(b, 10:05am) to the KB. This behaves
as an update, yielding (b,10:05am) as a result. On the other hand, suppose the
reason we knew there was exactly one object on the table was because of an aerial
photograph taken at 10am from a high altitude. Further analysis of the photograph
reveals that the object on the table was actually the book. We then apply the change
Tell(b, 10am ), which behaves as revision, and obtain (b A =m, 10am). Intuitively, it
is now correct to conclude that the magazine is not on the table at time 10am.

This proposal relieves the user from the burden of deciding whether each change
is a revision or an update, which become special cases of a more general operator
parameterized by time. It also raises interesting questions that we cannot answer in
this paper, but leave as topics for further research. For example, we did not define the
meaning of Tell(yx,t') when #' is earlier than the KB time. An obvious generalization
is to have not one pair of theory and instant, but a whole sequence of theories, one
for each instant, and to allow changes to any past, present, or future KB. The next
step would be to introduce persistence: it we know something is true at time ¢, and
have no reason to believe it has changed, we assume it is still true at time ¢ + 1. We
can then distinguish at each instant ¢ between knowledge, that is, those sentences we
have been told are true at time ¢, and defeasible knowledge, those that have been
inferred by persistence from the past (or from the future). An appealing way of doing
this is to define the set of worlds described by the KB at time ¢ + 1 as the result
of updating all knowledge, defeasible or not, about instant ¢, with the non-defeasible
knowledge at ¢+ 1. A symmetric construction can be used for supporting persistence
from the future into the past. This approach will be elaborated in the future.

7. CONCLUSION

The distinction between update and revision is an important one, and it has been
overlooked in the literature since it was pointed out by Keller and Winslett (1985).
We have formalized this distinction and given a model-theoretic characterization of
updates in terms of orderings among interpretations. We have defined and charac-
terized erasure, which is to update as contraction is to revision.

Many problems remain to explore. The connection between updates and conditional
logic is one being pursued by several researchers (Katsuno and Satoh 1991, Grahne
1991). Another is computational tractability of updates and erasures. For example,
Grahne and Mendelzon (1991) show that by restricting the form of the knowledge
base, PMA updates can be computed in time polynomial in the size of the knowledge



base. A third is the combined use of different theory change operators—revision,
contraction, update, erasure— in specific applications, as suggested in Section 4. A
temporal framework that unifies these operators, as sketched in Section 5, may be
the best way to do this.
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Appendix

Theorem 3.1 Let o be an update operator. The following conditions are equivalent:

1. The update operator o satisfies Conditions (Ul)~(US).

2. There exists a faithful assignment that maps each interpretation I to a partial
pre-order <y such that

Mod(pop)=|J Min(Mod(p),<;).
TeMod ()

3. There exists a faithful assignment that maps each interpretation I to a partial
order <; such that

Mod(pop)=|J Min(Mod(p),<;).
TeMod ()

Proof. (1 = 2) For any interpretations J and J' (J = J' is permitted), we define a
relation <j as J <y J'if and only if either J = I or Mod(form(I)oform(J,J")) = {J}.

We first show that <; is a pre-order. In order to show that <; is reflexive, we show
Mod(form(I) o form(J)) = {J}. It is obvious that the equation follows from (U1)
and (U3).

We show that <j is transitive. Assume .J; <; .J; and J; <; J3. Then, we obtain that
form(I)o form(J1,J3) < form(Jy) and form([I)o form(Jy, J5) < form(Js). Let p <
form(Jy, J2, J3). By (U3), (form(I)o p) A form(Jy, J5) implies form(I)o form(Jz, J3).
Since form(I) < form(Jz, J3) < form(Jz), J3 is not a model of form(I) <o u. We can
also obtain that .J5 is not a model of form([) ¢ y in a similar way by using (U5) and
form(I)o form(Jy, J2) < form(Jy). Therefore, it follows from (U3) that form(l)o u
is logically equivalent to form(Jy). Thus, form(l) o p implies form(Jy,Js). On the



other hand, it follows from (Ul) that form([l) < form(.Ji,J5) implies p. By (U6),
we obtain that form([) o p is logically equivalent to form([l) < form(Jy,Js). Thus,
form(I)o form(Jy, J3) is logically equivalent to form(.J;). Therefore, Iy <; I3 holds.

It follows from (U2) that the assignment mapping each interpretation I to <j is
faithful.

We show Mod(form(I)o u) = Min(Mod(p),<j). If p is inconsistent then Mod(u)
is empty and it also follows from (Ul) that Mod(form(I) < u) is empty. Hence, the
equation holds. So, we assume in the following that u is consistent. Suppose that J
is a model of form(I)ou and J is not minimal in Mod(x) with respect to <;. There is
a model J" of Mod () such that J' <; J. By (U5), (form(I)o p) A form(J, J") implies
form(I)o form(J,J"). Since J' <; J, form(I)o form(J,J") is equivalent to form(.J').
Hence, J is not a model of (form(I)ou)Aform(J,J"). This contradicts the assumption
that J is a model of form([l)o . Therefore, Mod(form(I)o p) C Min(Mod(p), <;)
holds.

We show the converse inclusion. Assume that J is minimal in Mod(p) with respect
to <. Let Mod(p) = {J1,...,Jr}. Note that p is logically equivalent to

form(J, J)V form(J, Jo) V ...\ form(J, Jy).

Also, since there is no J; € Mod(y) such that .J; <; J, it follows that
J € Mod(form(I) o form(J, J;))
for every .J; € Mod(y). Hence, .J is a model of
(form(I) o form(J, J1)) A ... A (form(I) o form(J, Ji)).

