Temporal Dynamic Description Logic

Liang Chang

changl.guet@gmail.com
liang.chang@manchester.ac.uk
Temporal description logic (TDL)

• For capturing temporal aspects of concepts in ontologies.

\[
\neg \text{Doctor} \sqcap \Diamond \text{Doctor} \sqsubseteq \\
\Diamond (\text{PHDStudent} \sqcap \neg \text{Doctor} \sqcap (\text{PHDStudent} \mathbin{U} \text{Doctor}))
\]

\[
\text{PHDStudent} \sqsubseteq \exists \text{hasSup}.\text{Doctor}
\]
Temporal description logic (TDL)

- For capturing temporal aspects of concepts in ontologies.

\[\neg \text{Doctor} \sqcap \Diamond \text{Doctor} \sqsubseteq \Diamond (\text{PHDStudent} \sqcap \neg \text{Doctor} \sqcap (\text{PHDStudent} \cup \text{Doctor})) \]

\[\text{PHDStudent} \sqsubseteq \exists \text{hasSup} \cdot \text{Doctor} \]

- Two-dimensional logics [GKWZ03]
 - Temporal description logic
 - Dynamic description logic
 - ……
Temporal description logic (TDL)

- For capturing temporal aspects of concepts in ontologies.
 \[
 \lnot \text{Doctor} \sqcap \Diamond \text{Doctor} \sqsubseteq \\
 \Diamond (\text{PHDStudent} \sqcap \lnot \text{Doctor} \sqcap (\text{PHDStudent} \cup \text{Doctor}))
 \]

\[
\text{PHDStudent} \sqsubseteq \exists \text{hasSup}.\text{Doctor}
\]

- Two-dimensional logics [GKWZ03]
 - Temporal description logic
 - Dynamic description logic
 -
Different temporal extensions of DLs

- Explicit notion of time or implicit time
- Interval-based notion of time or point-based time
 - External representation of time or internal representation
- Linear time or branching time
Different temporal extensions

• Varying DL component: DL-Lite, EL, ALC, SHOIQ, …

• Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
 – \(\neg\)Doctor \(\sqcap\) Diamond Doctor \(\sqsubseteq\) Diamond (PHDStudent \(\cup\) Doctor)
 – Diamond (Citizen \(\sqsubseteq\) HASVote)
 – PHDStudent(Jack) \(\land\) Diamond (PHDStudent(Jack) \(\cup\) Doctor(Jack))

• Additional constraints on concepts and roles: rigid concepts, rigid roles

• interpretation domains: expanding, constant

• ……
Different temporal extensions

• Explicit notion of time or implicit time
• Interval-based notion of time or point-based time
 – External representation of time or internal representation
• Linear time or branching time

Dozens of combinations!

• Varying DL component: DL-Lite, EL, ALC, SHOIQ, ...
• Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
• Additional constraints on concepts and roles: rigid concepts, rigid roles
• interpretation domains: expanding, constant
• ……
Different temporal extensions

- Explicit notion of time or implicit time
- Interval-based notion of time or point-based time
 - External representation of time or internal representation
- Linear time or branching time

- Varying DL component: DL-Lite, EL, ALC, SHOIQ, ...
- Different choice for applying temporal operators: concepts, TBox axioms, ABox assertions
- Additional constraints on concepts and roles: rigid concepts, rigid roles
- Interpretation domains: expanding, constant
- ……
Reasoning about actions

- Representation and Reasoning about Actions

- Situation Calculus [Mcc63]

- John McCarthy
 - father of AI, 1956
 - Winner of Turing Award, 1971
Action Formalisms

Based on propositional logics:
- Based on PDL [GL95]
- Based on LTL [CGV02]

Based on DL?
- Gap?

