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1 Introduction

Traditional �rst order predicate logic is known to be designed for representing
and manipulating static knowledge (e.g. mathematical theories). So are many of
its applications. Knowledge representation systems based on concept description
logics are not exceptions.

In the framework of a description logic, one can represent an application
domain in terms of concepts, roles, and object names. Concepts are under-
stood as classes of objects, roles as binary relations between objects, and object
names denote certain objects in the domain. The expressive power of the de-
scription logic depends on the concept and role constructors available in its
language. Typical examples are conjunction, negation and restricted quanti�-
cation of concepts, and composition, union, inversion, and reexive transitive
closure of roles. In general, description logics can be characterized as variable-
free fragments of �rst order logic, sometimes augmented with �xpoint-operators
(see de Giacomo and Lenzerini, 1994). Unlike �rst order logic, description logics
are often decidable and, moreover, they are e�ectively implementable (see e.g.
Brachman and Schmolze, 1985, Borgida et al., 1989, Baader and Hollunder,
1991). Recently description logics have found numerous applications, in partic-
ular, to information systems (Catarci and Lenzerini 1993), databases (Borgida
1995), software engineering (Wright et al. 1993). They have also been advo-
cated as a unifying framework for di�erent types of databases and knowledge
representation formalisms (Bergamaschi and Sartori 1992).

�
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To capture various dynamic features of application domains in computer
science and arti�cial intelligence (such as program executions, information ows,
temporal databases, multi-agent distributive systems, etc.), �rst order logic is
usually extended by explicit program, temporal, epistemic or some other kind of
\modal" operators. However, this often results in logics of even a higher degree
of undecidability, for instance, recursively non-enumerable (see e.g. Gabbay et
al., 1994, Kr�oger, 1990, Szalas and Holenderski, 1988), which is the main reason
why mostly only the propositional fragment of temporal, dynamic and other
logics of this sort has been studied and used in practice.

On the other hand, having such a natural, well motivated and established
knowledge representation formalism as description logics, it would be strange
not to try to extend it by adding, say, a temporal dimension so that the un-
derlying description logic would represent knowledge about states of a process
while the temporal component describe the behaviour of the process in time,
i.e., the resulting sequence of states.

The main aim of this paper is to show that by combining rather expressive
decidable description logics and point-based temporal propositional logics we
can obtain decidable hybrids. In a sense our results can be regarded as an
optimal compromise between expressive power and decidability: even harmless
looking extensions of the constructed systems lead to undecidable logics.

We deal with three types of underlying description logics. First we consider
the logic CIQ developed and investigated by de Giacomo and Lenzerini (1996)
and de Giacomo (1995). It has the usual concept constructors including number
restrictions and an extensive set of role constructors: union, chaining, transi-
tive reexive closure, inversion, and test. (Note that because of the transitive
reexive closure constructor this logic is not a fragment of �rst order logic.) We
allow not only TBox-reasoning but also object names and assertions of the form
a : C (object a is in concept C), aRb (objects a and b are in relation R). Two
other description logics are CIO and CNO introduced by de Giacomo (1995).
In their languages one can form concepts fag for all object names a, which are
interpreted as singletons and correspond to names or nominals known in the
modal logic literature (see e.g. Blackburn, 1993). In these cases to obtain de-
cidability either the constructor of inverse roles or number restrictions have to
be omitted.

In the temporal dimension, we consider the operators \Since" and \Until"
over natural and integers numbers, and the operators \sometime in the future"
and \sometime in the past" over arbitrary strict linear orders and rational num-
bers. The pure temporal part of our logics is also well known and investigated;
see e.g. (Gabbay et al. 1994).

In the variety of possible ways of combining the formalisms of description
and temporal logics we follow that one which was �rst proposed by Baader and
Laux (1995) who integrated polymodal K with the description logic ALC by
applying modal operators to both concepts and formulas. In our case, we also
allow applications of the temporal operators to concepts and formulas. This
way seems to be an optimal choice, for, as was shown by Baader and Ohlbach
(1995), modal operators applicable to roles can ruin decidability.

2



Our attempt to combine description and temporal logics is not the �rst one.
Some ways of introducing a temporal dimension in description logics have al-
ready been investigated in the literature. Schmiedel (1990) proposed a very ex-
pressive temporal description logic based on intervals as introduced by Halpern
and Shoham (1991); however, it turned out to be undecidable. Devanbu and
Litman (1991), Weida and Litman (1992, 1994), Artale and Franconi (1994) con-
tinued this work by weakening Schmiedel's logic (they integrated constraint net-
works and fragments of Allen's interval calculus into description logics). Schild
(1993) introduced a decidable point-based temporal description logic in which
temporal operators can be applied only to concepts. On the other hand, a num-
ber of approaches to combining modal and temporal logics have been proposed.
Finger and Gabbay (1992) studied temporal modal logics in which (speaking
in terms of description logics) temporal operators are applied only to formulas.
Both Schild's and Finger{Gabbay's constructions are covered by our approach.
Fagin et al. (1995) considered a logic for modelling the behaviour of parallel
processes on the basis of epistemic and temporal operators. Their system for
one agent who does not forget, does not learn and knows time is a fragment of
our logics based on natural numbers. Reynolds (1996) interpreted this system
on arbitrary strict linear orders. This is also covered by our formalisms.

The paper is organized in the following way. Having de�ned (in Sections 2
and 3) the syntax and semantics of the temporal description logic CIQUS , we
introduce and investigate (in Section 4) our main tool for establishing decidabil-
ity, the notion of a quasimodel. Unlike standard models, worlds in quasimodels
are always �nite; however, modulo a given formula, every model can be repre-
sented as a suitable quasimodel. In (Wolter and Zakharyaschev 1998) we used
the notion of a quasimodel for proving the decidability of other combinations of
modal and description logics. In Sections 5 and 6 we establish the decidability of
the satis�ability problem for various temporal description logics based on CIQ,
and Section 7 extends the obtained results to temporal logics based on CIO and
CIN . The paper closes with a discussion of open problems.

2 Basic description logic

The underlying concept description logic we deal with in the �rst part of the
paper was introduced by de Giacomo and Lenzerini (1996) and de Giacomo
(1995) under the name CIQ.

De�nition 1 (language). The language of CIQ is based upon a list of concept
names C0; C1; : : : , a list of role names R0; R1; : : : , and a list of object names

a0; a1; : : : . Starting from these we can form compound roles, concepts, and
formulas using the following constructors. First, by a basic role we mean any
role name Ri as well as its \inversion" R

�
i
. Now, if R, S are roles, B is a basic

role, C, D are concepts (for the basis of our inductive de�nition we assume basic
roles to be roles and concept names to be concepts), and n < !, then

R _ S; R � S; R�; R�; C?
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are roles and
>; C ^D; :C; 9R:C; 9�nB:C

are concepts. Atomic formulas are expressions of the form

>; C = D; a : C; aRb;

where C and D are concepts, R is a role name and a, b are object names. If '
and  are formulas then so are ' ^  and :'.

