Integrating Description Logics and Action Formalisms: First Results

F. Baader\(^1\), C. Lutz\(^1\), M. Miličić\(^1\), U. Sattler\(^2\), F. Wolter\(^3\)

\(^1\)Inst. für Theor. Inf. \quad \(^2\)School of CS \quad \(^3\)Dept. of CS
Dresden, Germany \quad Manchester, UK \quad Liverpool, UK

Abstract

We propose an action formalism that is based on description logics (DLs) and may be viewed as an instance of the Situation Calculus (SitCalc). In particular, description logic concepts can be used for describing the state of the world, and the pre- and post-conditions of actions. The main advantage of such a combination is that, on the one hand, the expressive power for describing world states and conditions is higher than in other decidable fragments of the SitCalc, which are usually propositional. On the other hand, in contrast to the full SitCalc, effective reasoning is still possible. In this paper, we perform a detailed investigation of how the choice of the DL influences the complexity of the standard reasoning tasks executability and projection in the corresponding action formalism. We also discuss semantic and computational problems in natural extensions of our framework.

1 Introduction

Action formalisms such as the Situation Calculus (SitCalc) use full first-order logic for describing the state of the world, and the pre- and post-conditions of actions [12]. Consequently, reasoning in such formalisms is undecidable. In contrast, the propositional variants of these formalisms enjoy decidability, but are rather restricted in expressive power. This dichotomy raises the obvious question whether some compromise between the two extremes can be found: an action formalism that offers more expressivity than propositional logic for describing world states and pre- and post-conditions of actions, but for which reasoning is still decidable.

Description Logics (DLs) are a well-known family of knowledge representation formalisms that may be viewed as fragments of first-order logic (FO). The main strength of DLs is that they offer considerable expressive power going far beyond propositional logic, while reasoning is still decidable [3]. In this paper, we make an
initial proposal for an action formalism in which the state of the world and the pre-
and post-conditions can be described using DL concepts. The proposal is generic in
the sense that our framework can be instantiated with many standard DLs. We show
that our action formalism can be viewed as a fragment of the Situation Calculus and
thus inherits SitCalc’s well-established solution of the frame problem [11]. Concern-
ing reasoning, we focus on the basic tasks of executability and projection, which are
mutually polynomially reducible in our framework. We exhibit a close connection
between projection in our formalism instantiated with a description logic \mathcal{L}, and stan-
dard DL reasoning tasks in a moderate extension of \mathcal{L}. More precisely, we show that
projection in \mathcal{L} can be polynomially reduced to ABox consistency in \mathcal{LO}, the exten-
sion of \mathcal{L} with nominals. This reduction allows us to prove decidability and upper
complexity bounds for executability and projection in our action formalism instan-
tiated with a large number of standard DLs. Thus, we give a positive answer to the
question whether there exists a decidable compromise between propositional and FO
action theories. To pinpoint the exact computational complexity of our formalism, we
show that, in a certain sense, the reduction mentioned above can be reversed: standard
DL reasoning in \mathcal{LO} can polynomially be reduced to projection in \mathcal{L}. In particular,
this means that the additional computational complexity (sometimes) caused by the
introduction of nominals cannot be avoided. By combining the two reductions, we
obtain tight complexity bounds for projection in many standard DLs, where the com-
plexity ranges from PSPACE-complete to co-NExpTime-complete.

We also consider some natural extensions of our basic formalism and point out
some of the problems encountered with these extensions. In particular, we show that
admitting more powerful post-conditions leads to undecidability of the basic reason-
ing problems. Due to space constraints, all proofs and a more detailed discussion
of the relationship to the situation calculus, and our original motivation by Semantic
Web services must be omitted. They can be found in the accompanying technical
report [2].

2 Describing actions

The action formalism proposed in this paper is not restricted to a particular DL. How-
ever, for our complexity results we consider the DL \mathcal{ALCQIO} and a number of its
sublanguages, see [3] for the definition of their syntax and semantics. We repeat here
only the following basic definitions: A concept definition is an identity of the form
$A \equiv C$, where A is a concept name and C an \mathcal{ALCQIO}-concept. A TBox T is a
finite set of concept definitions with unique left-hand sides. Concept names occurring
on the left-hand side of a definition of T are called defined in T whereas the others
are called primitive in T. The TBox T is acyclic iff there are no cyclic dependencies
between the definitions.