Based on first- or higher-order logics:
- Situation Calculus
- Fluent Calculus
-
Action Formalisms

Based on propositional logics:
- based on PDL [GL95]
- based on LTL [CGV02]

Based on first- or higher-order logics:
- Situation Calculus
- Fluent Calculus

Action formalism based on DL [BLM05]

Gap ?
DL-Based Action Formalisms

- Background knowledge: RBox, TBox
- States: ABoxes
- Action: $\alpha = (\text{pre}, \text{occ}, \text{post})$
 - pre: ABox assertions
 - occ: primitive literals
 - post: set of conditional post-conditions, ϕ/ψ

- Update ABox after the execution of actions.
Extension of the DL-based action formalism

Basic idea: construct more powerful formalism, action theory + description logic + dynamic logic

• Background knowledge: RBox, TBox
• Atomic actions: come from Baader et al.’s formalism
 \(\alpha \equiv (\text{pre, occ, post}) \)
• Complex actions:
 \(\pi, \pi' ::= \alpha \mid \phi ? \mid \pi \cup \pi' \mid \pi ; \pi' \mid \pi^* \)
• Formulas:
 \(\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi>\phi \mid [\pi]\phi \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \)

• Dynamic description logic DDL(\(X@ \))
 \(X: \) DLs ranging from ALCO to ALCHOIQ, \(X@: \) extension of \(X \) with the @ constructor.
Features of DDL(X@) (1/3)

(1) Complex actions can be constructed

- **TBox:**

 \[
 \text{Customer} \equiv \text{Person} \sqcap \exists \text{holds.CreditCard} \\
 \text{VIPcustomer} \equiv \text{Customer} \sqcap \geq 10 \text{boughr.}(\text{Book} \sqcup \text{CD})
 \]

- **Atomic Actions:**

 \[
 \text{buybook}(a,b) \equiv (\{\text{Customer}(a), \text{Book}(b)\}, \{\}; \\
 \{\text{Instore}(b)/\neg \text{Instore}(b), \text{Instore}(b)/\text{bought}(a,b)\})
 \]

 \[
 \text{order}(b) \equiv (\{(\text{Book} \sqcup \text{CD})(b)\}, \{\}; \\
 \{\neg \text{Instore}(b)/\text{Instore}(b)\})
 \]

- **Complex Action:**

 \[
 \text{VIPbuybook}(a,b) \equiv \text{VIPcustomer}(a)? ; \\
 ((\text{Instore}(b)? ; \text{buybook}(a,b)) \cup \\
 (\neg \text{Instore}(b)? ; \text{order}(b); \text{buybook}(a,b)))
 \]
Features of DDL(X@) (2/3)

(2) Properties on (complex) actions can be described directly

- necessary conditions for the execution of (complex) actions

 `<VIPbuybook(a,b)>true \rightarrow (VIPcustomer(a) \land Book(b))`

 `<VIPbuybook(a,b)>true \rightarrow Instore(b)`

- results on the execution of actions

 `[VIPbuybook(a,b)]bought(a,b)`

 `[buybook(a,b)]bought(a,b)`
(3) Reasoning problems on actions be reduced to the satisfiability problem of formulas

- Executability of actions
- Projection problem
- Consistency/realizability of actions
 - whether a given action makes sense w.r.t. the knowledge base
 buybook(a1,b); buybook(a2,b)

- Satisfiability problem
 - a Tableau decision algorithm is provided.
 - the complexity upper-bound is
 - EXPSpace if $X \in \{\text{ALCO}, \text{ALCHO}, \text{ALCOQ}, \text{ALCHOQ}\}$,
 - N2EXPTime if $X \in \{\text{ALCOI}, \text{ALCHOI}, \text{ALCOIQ}, \text{ALCHOIQ}\}$.
Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:
- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:

\[\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi>\phi \mid [\pi]\phi \mid \neg \phi \mid \phi \lor \psi \mid E(\phi U^\pi \psi) \mid A(\phi U^\pi \psi) \]

- \(E(\phi U^\pi \psi) \): there exists some path of \(\pi \) such that “\(\phi \) until \(\psi \)” holds.
- \(A(\phi U^\pi \psi) \): “\(\phi \) until \(\psi \)” holds in any path of \(\pi \).
Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:
- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:
 \[
 \phi, \psi ::= C(p) \mid R(p,q) \mid <\pi>\phi \mid [\pi]\phi \mid \neg\phi \mid \phi \lor \psi \mid E(\phi U^\pi \psi) \mid A(\phi U^\pi \psi)
 \]

EX $\phi = \text{def} \bigvee_{\alpha \in N_A} <\alpha>\phi$

$E(\phi U^\pi \psi) = \text{def} E(\phi U^{(a_1 \cup \ldots \cup a_n)^*} \psi)$

$A(\phi U^\pi \psi) = \text{def} A(\phi U^{(a_1 \cup \ldots \cup a_n)^*} \psi)$
Temporal extension of DDL(X@)

To investigate temporal properties of actions.

