
Text, XML, and Multimedia

Information Retrieval

Arjen P. de Vries

arjen@acm.org

EDBT Summer School 2007

Centrum voor Wiskunde en Informatica

Outline

• Information Retrieval (IR)

• The Language Modeling Approach

• Text Retrieval

• XML Retrieval

• Multimedia Retrieval

• Integration of IR and DB

Information Retrieval

IR is about satisfying vague
information needs provided by users,
(imprecisely specified in ambiguous
natural language) by satisfying them
approximately against information

provided by authors (specified in the
same ambiguous natural language)

(Alan Smeaton)

 Information Retrieval

Acquisition
documents, objects

Problem
information need

Representation
indexing, ...

Representation
question

File organization
indexed documents

Query
search formulation

Matching
searching

Retrieved objects

f
e
e
d
b

a
c
k

System User

Data vs. Information Retrieval
(Keith van Rijsbergen)

• Data Retrieval

– Deductive

– Attributes are necessary and sufficient for
class membership

• Information Retrieval

– Inductive

– No attribute is necessary nor sufficient to
judge relevance

• Document representation

– E.g., bag-of-words

• Query formulation

– E.g., reformulation after relevance feedback

• Ranking function

– E.g., vector space model,

Retrieval Model

Evaluation

• As opposed to DB research, measuring

success in IR can only be done

experimentally, not analytically!

• ‘Laboratory experiments’ are done with

Test Collections (e.g., TREC)

– Triples of topic, document collection and

relevance assessments

Measures

• Precision

– fraction of retrieved documents that is relevant

• Recall

– fraction of relevant documents that is retrieved

• Average Precision

– precision averaged over different levels of

recall

• Mean Average Precision (MAP)

– mean of average precision over all queries

The Language Modeling

Approach to IR

Generative Models

video of Bayesian model to that present the
disclosure can a on for retrieval in have is
probabilistic still of for of using this In that is to
only queries queries visual combines visual
information look search video the retrieval based
search. Both get decision (a visual generic
results (a difficult We visual we still needs,
search. talk what that to do this for with retrieval
still specific retrieval information a as model still

 LM
abstract

Generative Models…

• A statistical model for generating data

– Probability distribution over samples in a
given ‘language’

M

P (| M) = P (| M)

P (| M,)

P (| M,)

P (| M,)

© Victor Lavrenko, Aug. 2002

aka

 ‘Language Modelling’

• Basic question:

– What is the likelihood that this document is

relevant to this query?

• P(rel|I,Q) = P(I,Q|rel)P(rel) / P(I,Q)

… in Information Retrieval

• P(I,Q|rel) = P(Q|I,rel)P(I|rel)

‘Language Modelling’

• Guardian or Times?• Not just ‘English’

• But also, the

language of

– author

– newspaper

– text document

– image

‘Language Modelling’

• or ?• Not just English!

• But also, the

language of

– author

– newspaper

– text document

– image

Unigram and higher-order

models

• Unigram Models

• N-gram Models

• Other Models
– Grammar-based models, etc.

– Mixture models

= P () P (|) P (|) P (|)

P () P () P () P ()

P ()

P () P (|) P (|) P (|)

© Victor Lavrenko, Aug. 2002

The fundamental problem

• Usually we don’t know the model M

– But have a sample representative of that

model

• First estimate a model from a sample

• Then compute the observation probability

P (| M ())

M
© Victor Lavrenko, Aug. 2002

Indexing: determine models

•Indexing
– Estimate
Gaussian Mixture
Models from images
using EM

– Based on feature
vector with colour,
texture and position
information from
pixel blocks

– Fixed number of
components

Docs Models

Retrieval: use query likelihood

• Query:

• Which of the models is most likely to
generate these 24 samples?

Probabilistic Image Retrieval

?