An ABox assertion is of the form $C(a)$, $s(a, b)$ or $\neg s(a, b)$, where a, b are object
names, \(C \) is a concept, and \(s \) a role name.

Definition 1 (Action). Let \(T \) be an acyclic TBox. An \textit{atomic action} \(\alpha = (\text{pre}, \text{occ}, \text{post}) \) for \(T \) consists of

- a finite set \(\text{pre} \) of ABox assertions, the \textit{pre-conditions};
- a finite set \(\text{occ} \) of \textit{occlusions} of the form \(A(a) \) or \(s(a,b) \), with \(A \) a primitive concept in \(T \), \(s \) a role name, and \(a, b \) object names;
- a finite set \(\text{post} \) of \textit{conditional post-conditions} of the form \(\varphi/\psi \), where \(\varphi \) is an ABox assertion and \(\psi \) is a \textit{primitive literal for} \(T \), i.e., an ABox assertion \(A(a) \), \(\neg A(a) \), \(s(a,b) \), or \(\neg s(a,b) \) with \(A \) a primitive concept name in \(T \) and \(s \) a role name.

A \textit{composite action} for \(T \) is a finite sequence \(\alpha_1, \ldots, \alpha_k \) of atomic actions for \(T \).

Intuitively, the pre-conditions specify under which conditions the action is applicable. The post-condition \(\varphi/\psi \) says that, if \(\varphi \) is true before executing the action, then \(\psi \) should be true afterwards. By the law of inertia, only those facts that are forced to change by the post-conditions should be changed by applying the action. However, it is well-known that enforcing this minimization of change strictly is sometimes too restrictive [13]. The rôle of occlusions is to indicate those primitive literals that can change arbitrarily.

To illustrate the definition of actions, consider the actions of opening a bank account and applying for child benefit in the UK. Suppose the pre-condition of opening a bank account \(b \) is that the customer \(a \) is eligible for a bank account in the UK and holds a proof of address. Moreover, suppose that, if a letter from the employer is available, then the bank account comes with a credit card, otherwise not. This can be formalised by the following action \(\alpha_1 \), for which the set of occlusions is empty:

\[
\begin{align*}
\text{pre}_1 : & \quad \{ \text{Eligible_bank}(a), \exists \text{holds_Proof_address}(a) \} \\
\text{post}_1 : & \quad \{ \top(a)/\text{holds}_a, \exists \text{Letter}(a)/\text{B_acc_credit}(b), \neg \exists \text{Letter}(a)/\text{B_acc_no_credit}(b) \}
\end{align*}
\]

Suppose that a person \(a \) can apply for child benefit in the UK if one has a child \(c \) and a bank account. The action \(\alpha_2 \) that offers this application then looks as follows, where again the set of occlusions is empty:

\[
\begin{align*}
\text{pre}_2 : & \quad \{ \text{parent_of}(a,c), \exists \text{holds_B_acc}(a) \} \\
\text{post}_2 : & \quad \{ \top(a)/\text{receives_c_benef_for}(a,c) \}
\end{align*}
\]

\(^1\)Note that, in reasoning about actions, \textit{composite actions} are usually constructed using sequencing, if-then-else and while. Our composite actions are constructed using only sequencing, and are thus much more constrained.
The meaning of the concepts used in α_1 and α_2 are defined in the following acyclic TBox T:

\[
\begin{align*}
\{\text{Eligible_bank}\} & \equiv \exists \text{permanent_resident}\{\text{UK}\}, \\
\text{Proof_address} & \equiv \text{Electricity_contract} \sqcup \text{Gas_bill}, \\
\text{B_acc} & \equiv \text{B_acc_credit} \sqcup \text{B_acc_no_credit}\.
\end{align*}
\]