The connectives (or operations) ! and _ are de�ned in the standard way:

E1 ! E2 = :(E1 ^ :E2); E1 _ E2 = :(:E1 ^ :E2);

where expressions E1; E2 are either concepts or formulas.
The intended meaning of the introduced constructors will be clear from

De�nition 3 below.

De�nition 2 (model). A CIQ-model is a structure of the form

I =


�; RI

0; : : : ; C
I
0 ; : : : ; a

I
0; : : :

�
;

where � is a non-empty set, the domain of the model, RI
i (i = 0; : : : ) are binary

relations on � (interpreting the role names), CI
i subsets of � (interpreting the

concept names), and aIi are objects in � (interpreting the object names).

De�nition 3 (satisfaction). For a CIQ-model I , the value CI of a concept
C, the value RI of a role R, and the truth-relation j= are de�ned inductively in
the following way:

1. >I = � and CI = CI
i , for C = Ci;

2. (C ^D)I = CI \DI ;

3. (:C)I = �I � CI ;

4. x 2 (9R:C)I i� 9y 2 CI xRIy;

5. x 2 (9�nR:C)
I i�

��fy 2 CI : xRIyg
�� � n;

6. (R _ S)I = RI [ SI ;

7. (R � S)I = RI � SI (the composition of RI and SI);

8. (R�)I = (RI )� (the transitive and reexive closure of RI);

9. (R�)I = (RI)�1 (the inversion of RI);

10. (C?)I = fhx; xi : x 2 CIg;

11. I j= >;

12. I j= C = D i� CI = DI ;

4



13. I j= a : C i� aI 2 CI ;

14. I j= aRb i� aIRIbI ;

15. I j= ' ^  i� I j= ' and I j=  ;

16. I j= :' i� I 6j= '.

(Here and below jX j is the cardinality of X .) A formula ' is called satis�able

if there is a CIQ-model I such that I j= '.

As was shown by de Giacomo and Lenzerini (1996), the satis�ability problem
for CIQ is decidable; however, it becomes undecidable for the extended language
in which one can construct concepts of the form 9�nR:C for all (not only basic)
roles R; see (de Giacomo and Lenzerini 1996), where the reader can �nd also
some examples illustrating the expressive power of CIQ. Another important
fact observed by de Giacomo and Lenzerini (1996) is that CIQ does not have
the �nite model property: there exists a formula satis�able in an in�nite model
but not in �nite ones.

3 Temporal description logic

We now add to the static language CIQ a temporal dimension.

De�nition 4 (language). Let CIQUS be the extension of CIQ with the bi-
nary temporal operators U (Until) and S (Since) which may be applied to
concepts and formulas, i.e., if C, D are concepts and ',  formulas then CUD,
CSD are concepts and 'U , 'S formulas. CIQU is the extension of CIQ
with only U . And by CIQ3 we denote the extension of CIQ with the operators
3
+ (sometime in the future) and 3� (sometime in the past) de�ned by

3
+E = >UE; 3�E = >SE;

where E is either a concept or a formula.

Below we de�ne models and other semantic notions only for the full language
CIQUS ; they are easily relativized to its fragments CIQU and CIQ3.

De�nition 5 (model). A CIQUS-model with domain � is a pair

M = hhW;<i ; Ii

in which hW;<i is a strict linear order1 and I a function associating with each
w 2 W a CIQ-model

I(w) =
D
�; R

I(w)

0 ; : : : ; C
I(w)

0 ; : : : ; a
I(w)

0 ; : : :
E

such that a
I(u)

i = a
I(v)

i for any u; v 2 W . Without loss of generality we may

(and often will) identify the objects a
I(w)

i
with the object names ai.

1
I.e., < is an irreexive transitive relation on W such that u < v or v < u for all u 6= v.
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It is worth emphasizing that all our models satisfy the constant domain

assumption; as was shown in (Wolter and Zakharyaschev 1998), the cases of
expanding and varying domains are reducible to that of constant domains at
least as far as the decidability of the satis�ability problem is concerned.

De�nition 6 (satisfaction). Given a CIQUS-model M = hhW;<i ; Ii and a
\world" w in it, the values CI(w) and RI(w) of a concept C and a role R in w,
and the truth-relation (M; w) j= ' (or simply w j= ', if M is understood) are
computed inductively according to the rules of De�nition 3 and the following
clauses:

1. x 2 (CUD)I(w) i� there is v > w such that x 2 DI(v) and x 2 CI(u) for
every u in the interval (w; v) = fu 2W : w < u < vg;

2. x 2 (CSD)I(w) i� there is v < w such that x 2 DI(v) and x 2 CI(u) for
every u 2 (v; w);

3. w j=  U� i� there is v > w such that v j= � and u j=  for every
u 2 (w; v);

4. w j=  S� i� there is v < w such that v j= � and u j=  for every
u 2 (v; w).

A formula ' is satis�able in the frame hW;<i if there is a CIQUS-model based
on hW;<i and a world w in it such that w j= '.

In this paper, our concern is only the satis�ability problem in various frames.
Other standard reasoning tasks, say subsumption or instantiation, are known
to be reducible to it. The entailment problems in both local and global formu-
lations can also be reduced to the satis�ability problem:

� (local consequence) � j= ', for a �nite set of formulas �, i� for every
modelM = hhW;<i ; Ii in a given class and every w 2W , we have w j= '

whenever w j= �; it is easily seen that � j= ' i�
V
�^:' is not satis�able

in the class;

� (global consequence) � j=� ' i�, for every M in a given class, we have
w j= ' for all w 2W whenever w j= � for all w 2 W ; in this case � j=� '

i�
� [ f2+ :  2 �g [ f2� :  2 �g j= ':

In the semantics introduced above object names are interpreted globally,
whereas role and concept names are interpreted locally (in the AI literature
locally interpreted terms are known as uents). We can easily simulate global
concepts with the help of the equation

C = 2+C ^ 2�C:

A concept C satisfying this equation in each world of a model is a global concept
in the sense that CI(w) does not depend on w. On the other hand, global
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role names cannot be simulated by means of local ones, and this restriction is
essential for the satis�ability problem to be decidable. Indeed, let us assume
that role names are interpreted globally, i.e, RI(v) = RI(w) for all v; w 2 W .
Then the resulting description logic would contain as fragments products of
modal logics (see (Gabbay and Shehtman 1998) and (Marx and Venema 1997))
interpreted in structures of the form

hW;<i � h�; Ri :

As was shown by Spaan (1993) and Marx (1997), the global consequence problem
for products of this form is mostly undecidable. From their results it follows
immediately, for example, that the satis�ability problem for ALCU in the frame
hN; <i with the global interpretation of role names is undecidable. Thus, to
ensure decidability we are forced either to interpret role names locally or to omit
some boolean operators and universal role quanti�cation. The latter way was
taken by Artale and Franconi (1994) who considered interval-based temporal
description logics. In this paper we deal with only the former choice.