Query

Rank by P(Q|M)

P(Q|M1)

P(Q|M4)

P(Q|M3)

P(Q|M2)

Topic Models
Models

P(Q|M1)

P(Q|M4)

P(Q|M3)

P(Q|M2)

Query

P(D1|QM)

P(D2|QM)

P(D3|QM)

P(D4|QM)

Documents

Query Model

Probabilistic Retrieval Model
• Text

– Rank using probability of drawing query terms
from document models

• Images
– Rank using probability of drawing query blocks

from document models

• Multi-modal
– Rank using joint probability of drawing query

samples from document models

Text Retrieval

• Unigram Language Models (LM)

– Urn metaphor

Text Models

• P() ~ P () P () P () P ()

 = 4/9 * 2/9 * 4/9 * 3/9

© Victor Lavrenko, Aug. 2002

Generative Models and IR

• Rank models (documents) by probability of
generating the query

• Q:

• P(|) = 4/9 * 2/9 * 4/9 * 3/9 = 96/94

• P(|) = 3/9 * 3/9 * 3/9 * 3/9 = 81/94

• P(|) = 2/9 * 3/9 * 2/9 * 4/9 = 48/94

• P(|) = 2/9 * 5/9 * 2/9 * 2/9 = 40/94

The Zero-frequency Problem

• Suppose some event not in our

example – very common when

sampling from natural language data

• Inferring zero probabilities is not correct,

– Especially when dealing with incomplete

samples

?

Smoothing

• Idea: shift part of probability mass to

unseen events

• Interpolation with background (‘general

English’)

– Reflects expected frequency of events

– Behaves like inverse document frequency

– ! +(1-!)

XML Retrieval

Document-Centric XML-IR

• Content-only (CO) queries

– Standard IR queries retrieving document

components instead of documents

• ‘Find me elements about…’

• Content-and-structure (CAS) queries

– Query expresses constraints on which

types of components are to be retrieved

– E.g., NEXI queries: ‘XPath + about’

•//article[about(.//sec, “databases

information retrieval")]

Common Approach at INEX

• About clauses are processed

independently, e.g., using the language

modeling approach to IR for text as

discussed before

• In CAS queries, the XPath constraints

are applied to the ranked elements – as

(usually weighted) filters

Example: TIJAH
//sec[about(.//p,

perfect bouquet)]//fig

XML-IR Retrieval Models

• Really a ‘combination of evidence’

problem, where the bits and pieces of

evidence come from different parts of

the XML tree

• Still not well understood

XML-IR Techniques

• Length priors

– Reward smaller elements for their relevancy

• Article weighting

– Reward elements in relevant articles

• Score propagation

– More general propagation of scores of related

elements than ‘just’ the article context

IR and DB

Still on the Research Agenda...

• Integration of data and information
retrieval

– DB: Data model, query language

– IR: Retrieval model

• Follow the database approach to the
management of data and of content

– Reduce implementation effort for search
applications!

Candidate Architectures

• IR retrieval model expressed as queries

on top of (relational) database system

• IR supported via user-defined functions

• Middleware layer on top of DB & IR

systems

Experimental Setup

• GOV2 Test Collection

– TREC Terabyte Track

– 25M web pages (.gov domain, 426GB)

– 50,000 queries (50 with relevance

assessments)

• Platform

– A ~USD 4000 Linux PC

– 3GHz P4, 4GB RAM, 1TB 12-disk RAID

IR on a DBMS in four steps

• Parsing

– Extract term occurrences within collection

• Index Creation

– Map IR data-structures to relational tables

• Document Ranking

– Map keyword search to relational queries

• IR-specific Optimizations

Parsing

• Remove markup and stop-words, and

apply standard Porter stemming

• Represent resulting tokens as 64-bit

integers

• Result:

– DT [docid, term] (12.4 Gtuples, ~140GB)

• Contains entry for each term occurrence!