When defining the semantics of actions, we assume that states of the world correspond to interpretations. Thus, the semantics of actions can be defined by means of a transition relation on interpretations. Let T be an acyclic TBox, $\alpha = (\text{pre, occ, post})$ an action for T, and I an interpretation. For each primitive concept name A and role name s, set:

\[
\begin{align*}
A^+ & := \{b^T | \varphi/A(b) \in \text{post and } I \models \varphi\} \\
A^- & := \{b^T | \varphi/\neg A(b) \in \text{post and } I \models \varphi\} \\
I_A & := (\Delta^T \setminus \{b^T | A(b) \in \text{occ}\}) \cup (A^+ \cup A^-) \\
s^+ & := \{(b^T, b^T) | \varphi/s(a, b) \in \text{post and } I \models \varphi\} \\
s^- & := \{(b^T, b^T) | \varphi/\neg s(a, b) \in \text{post and } I \models \varphi\} \\
I_s & := ((\Delta^T \times \Delta^T) \setminus \{(a^T, b^T) | s(a, b) \in \text{occ}\}) \cup (s^+ \cup s^-)
\end{align*}
\]

The transition relation on interpretations should ensure that $A^+ \subseteq A^T$ and $A^- \cap A^T = \emptyset$ if J is the result of applying α in I, and likewise for role names. It should also ensure that nothing else changes, with the possible exception of the occluded literals. Intuitively, the part of A^T that is not subject to occlusions is described by I_A, and similarly for s^T and I_s. Since we restrict our attention to acyclic TBoxes, for which the interpretation of defined concepts is uniquely determined by the interpretation of primitive concepts and role names, it is not necessary to consider defined concepts when defining the transition relation.

Definition 2. Let T be an acyclic TBox, $\alpha = (\text{pre, occ, post})$ an action for T, and I, I' models of T sharing the same domain and agreeing on the interpretation of all object names. We say that α *may transform* I to I' $(I \Rightarrow^T_\alpha I')$ iff, for each primitive concept A and role name s, we have

\[
A^+ \cap A^- = s^+ \cap s^- = \emptyset, \quad A^T \cap I_A = ((A^T \cup A^+) \setminus A-) \cap I_A, \quad \text{and} \\
(s^T \cap I_s = ((s^T \cup s^+) \setminus s^-) \cap I_s.
\]

The composite action $\alpha_1 \ldots \alpha_k$ *may transform* I to I' $(I \Rightarrow^T_{\alpha_1 \ldots \alpha_k} I')$ iff there are models I_0, \ldots, I_k of T with $I = I_0$, $I' = I_k$, and $I_{i-1} \Rightarrow^T_{\alpha_i} I_i$ for $1 \leq i \leq k$.

Note that this definition does not check whether the action is indeed executable, i.e., whether the pre-conditions are satisfied. It just says what the result of applying the action is, irrespective of whether it is executable or not.

Due to the fact that we are working with acyclic TBoxes, for actions with empty occlusions there cannot exist more than one I' such that $I \Rightarrow^T_{\alpha} I'$. Thus, such actions...
are deterministic. If there are post-conditions $\varphi_1/\psi, \varphi_2/\neg\psi \in \text{post}$ such that both φ_1 and φ_2 are satisfied in \mathcal{I}, then there is no successor model \mathcal{I}'. In this case, we say that the action is inconsistent with \mathcal{I}.

We are now ready to define reasoning problem for actions. Assume that we want to apply a composite action $\alpha_1, \ldots, \alpha_k$ for the acyclic TBox \mathcal{T}. Usually, we do not have complete information about the world, i.e., the model \mathcal{I} of \mathcal{T} is not known completely. All we know are some facts about this world: we have an ABox \mathcal{A}, and all models of \mathcal{A} together with \mathcal{T} are considered to be possible states of the world. In the following, we always assume that \mathcal{A} is consistent w.r.t. \mathcal{T}.

Before trying to apply the action, we want to know whether it is indeed executable, i.e., whether all pre-conditions are satisfied in the states of the world considered possible. If the action is executable, we want to know whether applying it achieves the desired effect, i.e., whether an assertion that we want to make true really holds after executing the action. These two problems are called executability and projection [12].

Definition 3 (Reasoning problems). Let \mathcal{T} be an acyclic TBox, $\alpha_1, \ldots, \alpha_k$ a composite action for \mathcal{T} with $\alpha_i = (\text{pre}_i, \text{occ}_i, \text{post}_i)$, and \mathcal{A} an ABox.

