Presentation of Update Semantics of Relational Views

Nhung Ngo & Yu Liu

FCCOD 2014
Outline

1 Problem

- Overview of the problem being addressed
- Formal definition of the problem

2 Solution

- Translation under constant complement
- Update policy
- Advantages and disadvantages of solutions
Overview
Overview
Overview

Problem Overview of the problem being addressed

Nhung Ngo & Yu Liu (FCCOD 2014) Presentation of Update Semantics of Relational Views

[Diagram showing view definitions flowing from database update to view update]
Overview of the problem being addressed:

- Database update
- View definitions
- View update
- View definitions
Example 1
Unexpected changes on the view

\[V = E \bowtie D \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE</td>
<td>Susan</td>
</tr>
</tbody>
</table>
Example 1
Unexpected changes on the view

\[V = E \bowtie D \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
<td></td>
</tr>
</tbody>
</table>
Example 1

Unexpected changes on the view

\[V = E \bowtie D \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>
Example 1
Unexpected changes on the view

\[V = E \bowtie D \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>
Example 1
Unexpected changes on the view

\[V = E \Join D \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
<td>Alex</td>
</tr>
</tbody>
</table>

The changes on the db must reflect \textit{exactly} the changes on the view.
Example 2
Unjustified changes on the database

\[V = \pi_{\text{EMP}, \text{DEP}}(R) \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

\[R \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Max</td>
</tr>
</tbody>
</table>
Example 2
Unjustified changes on the database

\[V = \pi_{\text{EMP}, \text{DEP}}(R) \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

\[(\text{Jane, CS}) \]

\[R \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Max</td>
</tr>
</tbody>
</table>
Example 2
Unjustified changes on the database

\[V = \pi_{EMP, DEP}(R) \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

\((Jane, CS) \)

R

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Max</td>
</tr>
</tbody>
</table>
Example 2
Unjustified changes on the database

\[V = \pi_{\text{EMP}, \text{DEP}}(R) \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
</tr>
</tbody>
</table>

\((\text{Jane}, \text{CS}) \)

\[R \]

<table>
<thead>
<tr>
<th>EMP</th>
<th>DEP</th>
<th>MGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>EEE</td>
<td>Susan</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>Max</td>
</tr>
</tbody>
</table>

Modify the database \textit{only if required} to reflect the changes on the view.
Basic Notation

\(S \) database schema - set of all database instances (\textit{database states})

\(T \) set of all view instances (\textit{view states})

- view \(f : S \rightarrow T \)
- view update \(u : T \rightarrow T \)
- database update \(d : S \rightarrow S \)

\(U_1 \) set of all database updates

\(U_f \) set of all view updates
Concepts to be formalized

- Q1: Given a view update u, what are the constraints on the database update that translates u?
Q1: Given a view update u, what are the constraints on the database update that translates u?

Q2: What sets of view updates do we want to translate, that is, what sets of updates users are to be allowed on the view?
Concepts to be formalized

- Q1: Given a view update u, what are the constraints on the database update that translates u?
- Q2: What sets of view updates do we want to translate, that is, what sets of updates users are to be allowed on the view?
- Q3: How do we associate with each view update a database update that translates it?
A database update d is a *translation* of a view update u iff for each database state $s \in S$

1. $uf(s) = fd(s)$ \hspace{2cm} (consistent)
2. $uf(s) = f(s) \rightarrow d(s) = s$ \hspace{2cm} (acceptable)
Definitions

Q1: A translation of a view update

A database update d is a translation of a view update u iff for each database state $s \in S$

1. $uf(s) = fd(s)$
 (consistent)
2. $uf(s) = f(s) \rightarrow d(s) = s$
 (acceptable)
Definitions

Q1: A translation of a view update

A database update d is a *translation* of a view update u iff for each database state $s \in S$

1. $uf(s) = fd(s)$ \hspace{5cm} \text{(consistent)}
2. $uf(s) = f(s) \rightarrow d(s) = s$ \hspace{5cm} \text{(acceptable)}
A set U of view updates is called *complete* iff
A set U of view updates is called *complete* iff

(1) $\forall u, v \in U, uv \in U$
A set U of view updates is called complete iff

1. $\forall u, v \in U, uv \in U$
2. $\forall s \in S, \forall u \in U, \exists u' \in U u'u_f(s) = f(s)$
Definitions
Q3: A translator

A mapping $T : U \rightarrow U_1$ is called a \textit{translator} iff

(1) $\forall u \in U$, T_u is a translation of u

(2) $\forall u, v \in U$, $T_{uv} = T_u T_v$

The view update problem

Given a complete set U of view updates, find a translator of U
Intuitive idea

- If the view f is injective

\[f(s) \]

- If the view f is not injective

Need a view complement g of f so that $f \times g$ is injective
If the view f is injective

If the view f is not injective

Need a view complement g of f so that $f \times g$ is injective
Intuitive idea

- If the view f is injective

 ![Diagram of injective function]