Our main aim is to prove the following

Theorem 7. There are algorithms that are capable of deciding whether

1. a given CIQUS-formula is satis�able in hZ; <i and in hN; <i (Z and N are

the sets of all integer and natural numbers, respectively) and whether

2. a given CIQ3-formula is satis�able in some (strictly linearly ordered)

frame as well as in hQ; <i (Q is the set of all rational numbers).

As in (Wolter and Zakharyaschev 1998), our �rst step is to represent CIQUS-
models in the form of quasimodels, sequences of certain �nite structures called
quasiworlds.

4 Quasimodels

Fix a CIQUS-formula '. Let ob' be the set of all object names in '. And by
con' and sub' we denote the closure under negation of, respectively, the set of
all concepts in ' and the set of all subformulas in '. Without loss of generality
we may identify E and ::E, for every concept or formula E; so both con' and
sub' are �nite.

De�nition 8 (types). A concept type t for ' is a subset of con' such that

� C ^D 2 t i� C;D 2 t, for every C ^D 2 con';

� :C 2 t i� C =2 t, for every C 2 con'.

By a named concept type for ' we mean the pair ha; ti in which a 2 ob' and t
is a concept type for '. We will denote ha; ti by ta and write C 2 ta instead of
C 2 t, for t in ha; ti. A formula type � for ' is a subset of sub' such that
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�  ^ � 2 � i�  ; � 2 �, for every  ^ � 2 sub';

� : 2 � i�  =2 �, for every  2 sub'.

De�nition 9 (quasiworld candidate). Let T be a set of concept types for
', T o a set containing one named concept type ta for every a 2 ob', and let �
be a formula type for '. The triple hT; T o;�i is called a quasiworld candidate

for ' if the following holds:

� t 2 T for every ha; ti 2 T o;

� (a : C) 2 � i� C 2 ta, for every (a : C) 2 sub' and every ta 2 T
o;

� (C = D) 2 � i� each t 2 T contains or does not contain simultaneously
both C and D, for every (C = D) 2 sub'.

It should be clear that for every quasiworld candidate hT; T o;�i for ' we
have

jT j � 2jcon'j; jT oj = job'j ; j�j � 2jsub'j:

Also, it is not hard to see that, given a triple hT; T o;�i as described in the �rst
sentence of De�nition 9, one can e�ectively decide whether it is a quasiworld
candidate for ' or not.

De�nition 10 (extended CIQ-model). By an extended CIQ-model for ' we
mean a CIQ-model

I =


�; RI

0; : : : ; C
I
0 ; : : : ; (CUD)

I ; : : : ; (C 0SD0)I ; : : : ; aI0; : : :
�

(1)

in which all concepts of the form CUD and C 0SD0 occurring in ' are regarded
as concept names. For every x 2 � we put

tI(x) = fC 2 con' : x 2 CIg; [x]I = fy 2 � : tI(x) = tI(y)g:

Clearly, tI(x) is a concept type.

De�nition 11 (quasiworld). Say that an extended CIQ-model I for ' of the
form (1) realizes a quasiworld candidate w = hT; T o;�i for ' if the following
conditions hold:

1. T = ftI(x) : x 2 �g;

2. for every a 2 ob', ta =


a; tI(a)

�
;

3. for every aRb 2 sub', aIRIbI i� aRb 2 �.

A realizable quasiworld candidate w for ' is called a quasiworld for '. Instead
of  2 � we will often write w j=  and say that  is true in w.

Lemma 12. Given a quasiworld candidate for ', one can e�ectively recognize

whether it is quasiworld for '.
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Proof It is easy to see that a quasiworld candidate hT; T o;�i for ' is realizable
i� the conjunction of the formulas

_
f
^
t : t 2 Tg = >; a :

^
ta for ta 2 T

o;

aRb for aRb 2 �; and :(aRb) for :(aRb) 2 �

(
V
t is the conjunction of all concepts in t) is satis�able in an extended CIQ-

model for '. It remains to recall that, according to (de Giacomo and Lenzerini

1996), the satis�ability problem for CIQ is decidable. 2

Observe that the number of distinct quasiworlds for ' does not exceed

](') = 22
jcon'j

� job'j � 2jcon'j � 2jsub'j:

Fix a strictly linearly ordered frame F = hW;<i and consider a sequence

Q = hww : w 2W i (2)

of quasiworlds ww = hTw; T
o
w;�wi for '. We will call it an F-sequence for '.

Concept types in Tw will be denoted by tw, named concept types in T o
w by twa ,

a 2 ob'. Q(w) is another name for ww. More generally, for any sequence s
of some elements indexed by worlds w 2 W , s(w) will denote the member of s
indexed by w.

De�nition 13 (run). A run in Q is a sequence r = hr(w) : w 2W i such that

(a) r(w) 2 Tw for every w 2W ;

(b) for every concept CUD 2 con' and every w 2 W , CUD 2 r(w) i� there
exists u > w such that D 2 r(u) and C 2 r(v), for all v 2 (w; u);

(c) for every concept CSD 2 con' and every w 2 W , CSD 2 r(w) i� there
exists u < w such that D 2 r(u) and C 2 r(v), for all v 2 (u;w).

De�nition 14 (quasimodel). An F-sequence Q for ' of the form (2) is called
a quasimodel for ' based on F if the following conditions hold:

(d) for every a 2 ob', the sequence ra = htwa : w 2 W i is a run in Q;

(e) for every w 2W and every t 2 Tw, there is a run r in Q such that r(w) = t;

(f) for every w 2 W and every  U� 2 sub', we have Q(w) j=  U� i� there
exists u > w such that Q(u) j= � and Q(v) j=  for all v 2 (w; u);

(g) for every w 2 W and every  S� 2 sub', we have Q(w) j=  S� i� there
exists u < w such that Q(u) j= � and Q(v) j=  for all v 2 (u;w).

A formula  2 sub' is said to be satis�ed in Q if Q(w) j=  for some w 2W .

Theorem 15. A formula ' is satis�able in a CIQUS-model based on hW;<i

i� it is satis�able in a quasimodel for ' based on hW;<i.
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Proof ()) Suppose that ' is satis�ed in a CIQUS-model hhW;<i ; Ii with
domain �. For every w 2 W , we de�ne ww = hTw; T

o
w;�wi by taking

Tw = ftI(w)(x) : x 2 �g;

T o
w = ftwa =

D
a; tI(w)(a)

E
: a 2 ob'g;

�w = f 2 sub' : w j=  g:

It is not hard to see that ww is a quasiworld for ' (realized in I(w) extended by
the concepts CUD and C 0SD0 in ') and Q = hww : w 2 W i is a quasimodel on
hW;<i satisfying ' (the sequence



tI(w)(x) : w 2 W

�
is a run through tI(u)(x),

for every u 2W and every x 2 �).
(() To show the converse we require the following lemma.

Lemma 16. There is a cardinal � � @0 such that, for any cardinal �0 � �,

every quasiworld w for ' is realized in an extended CIQ-model J in which��[x]J �� = �0 for all x in the domain of J .