- **Executability**: The composite action $\alpha_1, \ldots, \alpha_k$ is executable in \mathcal{A} w.r.t. \mathcal{T} iff the following conditions are true for all models \mathcal{I} of \mathcal{A} and \mathcal{T}:
 - $\mathcal{I} \models \text{pre}_1$
 - for all i with $1 \leq i < k$ and all interpretations \mathcal{I}' with $\mathcal{I} \Rightarrow_{\alpha_1, \ldots, \alpha_i} \mathcal{I}'$, we have $\mathcal{I}' \models \text{pre}_{i+1}$.

- **Projection**: The assertion φ is a consequence of applying $\alpha_1, \ldots, \alpha_k$ in \mathcal{A} w.r.t. \mathcal{T} iff, for all models \mathcal{I} of \mathcal{A} and \mathcal{T}, and all \mathcal{I}' with $\mathcal{I} \Rightarrow_{\alpha_1, \ldots, \alpha_k} \mathcal{I}'$, we have $\mathcal{I}' \models \varphi$.

Note that executability alone does not guarantee that we cannot get stuck while executing a composite action: it may be that the action to be applied is inconsistent with the current interpretation. This cannot happen if we additionally know that all actions α_i are consistent with \mathcal{T} in the following sense: α_i is not inconsistent with any model \mathcal{I} of \mathcal{T}. Given the definition of consistency with a model, it is not difficult to see that this is the case iff $\{\varphi_1/\psi, \varphi_2/\neg\psi\} \subseteq \text{post}_i$ implies that the ABox $\{\varphi_1, \varphi_2\}$ is inconsistent w.r.t. \mathcal{T}. Thus, consistency of an action w.r.t. \mathcal{T} can be reduced to standard DL reasoning. It is interesting to note that, in the Situation Calculus, a corresponding consistency condition has to be imposed when compiling positive and negative effect axioms into successor state axioms [12].

In our example, both actions are consistent with \mathcal{T}. Given an ABox \mathcal{A} that says that customer a is a permanent resident of the UK and has an electricity contract as well as a child c, the composite action α_1, α_2 is executable, and

$\text{receives}_c\text{benef}_c(a, c)$

is a consequence of applying α_1, α_2 in \mathcal{A}. The presence of the TBox is crucial here.
Note that our action formalism is restricted to ground actions, i.e., actions where the input parameters have already been instantiated by individual names. Parametric actions, which contain variables in place of individual names, should be viewed as a compact representation of all its ground instances, i.e., all the ground actions obtained by replacing variables with individual names. It is outside the scope of this paper to consider parametric actions in detail. In fact, the reasoning tasks executability and projection are only meaningful for ground actions.

3 Deciding executability and projection

In this section, we determine the exact complexity of executability and projection for composite actions expressed in various sublanguages of ALCQIO. In these results, we assume unary coding of numbers in number restrictions. Throughout this section, we assume that all actions are consistent with their TBox. The following is shown in [2].

Lemma 4. Executability and projection can be mutually reduced in polynomial time.

Thus, we can restrict the attention to the projection problem. Basically, we solve this problem by an approach that is similar to the regression operation used in the situation calculus approach [12]. However, we take care that the theory we obtain can again be expressed by a description logic TBox and ABox. This way, projection is reduced to a standard reasoning problem in DL, from which we obtain our decidability results and upper complexity bounds. Interestingly, we cannot always stay within the DL we started with since we need to introduce nominals. Given a DL \mathcal{L}, we use \mathcal{L}^\ominus to denote its extension with nominals.

Theorem 5. Let $\mathcal{L} \in \{\text{ALC}, \text{ALCI}, \text{ALCO}, \text{ALCIO}, \text{ALCQ}, \text{ALCQO}, \text{ALCQI}, \text{ALCQIO}\}$. Then projection of composite actions formulated in \mathcal{L} can be reduced in polynomial time to non-inconsistency in \mathcal{L}^\ominus of an ABox relative to an acyclic TBox.

We only give a brief sketch of the proof (see [2] for details). For simplicity, we restrict ourselves to the case of an atomic action without occlusions. The reduction sketched in what follows can easily be extended to actions with occlusions [2]. We reduce the complement of projection in \mathcal{L} to the consistency problem for ABoxes in \mathcal{L}^\ominus (and thus projection in \mathcal{L} to non-consistency in \mathcal{L}^\ominus), where \mathcal{L} is one of the languages from Theorem 5.