By repeated applications of (UT7), this implies .J is a model of

form(I) o (form(J, ) V ...V form(J, J)),
that is, J € Mod(form(I)o u).
If 1 is consistent then it follows from (US) that

Mod(pop)=|J Min(Mod(p),<;).
TeMod ()

If +» is inconsistent then both sides of the above equation are empty, that is, the
equation holds.

(2 = 3) The proof of this part is shown in the main text.

(3 = 1) Assume that there is a faithful assignment mapping each interpretation I to
a partial order <;. We define an update operator ¢ by

Mod(pop)=|J Min(Mod(p),<;).
TeMod ()



We show that the update operator ¢ satisfies (U1)~(U8). (U1), (U3), (U4) and (U8)
are obvious. If v is inconsistent then (U2), (U5), (U6) and (UT) trivially hold. We

assume in the following that i is consistent.

We show (U2). It follows from the definition of faithfulness that if I is a model of p
then form(I)o u is equivalent to form(I). Hence, we obtain (U2) by using (US).

We show (U5). If (¢ o p) A ¢ is inconsistent then (Ub) holds trivially. Let J be a
model of (1o u) A ¢. There is some model [ of ¢ such that J is minimal in Mod ()
with respect to <;. Since Mod(p A ¢) is a subset of Mod(y) and J is a model of
¢, J is minimal in Mod (v ¢ (i1 A ¢)) with respect to <;. Hence, (0 o p) A ¢ implies
o (uhe).

We show (U6). Suppose that ¢ ¢ g implies gy and that ¢ o yg implies gy. Assume
that J is a model of )¢ uy, but J is not a model of ¥ ¢ py. Since oy implies po, J
is a model of py. Since we assume that .J is not a model of ¥ ¢ uy, for each model
of 1, there exists a model Jj of py such that J; <; J and J; is minimal in Mod(y2)
with respect to <;. Then, each J; is a model of ©) ¢ py. Since @ ¢ py implies pq, J s
also a model of p1. Hence, for any model I of +, J is not minimal in Mod () with
respect to <;7. This contradicts that J is a model of 1 ¢ 1. Therefore, ¥ ¢ py implies
1 & py. Similarly, we can obtain @ ¢ gy implies ¢ © 1.

We show (UT). Let ¢ be complete. Then, there exists a model I of ¢ such that 1 is
equivalent to form([). Let .J be a model of (0o 1) A (¢ ¢ p2). Assume that .J is not
a model of © o (y1 V p2). Then, there is a model J' of o (p1 V p2) such that J' < J.
If J’ is a model of pq, this contradicts the minimality of J in Mod () with respect
to <;. If J' is a model of s, this also contradicts the minimality of J in Mod(uz)
with respect to <j.

Theorem 5.1

1. If an update operator o satisfies (Ul)~(U4) and (U8), then the erasure operator
o defined by (U — F) satisfies (E1)~(FE5) and (ES).

2. If an erasure operator & satisfies (E1)~(FE4) and (ES), then the update operator
o defined by

hop e (Yeap)Ap (£ —U)
satisfies (Ul)~(U4) and (US).

3. Suppose that an update operator o satisfies (Ul)~(Uj) and (US8). Then, we can
define an erasure operator by (U — F). The update operator obtained from the
erasure operator by (F — U) is equal to the original update operator .

4. Suppose that an erasure operator ¢ satisfies (E1)~(E5) and (ES). Then, we
can define an update operator by (£ — U). The erasure operator obtained from
the update operator by (U — F) is equal to the original erasure operator .



Proof. 1. Assume that an update operator ¢ satisfies (Ul)~(U4) and (U8), and an
erasure operator & is defined by (U — FE). (El) follows from (U — E). We show (E2)
If ¢» implies =y then it follows from (U2) that 1 ¢ = is equivalent to . Therefore,
) & 1 is equivalent to ¢. (E3), (E4) and (E8) easily follow from (U3), (U4) and (US8),
respectively. We show (E5). By (Ul), (¢bo =) A p is inconsistent. Hence, ()& ) A p
is equivalent to ¢ A p. Therefore, (¢ & 1) A p implies .

2. Assume that an erasure operator & satisfies (E1)~(E4) and (E8), and an update
operator ¢ is defined by (£ — U). Then, (Ul) follows from (F — U). We show
(U2). If ¢ implies g then it follows from (E2) that > ¢~y is equivalent to ¢». Hence,
we obtain (U2). (U3), (U4) and (U8) easily follow from (E3), (E4), and (E8).

3. Assume that an update operator ¢ satisfies (Ul)~(U4) and (U8). We show that
(¢ V (Yop)) A pis equivalent to v o p. By (Ul), (¢ o ) A p is equivalent to ¢ o p.
By Lemma 3.2, ¢» A g implies ¢ o . Hence, (10 V (¢p o 1)) A p is equivalent to ¢ o p.

4. Assume that an erasure operator & satisfies (E1)~(E5) and (E8). Let ¢ 4 u be
YV ((¢p & p) A—p). We show that ¢ € p is equivalent to ¢ & p. First, we show that
(1) & 1) A pis equivalent to (e p) A . We know (1) € i) A i is equivalent to ) A u. By
(E5), (¢ e p) A pimplies o A . By (E1), ©» Ay implies (o ) A . Hence, (Yo p) A p
is equivalent to ¢ A p. Therefore, (1) € ) A p is equivalent to () & ) A p.

Next, we show that (>4 ) A -y is equivalent to (o) A=p. By (E1), ¢ A=y implies
(¢ ® ) A= Hence, (¢ & 1) A =y is equivalent to (v & p) A —p.
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