– D [docid, name, length] (25 Mtuples)

Index Creation

• Create sorted index (inverted file):

– TD [term, docid, tf] (3.5 Gtuples, ~56 GB)
TD computation using DT

Aggr(

Sort(

Scan(DT, [docid, term]),

[term, docid])

[term, docid],

[tf = count()])

Example

14storage

23storage

71retrieval

………

102information

31information

………

tfdocidterm

Example: Boolean Retrieval

• “information AND (storage OR retrieval)”
Join(

ScanSelect(TD1=TD, TD1.term=‘information’),

OuterJoin(

ScanSelect(TD2=TD, TD2.term=‘storage’),

ScanSelect(TD3=TD, TD3.term=‘retrieval’),

TD2.docid = TD3.docid)

),

TD1.docid = OuterJoinResult.docid

)

Example: Probabilistic IR

• E.g., Okapi BM25

– frequency of term within document (tf)

– #documents containing term (df)

– length of document (doclen)

Additional Tables

• Document table:
D[docid, docname, doclen]

– We already had this from parsing

• Term table (vocabulary):
T[term, df]

– For each unique term, store the number of

documents containing that term (df)

BM25 Query

TopN(

 Project(

 Join(

 OuterJoin(

 ScanSelect(TD1=TD, TD1.term=t1_term),

 ScanSelect(TD2=TD, TD2.term=t2_term)

 TD1.docid=TD2.docid),

 Scan(D),

 D.docid=(TD1.docid OR TD2.docid))

 [D.docname,score=BM25(TD1.tf,D.doclen,t1_df)

 +BM25(TD2.tf,D.doclen,t2_df)]

),

 [score DESC],

 20

)

Reality Check

• Search engine companies as well as

TREC Terabyte Track participants use

customized IR systems

– Highly optimized Inverted indices for

document retrieval

• Traditional DBMSs are not suited for

their data management requirements!

– Inefficient and/or resource consuming

X100 DBMS Architecture

• Our prototype system (called X100)
deviates from traditional database
architecture in two ways:

– Vectorized processing

– Light-weight compression

• Additional factors

– Algebra-level interface

– Extremely cache-conscious

– Scripting, for iterative algorithms

Volcano Iterator Model

• Each relational operator has its own

class, with open(), next(), and close()

interface

• This results in tuple-at-a-time

processing

!DBMS bad at filling pipelines

Tuple-at-a-time Primitives

void

mult_int_val_int_val(

 int *res, int l, int r)

{

 *res = l * r;

}

*(int,int): int

15 cycles-per-tuple

+ function call cost (~20cycles)

Total: ~35 cycles per tuple

LOAD reg0, (l)

 LOAD reg1, (r)

MULT reg0, reg1

STORE reg0,(res)

X100: Vectorized Processing

• Instead of single tuples, entire vectors

(1-dimensional arrays) are passed

through the Volcano pipeline

• Each operator boils down to a

sequential loop over aligned input

arrays, which will benefit from loop

pipelining

X100: Vectorized Primitives

void

map_mult_int_col_int_col(

 int _restrict_*res,

 int _restrict_*l,

 int _restrict_*r,

 int n)

{

 for(int i=0; i<n; i++)

res[i] = l[i] * r[i];

}

*(int,int): int ! *(int[],int[]) : int[]

Pipelinable

loop

X100: Vectorized Primitives

void

map_mult_int_col_int_col(

 int _restrict_*res,

 int _restrict_*l,

 int _restrict_*r,

 int n)

{

 for(int i=0; i<n; i++)

res[i] = l[i] * r[i];

}

Pipelined loop, by C compiler

LOAD reg0, (l+0)

LOAD reg1, (r+0)

 LOAD reg2, (l+1)

 LOAD reg3, (r+1)

 LOAD reg4, (l+2)

 LOAD reg5, (r+2)

MULT reg0, reg1

 MULT reg2, reg3

 MULT reg4, reg5

STORE reg0, (res+0)

 STORE reg2, (res+1)

 STORE reg4, (res+2)

X100: Vectorized Primitives
Estimated throughput

LOAD reg8, (l+4)

 LOAD reg9, (r+4)