Given an ABox \mathcal{A}, an acyclic TBox \mathcal{T}, an action $\alpha = (\text{pre}, \emptyset, \text{post})$, and an ABox assertion φ (all formulated in \mathcal{L}), we construct a new TBox \mathcal{T}_r, a new ABox \mathcal{A}_r, and a new assertion φ_r (all formulated in \mathcal{L}^\ominus) such that the following are equivalent:

1. There exist models $\mathcal{I}, \mathcal{I}'$ of \mathcal{T} s.t. \mathcal{I} satisfies \mathcal{A}, \mathcal{I}' satisfies $\lnot \varphi$ and $\mathcal{I} \models^\mathcal{I}_\alpha \mathcal{I}'$.
2. $\mathcal{A}_r \cup \{\lnot \varphi_r\}$ is consistent w.r.t. \mathcal{T}_r.
Obviously, 1. means that \(\varphi \) is not a consequence of applying \(\alpha \) in \(A \) w.r.t. \(T \).

We now describe the general idea underlying the construction of \(T_r \) and \(A_r \). The goal is to simulate transformations \(I \Rightarrow T \alpha I \) with \(I \models A \) and \(I' \not\models \varphi \) within a single interpretation \(J \), which is a model of \(T_r \) and \(A_r \cup \{ \neg \varphi_r \} \). Thus, \(J \) needs to encode two interpretations \(I \) and \(I' \). To this end, for every concept name \(A \) and role name \(r \) we introduce new primed versions \(A' \) and \(r' \). Then, the \(J \)-interpretation of the unprimed concept and role names corresponds to \(I \), and the \(J \)-interpretation of the primed concept and role names corresponds to \(I' \). Let \(T', \varphi' \) be the version of \(T, \varphi \) obtained by replacing concept and role names with their primed counterparts. We construct \(T_r \) such that it contains \(T \) and (a modification of) \(T' \): before and after the execution of the action, the TBox should be satisfied. Also, \(\varphi_r \) is simply \(\varphi' \), and \(A_r \) contains (the non-primed) \(A \): before execution of \(\alpha \), \(A \) should be satisfied.

Additional effort is required to describe how the interpretation of the primed versions of concepts and roles is obtained from the interpretation of the unprimed ones. Intuitively, this task is split into two parts: (i) describe the evolution of the named elements, i.e., elements \(x \in \Delta_I \) such that \(a^I = x \) for some individual name \(a \); and (ii) describe the evolution of the unnamed elements. Roughly, (i) can be achieved by adding additional statements to \(A_r \) that can be derived straightforwardly from Definition 2. To achieve (ii), the TBox \(T' \) is contained in \(T_r \) in a strongly modified form. In this modified version of \(T' \), we distinguish named elements from unnamed ones. This, in turn, can be achieved by making intense use of nominals. All this can be achieved using only constructors from \(T, A, \) and \(ALCO \).

Theorem 6. Projection and executability of composite actions is

- PSpace-complete for \(ALC, ALCO, ALCQ, ALCQO \);
- ExpTime-complete for \(ALCI, ALCIO \);
- co-NExpTime-complete for \(ALCQI, ALCQIO \).

The complexity upper-bounds follow from Theorem 5 together with either known results for ABox consistency w.r.t. an acyclic TBox or results shown in the long version of this paper [2]:

- ABox consistency in \(ALCO \) and \(ALCQO \) w.r.t. acyclic TBoxes is PSpace-complete [2].
- ABox consistency in \(ALCIO \) w.r.t. acyclic TBoxes is ExpTime-complete [1];
- ABox consistency in \(ALCQIO \) w.r.t. acyclic TBoxes is NExpTime-complete [17].

It is easy to obtain matching lower-bounds for those DLs \(L \) where the complexity of ABox consistency w.r.t. an acyclic TBox is the same in \(L \) and in \(LO \). In fact, it suffices to note that we can easily reduce ABox non-consistency in \(L \) to projection
in \mathcal{L}: \mathcal{A} is inconsistent w.r.t. \mathcal{T} iff $\neg \top$ is a consequence of applying the empty action $\langle \emptyset, \emptyset, \emptyset \rangle$ in \mathcal{A} w.r.t. \mathcal{T}.