 If the view f is not injective

 Need a view complement g of f so that $f \times g$ is injective
The view complement

\[g \text{ is a complement of } f \text{ iff } f \times g = 1 \]

\[g \text{ is a complement of } f \text{ iff } \forall s, s' \in S_\Sigma, s \neq s' \wedge f(s) = f(s') \rightarrow g(s) \neq g(s') \]

- A complement of \(f \) contains “the information not visible within \(f \)”
- A complement of \(f \) is able to distinguish database states that \(f \) maps to the same view state
- A view complement always exists (a renamed copy of the whole db schema in the worst case)
- In general, there is no unique minimal complement
The view complement

An example
The view complement
An example
The view complement

An example

\[g \quad s_1 \quad f \quad t_1 \]

\[g \quad s_2 \quad f \quad t_2 \]

\[g \quad s_3 \quad f \quad t_2 \]
Rectangle Rule from Chamberlin et al (1975): ”An insertion, deletion, or update via a view must affect only information visible within the rectangle of the view.”

- A complement g of a view update u should not be changed (i.e. invariant) by a database update.
- A translation γ_u of u should be verified that it makes g invariant.
A given database, a view and a complement view

<table>
<thead>
<tr>
<th>E(EMP, DEP)</th>
<th>M(DEP, MGR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: EMP → DEP</td>
<td>C2: DEP ↔ MGR</td>
</tr>
<tr>
<td>C3: E[DEP] = M[DEP]</td>
<td></td>
</tr>
</tbody>
</table>

\[
f(s) = \pi_{\text{DEP},\text{MGR}} E \bowtie M
\]

\[
g(s) = M
\]

<table>
<thead>
<tr>
<th>s =</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>DEP</td>
<td>DEP</td>
</tr>
<tr>
<td>Mary</td>
<td>CS</td>
<td>CS</td>
</tr>
<tr>
<td>Jane</td>
<td>CS</td>
<td>EEE</td>
</tr>
<tr>
<td>Mike</td>
<td>EEE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f =</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>MGR</td>
</tr>
<tr>
<td>Mary</td>
<td>Alex</td>
</tr>
<tr>
<td>Jane</td>
<td>Alex</td>
</tr>
<tr>
<td>Mike</td>
<td>Susan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g =</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>MGR</td>
</tr>
<tr>
<td>CS</td>
<td>Alex</td>
</tr>
<tr>
<td>EEE</td>
<td>Susan</td>
</tr>
</tbody>
</table>
Example of a translation that leaves a complement invariant

\(u\): Replace employee Mary by employee John.

\(g\): Table M.

\(\gamma_u\):
\[E = (M^*u(EM))[EMP,DEP];M = M.\]

\[\begin{array}{c|c}
\text{EMP} & \text{DEP} \\
\hline
\text{Mary} & \text{CS} \\
\text{Jane} & \text{CS} \\
\text{Mike} & \text{EEE} \\
\end{array}\]

\[\begin{array}{c|c|c}
\text{DEP} & \text{MGR} & \text{EMP} \\
\hline
\text{CS} & \text{Alex} & \text{Mary} \\
\text{EEE} & \text{Susan} & \text{Jane} \\
\end{array}\]

\(\gamma_u\) \(\rightarrow\)

\[\begin{array}{c|c|c|c}
\text{EMP} & \text{DEP} & \text{MGR} \\
\hline
\text{John} & \text{CS} & \text{Alex} \\
\text{Jane} & \text{CS} & \text{Mary} \\
\text{Mike} & \text{EEE} & \text{Susan} \\
\end{array}\]

\(f\) =

\[\begin{array}{c|c|c|c|c}
\text{DEP} & \text{MGR} & \text{EMP} & \text{EM} \\
\hline
\text{Mary} & & \text{Alex} \\
\text{Jane} & & \text{Alex} \\
\text{Mike} & & \text{Susan} \\
\end{array}\]

\(u\) \(\rightarrow\)

\[\begin{array}{c|c|c|c|c}
\text{DEP} & \text{MGR} & \text{EMP} & \text{EM} \\
\hline
\text{John} & & \text{Alex} \\
\text{Jane} & & \text{Alex} \\
\text{Mike} & & \text{Susan} \\
\end{array}\]
u is g – translatable

u is g – translatable iff for all s in S, there exists a s' that:

1. $f(s') = uf(s)$
2. $g(s') = g(s)$

The composition of g – translatable updates is also g – translatable

- u, v are g – translatable $\Rightarrow uv$ is g – translatable

 1. $f(s'') = u(f(s')) = uvf(s)$
 2. $g(s'') = g(s') = g(s)$
Example of a composition of g — *translatable* updates

u: Replace employee Mary by employee John.

v: Replace employee Jane by employee Lewis.

g: Table M.

$\gamma_{uv}: E = (M^{*uv}(EM))[EMP,DEP]; M = M.$
g-translation: γ_u

For a given f, g, u if u is g-translatable then $\gamma_u = (f \times g)^{-1}(uf \times g)$.