MULT reg4, reg5

 STORE reg0, (res+0)

LOAD reg0, (l+5)

 LOAD reg1, (r+5)

MULT reg6, reg7

 STORE reg2, (res+1)

LOAD reg2, (l+6)

 LOAD reg3, (r+6)

MULT reg8, reg9

 STORE reg4, (res+2)

2 cycles per tuple

1 function call (~20 cycles)

per vector (i.e. 20/100)

Total: 2.2 cycles per tuple

Varying vector size (TPC-H Q1)

RDBMS

X100

MonetDB

low IPC,

overhead

RAM

 bandwidth

bound

Results: Boolean Retrieval

" Fast but highly ineffective…

Results: Probabilistic IR

" Effective, but relatively slow…

" OuterJoin generates large results,

causing high processing overhead

IR Optimization: Two-Pass

• [Broder et al., 2003]:

– Documents containing many of the query terms

are likely to score high

• First pass use Join instead of OuterJoin

– Conjunctive, so more restrictive

• Second pass using OuterJoin, only if first

pass did not return enough results

– Disjunctive, so many results

– Needed for ~15 percent of TREC queries

Other (IR) Optimizations

• Term-document-score materialization

and quantization

• Light-weight compression

• Dynamic index pruning [Turtle & Flood, 1995]

– Query terms are processed one at a time,

in order of increasing frequency (df)

– Prune docs with

score < topScores[r] – availScore

With All Optimizations

IR & DB conclusion

• Competitive IR performance can be

achieved on a DBMS…

• … but only if the DBMS takes modern

hardware considerations into account

• Also: IR-specific optimizations must be

applied

Multimedia Retrieval

Indexing Multimedia

• Manually added descriptions
– ‘Metadata’

• Analysis of associated data
– Speech, captions, OCR, auto-cues, …

• Content-based retrieval
– Approximate retrieval

– Domain-specific techniques

Limitations of Metadata

• Vocabulary problem

– Dark vs. somber

• Different people describe different

aspects

– Dark vs. evening

Limitations of Metadata

• Encoding Specificity Problem

– A single person describes different aspects

in different situations

• Many aspects of multimedia simply

cannot be expressed unambiguously

– Processes in left (analytic, verbal) vs. right

brain (aesthetics, synthetic, nonverbal)

Approximate Retrieval

• Based on similarity

– Find all objects that are similar to this one

– Distance function

– Representations capture some (syntactic)

meaning of the object

• ‘Query by Example’ paradigm

N-dimensional
space

Feature extraction

Ranking

Display

Low-level Features

Low-level Features

Query image

Known Item

Query

Results

…

Query

Results

…

Observation

• Automatic approaches are successful

under two conditions:

– the query example is derived from the

same source as the target objects

– a domain-specific detector is at hand

Semantic gap…

raw multimedia data

features

concepts

?

Complicating Factors

• What are Good Feature Models?

• What are Good Ranking Functions?

• Queries are Subjective!

Image Models

• Urn metaphor not useful

– Drawing pixels useless
• Pixels carry no semantics

– Drawing pixel blocks not effective
• chances of drawing exact query blocks from document slim

• Use Gaussian Mixture Models (GMM)

– Fixed number of Gaussian

components/clusters/concepts

Key-frame representation

Query model

split

colour

channels

Take samples

CrCbY

DCT coefficients position

EM algorithm

675 9 12 11 1 9 4 1517 -9 -3 0 0 0 1 850 15 4 0 1 4 -2 1 1

661 7 13 5 -5 11 3 1536 2 -4 0 1 1 0 844 5 4 -2 0 1 -2 1 2

668 -7 13 3 -3 0 -1 1534 0 -5 0 0 0 0 837 3 3 -3 0 -2 1 1 3

665 10 11 2 4 5 2 1534 0 -5 0 0 0 0 829 0 3 -1 0 0 0 1 4

669 -5 18 7 -3 1 -5 1534 0 -5 0 0 0 0 833 -5 4 -1 0 3 -1 1 5

?