This argument does not provide matching lower bounds for ALCI and ALCQI since, for these DLs, adding nominals increases the complexity of the ABox consistency problem. However, for $\mathcal{L} \in \{\text{ALCI}, \text{ALCQI}\}$, we may establish such bounds by reducing unsatisfiability of \mathcal{LO} concepts (w.r.t. the empty TBox) to projection in \mathcal{L}. Intuitively, this result shows that the additional complexity caused by the introduction of nominals in the reduction of projection to ABox inconsistency cannot be avoided.

Theorem 7. There exists an ABox \mathcal{A} and an atomic action α formulated in ALCI (ALCQI) such that the following tasks are ExpTime-hard (co-NExpTime-hard):

- decide whether φ is a consequence of applying α in \mathcal{A};
- decide whether $\alpha, \langle \{\neg D_C(a)\}, \emptyset, \emptyset \rangle$ is executable in \mathcal{A}.

The complexity of the satisfiability problem in ALCIO (ALCQIO) is already ExpTime-hard (NExpTime-hard) if only a single nominal is available and the TBox is empty [1, 17]. Thus, it is enough to show that unsatisfiability of an ALCIO-concept (ALCQIO-concept) C that contains only a single nominal $\{n\}$ can be reduced to the projection/executability problem in ALCI (ALCQI) as stated in the theorem. For the reduction, we reserve a concept name O and a role name u that do not occur in C. Let $\text{rol}(C) := \{r, r^- \mid r \in \mathbb{N}_R \text{ used in } C\}$ and let $C[O/\{n\}]$ denote the result of replacing the nominal $\{n\}$ in C with the concept name O. We define an ABox \mathcal{A}_C, an atomic action $\alpha = (\emptyset, \emptyset, \text{post}_\alpha)$, and a concept D_C as follows:

$$
\mathcal{A}_C := \{\neg O \cap \forall u. \neg O \cap \forall u. \bigwedge_{r \in \text{rol}(C)} \forall r. \exists u. \neg O\} \quad \text{post}_\alpha := \{\top(a) / O(a)\} \quad D_C := \exists u. C[O/\{n\}] \cap (\forall u. \bigwedge_{r \in \text{rol}(C)} \forall r. \exists u. \neg O)
$$

Theorem 7 immediately follows from the next lemma.

Lemma 8. The following statements are equivalent:

1. C is satisfiable.
2. $\neg D_C(a)$ is not a consequence of applying α in \mathcal{A}_C.
3. the composite action $\alpha, \langle \{\neg D_C(a)\}, \emptyset, \emptyset \rangle$ is not executable in \mathcal{A}_C.

A detailed proof of this lemma can be found in [2]. Here, we only sketch the underlying intuitions for why Point 2 implies Point 1. Let \mathcal{I} and \mathcal{I}' be models witnessing that $\neg D_C(a)$ is not a consequence of applying α, i.e., $\mathcal{I} \models \mathcal{A}_C, \mathcal{I} \not\models_\alpha \mathcal{I}'$, and $\mathcal{I}' \models D_C(a)$. Then the following holds:
• By the first conjunct of (the concept in) \(A \) and the post-condition of \(\alpha \), the only difference between \(I \) and \(I' \) is that \(a^I = a^{I'} \in O^{I'} \setminus O^I \).

• Using the first and third conjunct of \(A \) together with the post-condition and the second conjunct of \(D \), it can be shown that \((a^I, x) \in u^I = u^{I'} \) for each \(x \) from the relevant part \(\text{rel} \) of \(\Delta^I \), where \(\text{rel} \) is defined as the smallest set that contains all \(a^I \)-successors of \(a^I \) and is closed under taking successors for the roles from \(\text{rol}(C) \).

• Thus, the second conjunct of \(A \) ensures that \(O^{I'} \cap (\text{rel} \cup \{a^I\}) = \{a^I\} \).