γ_u is a translation of u (γ_u is called a g-translation of u):
- $uf = f\gamma_u \rightsquigarrow$ Consistent
- $\gamma_u(s) = s \rightsquigarrow$ Acceptable

γ_u leaves g invariant
- $g\gamma_u = g$

If u is g-translatable, γ_u always exists and is unique.
How to choose a complement of a view?(1)

The choice of g impacts that whether u is g – translatable or not.

u: Replace employee Mary by employee John.
g': Table E.
$\gamma_u : E = (M^u(EM))[\text{EMP,DEP}]; M = M$.

\[
\begin{array}{ccc}
E & M & E \\
\hline
\text{EMP} & \text{DEP} & \text{DEP} & \text{MGR} \\
\text{Mary} & \text{CS} & \text{CS} & \text{Alex} \\
\text{Jane} & \text{CS} & \text{EEE} & \text{Susan} \\
\text{Mike} & \text{EEE} & & \\
\end{array}
\]

\[
\begin{array}{ccc}
\gamma_u & s' & \\
\hline
\rightarrow & \text{EMP} & \text{DEP} \\
\text{John} & \text{CS} & \text{Alex} \\
\text{Jane} & \text{CS} & \text{Susan} \\
\text{Mike} & \text{EEE} & \\
\end{array}
\]

\[
\begin{array}{ccc}
EM & M & EM \\
\hline
\text{DEP} & \text{MGR} & \text{DEP} & \text{MGR} \\
\text{Mary} & \text{Alex} & \text{John} & \text{Alex} \\
\text{Jane} & \text{Alex} & \text{Jane} & \text{Alex} \\
\text{Mike} & \text{Susan} & \text{Mike} & \text{Susan} \\
\end{array}
\]

\[
f = \frac{EM}{\text{DEP} \text{MGR}} \\
uf = \frac{EM}{\text{DEP} \text{MGR}}
\]
How to choose a complement of a view?(2)

The choice of g impacts that whether u is g-translatable or not.

w: Permute the managers.

g': Table E.

$\gamma_w: E = E; M = (E^*w(EM))[EMP,DEP]$.

$$
\begin{array}{c|c|c}
\text{EMP} & \text{DEP} & \gamma_w \rightarrow \text{EMP} \\
\text{Mary} & \text{CS} & \text{Mary} \\
\text{Jane} & \text{CS} & \text{Jane} \\
\text{Mike} & \text{EEE} & \text{Mike} \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{DEP} & \text{MGR} & \text{DEP} \\
\text{CS} & \text{Alex} & \text{CS} \\
\text{EEE} & \text{Susan} & \text{EEE} \\
\end{array}
\quad
\begin{array}{c|c|c|c|c}
\text{EMP} & \text{DEP} & \text{MGR} & \text{EMP} & \text{DEP} \\
\text{Mary} & \text{CS} & \text{Susan} & \text{Mary} & \text{CS} \\
\text{Jane} & \text{CS} & \text{Susan} & \text{Jane} & \text{CS} \\
\text{Mike} & \text{EEE} & \text{Alex} & \text{Mike} & \text{EEE} \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{DEP} & \text{MGR} & \text{DEP} \\
\text{CS} & \text{Susan} & \text{CS} \\
\text{EEE} & \text{Alex} & \text{EEE} \\
\end{array}
$$
How to choose a complement of a view?(3)

For a given view u, g, h are both complements of f and h contains less information than g. If u is g–translatable then:

1. u is also h–translatable
2. h–translation $= g$–translation

The set of g–translatable updates is maximal when the complement g is minimal.

- We could like to find the minimal complements, so that get maximal update sets (a minimal complement is not unique).

A complement view: an update policy
Universal property of translation under constant complement

Given a complete set $U \subset U_f$, a view f and a complement view g of f:

This paper provided translators T for U if $\forall u \in U$: u is g–translatable:

1. Select a complement g of the given view f.
2. Verify that view updates of the given complete set U make g invariant.
3. For each view update $u \in U$, the translation $T_u = (f \times g)^{-1}(uf \times g)$.

For every T of U, there exists a complement g that:

1. $\forall u \in U$, u is g–translatable.
2. $\forall u \in U$, g–translation $\gamma_u = (f \times g)^{-1}(uf \times g)$
Advantages & Disadvantages

Advantages:

1. This paper provides a formal framework for solving the view update problem.
2. The method is beneficial for solving view update issues in Data Integration.

Disadvantages:

1. Too theoretical, no algorithms for implementation from practical point of view.
2. This paper does not show how to find a minimal complement.
Related works

- Lechtenboerger (2003) gives a characterisation of the constant complement principle in terms of “undo” operations in SQL server.
- Cosmadakis and Papadimitriou (1984) consider a restricted setting that consists of a single database relation and two views defined by projections.
- Gottlob et al (1988) extend to the class of so-called consistent views, which properly contains the views translating under constant complement. The complement is not required to remain invariant in their framework.
- Enrico Franconi and Paolo Guagliardo [2011] provide a general framework for view updating (under constraints) based on the notion of determinacy.