Proof For each quasiworld u for ' �x an extended CIQ-model Iu realizing u.
Let �u be the domain of Iu. Then we de�ne � to be the supremum of @0 and��[x]Iu��, for all quasiworlds u for ' and all x 2 �u. We show that � satis�es the
required conditions.

Suppose w is a quasiworld for ' and �0 � �. Take an extended CIQ-model

I =


�; RI

0; : : : ; C
I
0 ; : : : ; (CUD)

I ; : : : ; (C 0SD0)I ; : : : ; aI0; : : :
�

realizing w and such that
��[x]I �� � � for every x 2 �. Now we de�ne

J =


�0; RJ

0 ; : : : ; C
J
0 ; : : : ; (CUD)

J ; : : : ; (C 0SD0)J ; : : : ; aJ0 ; : : :
�

to be the disjoint union of �0 copies of I ; more precisely, we put

�0 = fhx; �i : x 2 �; � < �0g;

RJ
i = fhhx; �i ; hy; �ii : hx; yi 2 RI

i ; � < �0g;

CJ
i = fhx; �i : x 2 CI

i ; � < �0g;

aJi =


aIi ; 0

�
:

Clearly,
��[x]J �� = �0 for every x 2 �0, and one can readily check by induction

that J realizes w. 2

Let us now return to the proof of our theorem. Suppose ' is satis�ed in
a quasimodel Q = hww : w 2W i with ww = hTw; T

o
w;�wi. Assume also that

�0 is a cardinal exceeding the cardinality of the set 
 of all runs in Q and the
cardinal � supplied by Lemma 16 as well. Let

� = fhr; �i : r 2 
; � < �0g:
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Notice that jfhr; �i 2 
 : r(w) = tgj = �0, for every w 2 W and every t 2 Tw.
By Lemma 16, for every w 2 W there exists an extended CIQ-model

I(w) =
D
�; R

I(w)

0 ; : : : ; C
I(w)

0 ; : : : ; (CUD)I(w); : : : ; (C 0SD0)I(w); : : : ; a
I(w)

0 ; : : :
E

such that

� aI(w) = hra; 0i, for each a 2 ob';

� tI(w)(hr; �i) = r(w), for every r 2 
 and every � < �0.

For w 2 W let

J(w) =
D
�; R

I(w)

0 ; : : : ; C
I(w)

0 ; : : : ; a
I(w)

0 ; : : :
E
:

Consider the CIQUS-model M = hhW;<i ; Ji and show by induction on the
construction of  2 sub' that

ww j=  i� (M; w) j=  : (3)

Observe �rst that for every C 2 con', we have CI(w) = CJ(w). This is also
proved by induction the only non-trivial step in which is to show

(CUD)I(w) = (CUD)J(w); (CSD)I(w) = (CSD)J(w)

assuming that CI(u) = CJ(u) and DI(u) = DJ(u) for all u 2W .
Suppose hr; �i 2 �. By the de�nition of I(w), hr; �i 2 (CUD)I(w) i� r(w) 2

CUD. By (b) of De�nition 13, this means that there is u > w such that
D 2 r(u) and C 2 r(v) for all v 2 (w; u), which is equivalent to hr; �i 2 DI(u)

and hr; �i 2 CI(v) for v 2 (w; u), and so, by IH, hr; �i 2 (CUD)J(w). The concept
CSD is treated analogously.

By the de�nition of a quasiworld, it follows that (3) holds for atomic  . The
induction step for  = �1^�2 and  = :�1 is trivial, and the cases  = �1U�2,
 = �1S�2 follow from (f) and (g) in De�nition 14.

Thus M satis�es '. 2

5 Satis�ability problem for CIQU and CIQUS

In this section we prove the �rst claim of Theorem 7. To make the idea of
the proof more transparent, we develop a satis�ability checking algorithm for
CIQU -formulas in the frame hN; <i.

Fix a CIQU -formula '. Unless otherwise indicated, we will assume in this
section that all quasimodels are based on hN; <i.

Given a sequence s = s(0); s(1); : : : and i � 0, we denote by s�i and s>i the
head s(0); : : : ; s(i) and the tail s(i+ 1); s(i+ 2); : : : of s, respectively; s1 � s2 is
the concatenation of sequences s1 and s2; jsj denotes the length of s and

s� = s � s � s � : : :

11



Lemma 17. Let Q = Q(0); Q(1); : : : be a quasimodel for ' and Q(n) = Q(m)
for some n < m. Then Qnm = Q�n �Q>m is also a quasimodel for '.

Proof It su�ces to observe that if r1 and r2 are runs in Q with r1(n) = r2(m)

then r�n1 � r>m2 is a run in Qnm. 2

De�nition 18. If a subsequence of a quasimodel Q for ' is a quasimodel for '
itself then we call it a subquasimodel of Q.

For example, Qnm in Lemma 17 is a subquasimodel of Q.

Lemma 19. Every quasimodel Q for ' contains a subquasimodel Q0 = Q1 �Q2

such that jQ1j � ](') and each quasiworld in Q2 occurs in this sequence in�nitely

many times.

Proof Let n be the maximal number such that Q(n) 6= Q(m) for all m > n.
If n = 0 then we take Q0 = Q = Q2 (Q1 is empty). Otherwise we apply
Lemma 17 to the quasimodel Q = Q�n � Q>n deleting from its head Q�n all
repeating quasiworlds, which gives us a subquasimodel Q0 = Q1�Q

>n satisfying
the required properties. 2

De�nition 20. Suppose that Q = hwi : i 2 Ni is a sequence of quasiworlds
wi = hTi; T

o
i ;�ii for ' and r is a sequence of elements from Ti, i 2 N, such that

r(i) 2 Ti. Say that r realizes a concept CUD 2 r(n) in m steps if there is l � m

such that D 2 r(n+ l) and C 2 r(n+ k) for all k 2 (0; l). A formula  U� 2 �n

is realized in m steps if there is l � m such that � 2 �n+l and  2 �n+k for all
k 2 (0; l).

Lemma 21. Let Q = Q1 � Q2 be a quasimodel for ' (with quasiworlds of the

form hTi; T
o
i ;�ii for i 2 N) satisfying the requirements of Lemma 19, let n =

jQ1j + 1 and [(') = 2jcon'j + job'j. Then Q contains a subquasimodel of the

form Q1 �Q0 �Q
>l
2 , for some l � 0, such that

(i) jQ0j � [2(') � jcon'j � ](') + jsub'j � ](') + ](');

(ii) for every t 2 Tn there is a run r through t realizing all concepts of the

form CUD 2 r(n) in jQ0j steps (for ta 2 T o
n the run ra realizes all concepts

CUD 2 ra(n) in jQ0j steps);

(iii) every formula  U� 2 �n is realized in jQ0j steps;

(iv) Q0(1) = Q>l
2 (1).