• Due to the first conjunct of \(D \), \(C[O/\{n\}] \) is satisfied in the restriction of \(I' \) to \(\text{rel} \cup \{a^I\} \). By the previous item, the concept name \(O \) behaves like a nominal there.

4 Problematic extensions

The purpose of this section is to explain why we have adopted the following restrictions in our current approach:

1. we only allow for acyclic TBoxes rather than arbitrary (also cyclic) ones, or even so-called general concept inclusions (GCIs);

2. in post-conditions \(\varphi/C(a) \), we require \(C \) to be a primitive concept or its negation, rather than admitting arbitrary concepts.

Removing the first restriction in a naive way leads to semantic problems. In fact, if the TBox is cyclic, then it is no longer the case that the interpretation of the primitive concepts and the role names uniquely determines the interpretation of the defined concepts. This can lead to very unintuitive results. For example, consider the following ABox and TBox:

\[\mathcal{A} := \{\text{Dog}(a)\} \quad \text{and} \quad \mathcal{T} := \{\text{Dog} \equiv \exists \text{parent.Dog}\} \]

Then, \(\text{Dog}(a) \) is not a consequence of applying the action \(\alpha = (\emptyset, \emptyset, \{\top(b)/\text{Cat}(b)\}) \) in \(\mathcal{A} \) w.r.t. \(\mathcal{T} \). The reason is that the transition relation \(\Rightarrow^\mathcal{T} \) only restricts the interpretation of primitive concepts and role names. The concept Dog is defined, and interpreting it as the empty set yields a model of \(\mathcal{T} \) (see [2] for more details regarding this kind of problems). One could try to modify Definition 2 such that it also deals with defined concepts. However, a naive attempt to do this would lead to serious semantic problems well-known in the reasoning about actions community [5].

One approach for integrating cyclic TBoxes into our approach could be to adopt a fixpoint semantics [10]. Under such a semantics, the interpretation of the defined
concept names is still uniquely determined by the interpretation of the primitive concept names and role names. Concerning the (more natural) descriptive semantics, one may try to adopt the approaches developed for dealing with state constraints in the situation calculus [6, 7, 15, 9]. Details are left for future work.

We also encounter semantic problems when removing the second restriction. In particular, admitting arbitrary concepts in post-conditions means that we can no longer give a straightforward semantics as in Definition 2. One possible way to obtain a semantics for actions with complex post-conditions is to adopt the possible models approach (PMA) initially proposed in [18]. The formal definition of such a semantics can be found in [2]. Unfortunately, adopting the PMA semantics results in two problems. The first problem is again of a semantic nature: using complex concepts in post-conditions under PMA results in massive non-determinism. Such non-determinism requires special mechanisms to be used meaningfully, e.g. based on notions of causality [16, 8]. It seems unlikely that a suitable mechanism can be found for the case of arbitrary concepts as post-conditions.

Second, we now also have algorithmic problems: the basic reasoning tasks are not decidable anymore. Let a generalized action be an action where post-conditions are of the form φ/ψ for arbitrary ABox assertions φ and ψ.

Theorem 9. Executability and projection are undecidable for generalized actions in \mathcal{ALCQI} under PMA semantics.

This result is proved in [2] by showing that there exist a fixed generalized action α formulated in \mathcal{ALCQI}^2 and a fixed ABox A such that, given a concept C, it is undecidable whether $C(a)$ is a consequence of applying α in A w.r.t. the empty TBox. The proof is by a non-trivial reduction of the domino problem.

5 Conclusion

In this paper, we have proposed an initial framework for integrating DLs and action formalisms into a decidable hybrid. In particular, our framework allows the use of DL concepts for describing the state of the world, and the pre- and post-conditions of actions. Our main technical result is that the computational complexity of projection and executability coincides with the complexity of ABox inconsistency in the underlying DL extended with nominals.

As this work is only a first proposal, there is room for extensions in several directions. We only note two options: firstly, it is clearly desirable to identify a semantics that overcomes the problems with cyclic TBoxes and GCIs laid out in the previous section. And secondly, one may attempt to carefully enhance the expressive power

\footnote{Even in its fragment \mathcal{ALCFI} where only the numbers zero and one may be used inside number restrictions.}
of post-conditions without running into the troubles obtained by admitting arbitrary concepts as post-conditions.

References