Approach:
- the ongoing of time is embodied as the execution of atomic actions (time units)
- two temporal assertions are introduced:

$$
\phi, \psi ::= C(p) \mid R(p,q) \mid <\pi>\phi \mid [\pi]\phi \mid \neg\phi \mid \phi \lor \psi \mid E(\phi U^\pi \psi) \mid A(\phi U^\pi \psi)
$$

E(ϕU^πψ): there exists some path of π such that “ϕ until ψ” holds.

A(ϕU^πψ): “ϕ until ψ” holds in any path of π.

$$
\begin{align*}
\text{EX } \phi & \stackrel{\text{def}}{=} \bigvee_{\alpha \in N_A} <\alpha>\phi \\
E(\phi U \psi) & \stackrel{\text{def}}{=} E(\phi U^{(a_1 \cup \ldots \cup a_n)^*} \psi) \\
A(\phi U \psi) & \stackrel{\text{def}}{=} A(\phi U^{(a_1 \cup \ldots \cup a_n)^*} \psi)
\end{align*}
$$

$$
\begin{align*}
\text{EF } \phi & = \text{def } E(\text{true}\text{U}\phi) \\
\text{AF } \phi & = \text{def } A(\text{true}\text{U}\phi) \\
\text{EG } \phi & = \text{def } \neg A F(\neg \phi) \\
\text{AG } \phi & = \text{def } \neg E F(\neg \phi) \\
\text{AX } \phi & = \text{def } \neg E X(\neg \phi)
\end{align*}
$$
Description example of TDDL(X@)

- **liveness property**: good things will eventually happen.
 \[
 \text{EF}(\exists \text{bought\neg.Customer}(b)) \\
 \text{E(Instore}(b) \text{ U}^{\text{VIPbuybook}(a,b)} \neg \text{Instore}(b))
 \]

- **safety property**: bad things will never happen.
 \[
 \text{AG} \neg (\geq 2 \text{ bought\neg.Customer}(b)) \\
 \text{AG (Instore}(b) \lor (\exists \text{bought \neg.Customer}(b))
 \]

- Reduced to satisfiability problem of formulas.
- A **Tableau decision algorithm** is provided.
Limitation of DDL(X@)/TDDL(X@)

• TBox:
 – only concept definitions, no GCIs
 – acyclic

• RBox:
 – on transitive property

• Atomic action:
 – no defined concept name occurring in the effect set *post*.

Why?
 – difficulty of ABox updating.
Difficulty of ABox updating

Example.

• TBox:
 \(\text{Trans}(R), \ A \sqsubseteq \exists R.A, \ A \cap B \sqsubseteq \bot, \ B \sqsubseteq \forall R.B \)

• ABox:
 \(A(a) \)

• Update or new information:
 \((\exists R.B)(a) \)
Some results on ABox update

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>DLs</th>
<th>Approach</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclic TBox; no defined concept names occurring in U</td>
<td>ALC~ALC QIO</td>
<td>PMA semantics & only primitive concept names are counted when measuring distance.</td>
<td>LLMW06, LLMW11</td>
</tr>
<tr>
<td>DL-Lite$_F$</td>
<td></td>
<td>PMA semantics.</td>
<td>GLPR06, GLPR07</td>
</tr>
<tr>
<td>DL-Lite$_R^{pr}$</td>
<td></td>
<td>Both revision and update. Based on $fcl_T(A)$.</td>
<td>KZ11, KZC13</td>
</tr>
<tr>
<td>DL-Lite$_{FR}$</td>
<td></td>
<td>Based on $cl_T(A)$.</td>
<td>CKNZ10</td>
</tr>
</tbody>
</table>
Thank you!