Proof Suppose t 2 Tn, CUD 2 t and r is a run in Q through t, i.e., r(n) = t.
Then there exists m > 0 such that D 2 r(n + m) and C 2 r(n + k) for all
k 2 (0;m). Assume now that 0 < i < j < m, r(n + i) = r(n + j) and

Q(n+ i) = Q(n+ j). In view of Lemma 17, Q1 �Q
�i
2 �Q>j

2 is a subquasimodel
of Q and r�n+i � r>n+j is a run through t. It follows that we can construct a
subquasimodel Q1 � Q

�1
2 � Q3 of Q and a run r1 in it which comes through t

and realizes CUD in m1 � [(') � ](') steps.

12



Then we consider another concept C 0UD0 2 t and assume that it is realized
in m2 > m1 steps in r1. Using Lemma 17 once again (and deleting repeating
quasiworlds in the interval Q3(m1); : : : ; Q3(m2)) we select a subquasimodel Q1�

Q
�1
2 � Q

�m1

3 � Q4 of Q and a run r2 through t which realizes both CUD and
C 0UD0 in 2 � [(') � ](') steps.

Having analyzed all distinct concepts of the form CUD 2 t we obtain a
subquasimodel Q1 �Q

�1
2 �Q0 of Q and a run r0 through t which realizes all those

concepts in m0 � jcon'j � [(') � ](') steps.
After that we consider in the same manner another concept type t0 2 Tn.

However this time we can delete quasiworlds only after Q0(m0), and so to realize
in some run through t0 the concepts CUD 2 t0 we need � 2 � jcon'j � [(') � ](')
steps. And so on. Since jTnj+ jT o

n j � [('), to satisfy (ii) at most jcon'j � [2(') �
](') quasiworlds are required.

The formulas  U� 2 sub' that are true in Q2(1) are treated analogously.
This may give us � jsub'j � ](') more quasiworlds. And � ](') quasiworlds

may be required to comply with (iv). 2

De�nition 22 (suitable pair). A pair t, t0 of concept types for ' is called
suitable if for every CUD 2 con',

CUD 2 t i� either D 2 t0 or C 2 t0 and CUD 2 t0:

Lemma 23. Suppose Q1 and Q2 are �nite sequences of quasiworlds for ' of

length l1 and l2, respectively, and let

Q = Q1 �Q
�
2

with Q(n) = hTn; T
o
n ;�ni. Then Q is a quasimodel for ' whenever the following

conditions hold:

1. for every i � l1 + l2 and every t0 2 Ti+1, there is t 2 Ti such that the pair

t; t0 is suitable;

2. for every i � l1 + 1 and every ti 2 Ti, all concepts of the form CUD 2 ti
are realized in l1+ l2� i steps in some sequence ti; ti+1; : : : ; tl1+l2 in which

ti+j 2 Ti+j and every pair of adjacent elements is suitable (for tia 2 T o
i

one can take the sequence tia; t
i+1
a ; : : : ; tl1+l2a , where tja 2 T

o
j );

3. for every i � l1 + l2, and every formula  U� 2 sub',

Q(i) j=  U� i� either Q(i+1) j= � or Q(i+1) j=  and Q(i+1) j=  U�;

4. for every i � l1 + 1, all formulas of the form  U� 2 �i are realized in

l1 + l2 � i steps.

Proof Condition (d) follows from 2. To construct a run through tm 2 Tm,
we �rst take concept types ti 2 Ti, for i < m, such that every pair of adjacent
elements in the sequence t1; : : : ; tm is suitable|this can be done by 1. Then

13



using condition 2 we select a sequence tm; : : : ; tm+n, for some n � l1 + l2, such
that every pair of adjacent elements in it is suitable and all concepts of the form
CUD 2 tm are realized in it in n steps. After that we select such a sequence
starting from tm+n and so on. It is readily seen that the resulting sequence is a

run in Q. This establishes (e). And condition (f) follows from 3 and 4. 2

As a consequence of the two preceding lemmas we immediately obtain

Theorem 24. A CIQU -formula ' is satis�able in hN; <i i� there are two se-

quences Q1 and Q2 of quasiworlds for ' such that Q1 �Q
�
2 satis�es conditions

1{4 of Lemma 23, all quasiworlds in Q1 are distinct (and so jQ1j � ](')),

jQ2j � [2(') � jcon'j � ](') + jsub(')j � ](') + ](');

and Q(1) j= '.

Proof By Theorem 15 and Lemmas 19, 21, ' is satis�able in hN; <i i� ' is
true in the �rst quasiworld of a quasimodel of the form Q1 �Q0 �Q

>l
2 described

in Lemma 21. It remains to observe that Q1 � Q
�
0 satis�es the conditions of

Lemma 23. 2

This provides us with an algorithm which is capable of deciding, given an
arbitrary CIQU -formula, whether it is satis�able in hN; <i. In a similar manner
one can construct a satis�ability checking algorithm for CIQUS-formulas in the
frame hZ;<i. We leave this to the reader, since no new ideas are required.

6 Satis�ability problem for CIQ3

The aim of this section is to prove the second claim of Theorem 7. Now our
frames are strict linear orders. For CIQ3 De�nition 6 becomes somewhat sim-
pler: its items 1{4 should be replaced by the following:

1. x 2 (3+C)I(w) i� there is v > w such that x 2 CI(v);

2. x 2 (3�C)I(w) i� there is v < w such that x 2 CI(v);

3. w j= 3+ i� there is v > w such that v j=  ;

4. w j= 3� i� there is v < w such that v j=  .

Fix an arbitrary CIQ3-formula '.

De�nition 25 (suitable triple). Let u = hTu; T
o
u
;�ui and v = hTv; T

o
v
;�vi

be quasiworlds for ' and � � Tu � Tv. The triple hu; v; �i is called suitable if it
satis�es the conditions:

� 8t 2 Tu9t
0 2 Tv t�t

0;

� 8t0 2 Tv9t 2 Tu t�t
0;

14



� 8a 2 ob' tua�t
v

a;

� 83+C 2 con'8t 2 Tu8t
0 2 Tv (t�t

0 & 3+C =2 t) C =2 t0 & 3+C =2 t0);

� 83�C 2 con'8tTu8t
0 2 Tv (t�t

0 & 3
�C =2 t0 ) C =2 t & 3�C =2 t);

� 83+ 2 sub' (u 6j= 3+ ) v 6j=  & v 6j= 3+ );

� 83� 2 sub' (v 6j= 3� ) u 6j=  & u 6j= 3� ).

The relation � is called a connection between u and v. Note that the same pair
of quasiworlds may have several di�erent connections.

It is easily checked that if hu; v; �i and hv;w; �i are suitable triples then
hu;w; � � �i is a suitable triple as well.

De�nition 26 (satisfying set). Say that a set S of suitable triples for ' is a
satisfying set for ' if the following conditions hold:

(S1) there is a triple in S which contains a quasiworld w such that w j= ';

(S2) if hu; v; �i 2 S and v j= 3+ , then there is hv;w; �i 2 S such that w j=  ;

(S3) if hu; v; �i 2 S and u j= 3� , then there is hw; u; �i 2 S such that w j=  ;

(S4) if hu; v; �i 2 S and 3+C 2 t 2 Tv, then there are hv;w; �i 2 S and t0 2 Tw
such that C 2 t0 and t�t0 (if t = ta, for a 2 ob', then one can take t

0 = t0a);

(S5) if hu; v; �i 2 S and 3�C 2 t 2 Tu, then there are hw; u; �i 2 S and t0 2 Tw
such that C 2 t0 and t0�t (if t = ta, for a 2 ob', then one can take t

0 = t0a);

(S6) if hu; v; �i 2 S, u j= 3+ , v 6j=  and v 6j= 3+ , then there is a quasiworld
w j=  such that hu;w; �i 2 S, hw; v; �i 2 S, for some � , �, and � � � = �;

(S7) if hu; v; �i 2 S, v j= 3� , u 6j=  and u 6j= 3� , then there is a quasiworld
w j=  such that hu;w; �i 2 S, hw; v; �i 2 S, for some � , �, and � � � = �;

(S8) if hu; v; �i 2 S, 3+C 2 t 2 Tu, t�t
0, C =2 t0 and 3+C =2 t0, then there are

w and t00 2 Tw such that C 2 t00, hu;w; �i 2 S, hw; v; �i 2 S, for some �
and �, t�t00�t0, and � � � = � (if t = ta, t

0 = t0a then one can take t00 = t00a);

(S9) if hu; v; �i 2 S, 3�C 2 t 2 Tv, t
0�t, C =2 t0 and 3�C =2 t0, then there are

w and t00 2 Tw such that C 2 t00, hu;w; �i 2 S, hw; v; �i 2 S, for some �
and �, t0�t00�t, and � � � = � (if t = ta, t

0 = t0a then one can take t00 = t00a).

The crucial step in constructing a satis�ability checking algorithm for CIQ3-
formulas in strict linear orders is the following

Theorem 27. A CIQ3-formula ' is satis�able in a strict linear order with � 2
elements i� there exists a satisfying set for '.
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Since the number of distinct quasiworlds for any formula ' does not exceed
]('), and every quasiworld contains at most [(') concept types, one can e�ec-
tively check whether there exists a satisfying set for ' (e.g., simply by looking
through all sets of suitable triples for '). It follows that Theorem 27 is enough
to show the decidability of the satis�ability problem for CIQ3-formulas in strict
linear orders. (Of course, in order to obtain the decidability, it remains to ob-
serve that it is decidable whether a formula is decidable in a strict linear order
with one element.) So we focus on the proof of this theorem. One direction is
easy.

Proof ()) Suppose ' is satis�ed in a CIQ3-model M = hhW;<i ; Ii with a
least two elements. De�ne a set S by putting in it all triples hu; v; �i for which
there are worlds u; v 2 W such that u < v, u = wu, v = wv (see the proof of
Theorem 15), and t�t0 i� there is x in the domain of M such that t = tI(u)(x)

and t0 = tI(v)(x). It is readily seen that S is a satisfying set for '. 2

To prove the converse we require a number of de�nitions. Fix a satisfying
set S for '. We are going to construct a quasimodel satisfying ' by taking the
limit of an inductively de�ned sequence of �nite weak quasimodels over S.

De�nition 28 (weak quasimodel). By a weak quasimodel over S we mean a
�nite sequence

q = hw1; : : : ;wni

of quasiworlds for ' such that hwi;wi+1; �ii+1i 2 S for some connection �ii+1

and every i 2 (0; n). Instead of wi we also write q(i) = hTi; T
o
i ;�ii. A sequence

of the form
r = ht1; : : : ; tni

such that ti 2 Ti and ti�ii+1ti+1 will be called a run in q. As before, the run

t1a; : : : ; t

n
a

�
, for tia 2 T

o
i , is denoted by ra.

It should be clear that for every t 2 Ti, i 2 f1; : : : ; ng, there is a run r in
q such that r(i) = t. It is not hard to check also that if 1 � i < j � n, then
hwi;wj ; �iji is a suitable triple, where

�ij = �ii+1 � �i+1i+2 � : : : � �j�1j :

De�nition 29 (defect). A defect in a weak quasimodel q = hq(1); : : : ; q(n)i
over S is

� a pair d = hi;  i such that 1 � i � n,  = 3+� 2 sub' (or  = 3
�� 2

sub'), q(i) j=  and q(j) 6j= � for any j 2 (i; n+1) (respectively, j 2 (0; i))

and

� a triple d = hi; r; Ci such that 1 � i � n, r is a run in q, C = 3+D 2 con'

(or C = 3
�D 2 con'), C 2 r(i) and D =2 r(j) for any j 2 (i; n + 1)

(respectively, j 2 (0; i)).
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Suppose d is a defect in a weak quasimodel q = hq(1); : : : ; q(n)i over S. We
construct a new weak quasimodel qd which \cures" d. In accordance with the
de�nition above, consider two cases.

Case 1: d = hi;  i, for  = 3+� (or  = 3��). Let j � i be the maximal
(respectively, let j � i be the minimal) number for which hj;  i is a defect in q.
If j = n (j = 1) then, by conditions (S2) and (S3), there is a quasiworld w j= �

such that hwn;w; �i 2 S (hw;w1; �i 2 S), for some connection �. Put

qd = hq(1); : : : ; q(n);wi (or qd = hw; q(1); : : : ; q(n)i):

When j 6= n (j 6= 1) we select, according to (S6) and (S7), a quasiworld w j= �

such that hq(j);w; �i 2 S, hw; q(j + 1); �i 2 S (respectively, hq(j � 1);w; �i 2 S,
hw; q(j); �i 2 S) and � � � = �jj+1 (� � � = �j�1j). Then we insert w right after
(before) q(j) in q thus obtaining

qd = hq(1); : : : ; q(j);w; q(j + 1); : : : ; q(n)i ;

(or qd = hq(1); : : : ; q(j � 1);w; q(j); : : : ; q(n)i):

Case 2: d = hi; r;3+Ci. Again let j � i be the maximal number for which
hj; r;3+Ci is a defect in q. If j = n then, by (S4), there exist a quasiworld w
and a type t 2 Tw such that hwn;w; �i 2 S, for some �, C 2 t, and r(n)�t. In
this case we put

qd = hq(1); : : : ; q(n);wi :

When j 6= n we use (S8) to select a quasiworld w and a type t 2 Tw such that
hq(j);w; �i ; hw; q(j + 1); �i 2 S, C 2 t, and r(j)�t�r(j + 1) and � � � = �jj+1.
This yields us a weak quasimodel

qd = hq(1); : : : ; q(j);w; q(j + 1); : : : ; q(n)i ;

\curing" d. The case of d = hi; r;3�Ci is considered analogously.
We are in a position now to complete the proof of Theorem 27.

Proof Suppose S is a satisfying set for ' and O = hW;<i a dense strict
linear order without endpoints. We construct by induction a sequence of weak
quasimodels qi over S and a sequence of subframes Oi = hWi; <ii of O, for
i = 0; 1; : : : .

Step 0. Take a triple hu; v; �i 2 S such that u j= ' or v j= ' (it exists by
(S1)) and let w1 < w2 in O. Then we put

q0 = hww1 ;ww2i ; O0 = hW0; <0i ;

where ww1 = u, ww2 = v, W0 = fw1; w2g and w1 <0 w2.
Step i+ 1. Suppose we have already constructed a weak quasimodel

qi = hww1 ; : : : ;wwni (4)

and a subframe Oi = hWi; <ii of O such that

Wi = fw1; : : : ; wng; w1 <i � � � <i wn:
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If the set Di of all defects in qi is empty then we are done: qi is clearly a
quasimodel based on Oi and satisfying '. Otherwise we take some d 2 Di,
construct the weak quasimodel

qdi =


ww1 ; : : : ;wwj ;ww;wwj+1 ; : : : ;wwn

�
; (5)

for j 2 f1; : : : ; ng, select some w 2 W such that wj < w < wj+1 (wn < w, if
j = n, and w < w1, if j = 1) and de�ne Od

i to be the subframe of O containing
Oi and w.

De�ne a set Dd
i of defects in qdi in the following way. Suppose d0 is a defect

in Di di�erent from d. If d0 = hk;  i then we put d0 = hk;  i in Dd
i when k � j

and d0 is a defect in qdi ; when k > j, we put there d0 = hk + 1;  i. And if
d0 = hk; r;Di then we �x a run r0 in qdi extending r and put d

0 = hk; r0; Di in Dd
i

when k � j and d0 is a defect in qdi ; when k > j, we put there d0 = hk + 1; r0; Di.

Clearly,
��Dd

i

�� � jDij�1. If D
d
i 6= ; then we take a defect d0 2 Dd

i , construct q
dd

0

i ,

Odd
0

i , and so on. When all defects in Di are cured, we obtain a weak quasimodel

qi+1 = hww1 ; : : : ;wwmi

and a subframe Oi+1 = hWi+1; <i+1i of O such that Wi+1 = fw1; : : : ; wmg and
w1 <i+1 � � � <i+1 wm.

Step !. Finally, put

W! =
[
i<!

Wi; <!=
[
i<!

<i; O! = hW! ; <!i ; Q = hww : w 2 W!i :

We show now that Q is a quasimodel based on O! and satisfying '.
Let u 2 W! , wu = hTu; T

o
u ;�ui and t

0 2 Tu. We are going to construct a
run in Q through t0. Note �rst that wu belongs to a weak quasimodel qi of the
form (4), for some i < !, and there is a run r in qi coming through t0. De�ne
an extension of r for each act of expanding qi.

Suppose that we are \curing" a defect d in qi and obtain qdi . If d = hj;  i or
d = hj; r1; Di, for r1 6= r, then we take any run r0 in qdi containing r and declare
it to be the extension of r in qdi . And if d = hj; r;3+Ci and qdi is of the form
(5) (so that t0 = r(k) for some k � j) then we de�ne the extension of r in qdi to
be the run

r(1); : : : ; r(j); t; r(j + 1); : : : ; r(n);

where t 2 C is the concept type in Tw selected in Case 2 above. For d =
hj; r;3�Ci the extension of r in qdi is de�ned in a symmetrical way. Now, if
r0 is the extension of r in q0 and r00 the extension of r0 in q00 then r00 is the
extension of r in q00. Finally, we de�ne the extension of r in Q as the limit r! of
the sequence of the extensions of r in qi+1, qi+2, etc.; more precisely, r! comes
through t 2 Tw, w 2W! , i� the extension of r in some qj , j > i, comes through
t. (If the original r is ra for some a 2 ob', then we can always de�ne r! so that
it comes through all twa , w 2W! .)

The constructed extension r! is a run in Q coming through t0. Indeed,
suppose 3+C 2 r!(w) for some 3

+C 2 con' and some w 2 W! . Then the
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extension r0 of r in qj , for some j � i, comes through r!(w), say r!(w) = r0(k).
If hk; r0;3+Ci is not a defect in r0 then there is m > k such that C 2 r0(m)
and so C 2 r!(v) for some v >! w. And if hk; r0;3+Ci is a defect then it is
cured in some extension of r0, and again we must have v >! w with C 2 r!(v).
Conversely, assume that there is v >! w and C 2 r!(v), for some 3

+C 2 con'.
Consider the extension r0 of r in some qj containing both ww and wv. Let
r0(k) = r!(w) and r

0(m) = r!(v), k < m. Since r0 is a run in qj and by the
de�nition of a suitable triple, we must have 3+C 2 r0(k) = r!(w). The case of
3
�C is considered analogously.
Thus, r! is a run in Q through t0 2 Tu. It is readily seen also that, for

every 3+ 2 sub' (3� 2 sub'), Q(u) j= 3
+ (respectively, Q(u) j= 3

� )
i� Q(v) j=  for some v >! u (v <! u). So Q is a quasimodel based on O! and

satisfying '. 2

This shows that the satis�ability problem for CIQ3-formulas in strict linear
orders is decidable. To see that it is decidable also in hQ; <i we require one
more de�nition.

De�nition 30 (Q-satisfying set). Say that a satisfying set S for a formula '
is Q-satisfying if for every hu; v; �i 2 S there exist hu0; u; � 0i 2 S, hv; v0; �0i 2 S,
and hu;w; �i 2 S, hw; v; �i 2 S such that � � � = �.

Theorem 31. A CIQ3-formula ' is satis�able in hQ; <i i� there exists a Q-

satisfying set for '.

Proof ()) is established in the same way as in the proof of Theorem 27.
(() Suppose S is a Q-satisfying set for ' and O = hQ; <i. We de�ne a

sequence of weak quasimodels qi over S almost in the same way as in the proof
of Theorem 27. The only di�erence is that now, having cured all defects at step
i+ 1 and constructed a weak quasimodel

q0i+1 = hww1 ; : : : ;wwmi ;

we de�ne qi+1 to be a weak quasimodel

qi+1 =


wu1 ;ww1 ;wu2 ;ww2 ; : : : ;wum ;wwm ;wum+1

�

in which hwui ;wwi ; �ii 2 S and


wwm ;wum+1

; �m+1

�
2 S, for some �i and

�m+1, i = 1; : : : ;m, such that u1 < w1 < u2 < w2 < : : : < um < wm < un+1.
As a result we construct a quasimodel satisfying ' and based on a subframe of
O which is isomorphic to O. 2

7 Other temporal description logics

The methods of proving decidability developed above work actually for an ar-
bitrary decidable description logic which is closed under the disjoint union con-

struction of Lemma 16. Most description logics are of this sort. Of other logics
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especially interesting are those which allow the construction of the concept fag
from every object name a. Such concepts can be understood as what is know
in the modal logic literature as nominals or names (see e.g. Blackburn, 1993).
Using this constructor one can form then the concept 9R:fag. The formula
> = 9R:fag is true in a model i� xRa for all objects x in its domain. It fol-
lows that logics with this constructor cannot be closed under the formation of
disjoint unions.

In this section we briey explain how to modify our proofs in order to cope
with the nominal constructor. We will be considering two rather expressive
decidable description logics, namely, CNO and CIO, �rst introduced by de
Giacomo (1995).

Let CI and CN be the languages resulting from CIQ by omitting the con-
structors of quali�ed number restrictions 9�n and of forming inversions of roles,
respectively. Now, CIO and CNO are the extensions of, respectively, CI and
CN by the following concept constructor:

� fag is a concept whenever a is an object name.

The concept fag is interpreted in a model I in a straightforward manner:

� fagI = faIg.

Temporal description logics CIOSU and CNOSU and their semantics are de�ned
in the obvious way (we still assume that object names are rigid designators).
Having concepts of the form fag, there is no need to de�ne as atomic formulas
a : C and aRb: they are equivalent to fag ! C = > and fag ! 9R:fbg = >,
respectively. Now we have:

Theorem 32. There are algorithms that are capable of deciding whether

1. a given CIOUS- or CNOUS-formula is satis�able in hZ; <i and in hN; <i,

and whether

2. a given CIO3- or CNO3-formula is satis�able in a strict linear order as

well as in hQ; <i.

We will point out the most important modi�cations in the proof of Theo-
rem 7. By ob' we will denote the set of object names a such that fag 2 con'.

First we should change the de�nition of a quasiworld candidate: in the
present context it is a pair hT;�i such that the third condition of De�nition 9
holds and

� for every a 2 ob' there exists precisely one t 2 T for which fag 2 t.

Note that in the de�nition of a quasiworld candidate we omit the set T o; its role
is now played by the types t containing concepts of the form fag. We denote the
type t containing fag by ta and de�ne T o to be the set of all types of the form
ta. The notion of an extended model remains the same. An extended model I
realizes a quasiworld candidate i� the �rst condition of De�nition 11 holds and
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� for every a 2 ob', tI(a) = ta.

De Giacomo (1995) proves the decidability of the satis�ability problem for both
CIO and CNO. So one can e�ectively recognize whether a quasiworld candidate
is a quasiworld.

The de�nition of a run also requires a modi�cation. In De�nition 13 we
allowed runs r in which r(u) = tua and r(v) 6= tva for some u 6= v; now such
runs should be forbidden (in accordance with the condition that x 2 fagI(u) i�
x 2 fagI(w)). More precisely, a run r still has to satisfy all the conditions of
De�nition 13 and also the following one

� if r(u) = tva then r(v) = tva, for all u; v 2 W .

The de�nition of a quasimodel should be clear now. The only important thing
which remains to be modi�ed is the proof of Theorem 15. Basically this reduces
to the proof of an analogue of Lemma 16. Of course, we cannot claim now that
j[x]J j = �0 for any x in the domain of J . We reformulate this lemma in the
following way.

Lemma 33. Let Q be a quasimodel for ' based on hW;<i. There is a cardi-

nal � � @0 such that, for any cardinal �0 � �, every CIO-quasiworld (CNO-

quasiworld) Q(w) = w is realized in an extended CIO-model (CNO-model) J

in which
��[x]J �� = �0 for all x in the

domain of J di�erent from any aJ , a 2 ob'.

Proof The lemma is trivial if T o
w = Tw, for some w 2 W , since in this case

in any quasimodel realizing Q(w) every x in the domain coincides with some
a 2 ob'. (Note that in this case T o

w0 = Tw0 , for any w0 2 W .)
So suppose this is not the case. First we consider CIO and CNO simulta-

neously.
For each quasiworld Q(w) = u �x an extended model Iu realizing u. Let �u

be the domain of Iu. Then we de�ne � to be the supremum of @0 and
��[x]Iu��

for all quasiworlds Q(w) = u and all x 2 �u with x 6= aIu for any a 2 ob'. We
show that � satis�es the required conditions.

Suppose Q(w) = w for some w 2 W and �0 � �. Take an extended model

I =


�; RI

0; : : : ; C
I
0 ; : : : ; (CUD)

I ; : : : ; (C 0SD0)I ; : : : ; aI0; : : :
�

realizing w and such that
��[x]I �� � � for every x 2 �, x 6= aI for any a 2 ob'.

Let N = faI : a 2 ob'g and

J =


�0; RJ

0 ; : : : ; C
J
0 ; : : : ; (CUD)

J ; : : : ; (C 0SD0)J ; : : : ; aJ0 ; : : :
�
;

where

�0 = N [ fhx; �i : x 2 ��N; � < �0g;

CJ
i = fhx; �i : x 2 (��N) \ CI

i ; � < �0g [ (CJ
i \N)

aJi = aIi :

The de�nition of RJ
i depends on whether we deal with CIO or CNO. In both

cases we have for all � < �0, x; y 2 ��N , a; b 2 ob':
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� hx; �iRJ
i hy; �i i� xR

I
i y,

� aIRJ
i b

I i� aIRI
i b

I , and

� hx; �iRJ
i a

I i� xRI
i a

I .

In the case of CIQ|because of the inverse constructor|we put for all � < �0,
x 2 ��N :

� aIRJ
i hx; �i i� a

IRI
i x.

It is readily checked that J satis�es the required conditions for CIO. How-
ever, for CNO this may be not the case, since aI may have more Ri successors
now. In case of CNO we put instead:

� aIRJ
i hx; �i i� a

IRI
i x and � = 0.

With this de�nition the resulting model is as required for CNO. 2

The remaining modi�cations required for the decidability proof are straight-
forward.

8 Open problems

This paper introduces temporal description logics as an expressive and decidable

alternative to temporal predicate logics. We have proved the decidability of the
satis�ability problem for CIQUS-formulas in hN; <i and hZ; <i, and of CIQ3 in
strict linear orders and hQ; <i. It would also be of interest to �nd solutions to
the following problems:

� Is the satis�ability problem for CIQUS-formulas in strict linear orders and
hQ; <i decidable ?

� Is the satis�ability problem for CIQ3-formulas in hR; <i decidable?

� What is the complexity of the satis�ability problems considered in this
paper?

In the temporal extensions of CIO and CNO we assumed that object names
(and so concepts of type fag) are rigid designators: their extensions are de�ned
globally and do not depend on the particular world. By allowing object names
to be interpreted locally we obtain more expressive languages.

� Is the satis�ability problem for the resulting language decidable?

As was already noted, none of the underlying description languages considered
here has the �nite model property (fmp). And even if we take as the basis of our
temporal logics a description logic with the fmp (say ALC), it does not follow
that the resulting temporal description logic having models with �nite domains
coincides with the logic whose models may have arbitrary domains. (see Wolter
and Zakharyaschev, 1998). This observation leads to the following problem:

� Are the temporal description logics considered in this paper decidable
when the domains of models are assumed to be �nite?
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