Image Models

• Expectation-Maximisation (EM) algorithm

– iteratively

• estimate component assignments

• re-estimate component parameters

Component 1 Component 2 Component 3

Expectation

Maximization

E

M

Expectation

Maximization
animation

Component 1 Component 2 Component 3

E

M

Testing the Model on Corel

• 39 classes, ~100 images each

• Build models from all images

• Use each image as query

– Rank full collection

– Compute MAP (mean average precision)

• AP=average of precision values after each

relevant image is retrieved

• MAP is mean of AP over multiple queries

– Relevant " from query class

Example results
Query:

Top 5:

MAP per Class (mean: .12)

• English Pub Signs .36

• English Country Gardens .33

• Arabian Horses .31

• Dawn & Dusk .21

• Tropical Plants .19

• Land of the Pyramids .19

• Canadian Rockies .18

• Lost Tribes .17

• Elephants .17

• Tigers .16

• Tropical Sea Life .16

• Exotic Tropical Flowers .16

• Lions .15

• Indigenous People .15

• Nesting Birds .13

• …

• …

• Sweden .07

• Ireland .07

• Wildlife of the Galapagos .07

• Hawaii .07

• Rural France .07

• Zimbabwe .07

• Images of Death Valley .07

• Nepal .07

• Foxes & Coyotes .06

• North American Deer .06

• California Coasts .06

• North American Wildlife .06

• Peru .05

• Alaskan Wildlife .05

• Namibia .05

Class confusion

• Query from class A

• Relevant " from class B

• Queries retrieve images from own class

• Interesting mix-ups
– Beaches – Greek islands

– Indigenous people – Lost tribes

– English country gardens – Tropical plants –

Arabian Horses

• Similar backgrounds

Background Matching
Query:

Top 5:

Background Matching
Query:

Top 5:

Other Approaches

• Generic Detectors

• Domain-specific Knowledge

• Collaborative Filtering

Retrieval Process
Database

Query
Parsing

Detector /
Feature
selection

Filtering Ranking

Query type
Nouns
Adjectives

Camera operations

People, Names

Natural/physical
objects

Monologues

Invariant

color spaces

.

.

.

.

Parameterized detectors

People detector
<1, 2, 3, many>

Example

‘Shots
with at
least

8 people’

Topic 41

Results

Detectors

Camera operations (pan, zoom, tilt, …)
People (face based)
Names (VideoOCR)
Natural objects (color space selection)
Physical objects (color space selection)
Monologues (specifically designed)
Press conferences (specifically designed)
Interviews (specifically designed)

Domain specific detectors

F
O
C
U
S

The universe and everything

Player Segmentation

 Original image Initial segmentation Final segmentation

Show clips from tennis matches,

starring Sampras,

 playing close to the net;

Advanced Queries

Collaborative Filtering

• Also: social information filtering

– Compare user judgments

– Recommend differences between similar users

• People’s tastes are not randomly distributed

• You are what you buy (Amazon)

Collaborative Filtering

• Benefits over content-based approach

– Overcomes problems with finding suitable
features to represent e.g. art, music

– Serendipity

– Implicit mechanism for qualitative aspects
like style

• Problems: large groups, broad domains

User-Item Relevance Models

Other Items that

the target user liked

Other users who liked

 the target itemTarget Item

Target User

R
el

ev
an

ce?

Item Representation

User Representation

Item Representation (Notation)

Query Items:

other Items that

the target user liked

Target Item

Target User

R
el

ev
an

ce

Item Representation

{ib}

im?

uk

User-Item Relevance Models
• Item representation

– Use items that I liked to represent the target user

– Assume these item ratings are independent

– Linear interpolation smoothing addresses sparsity

Co-occurrence popularity

User-Item Relevance Models
• Probabilistic justification of Item-based CF

– The RSV of a target item is the combination of its

popularity and its co-occurrence with items (query

items) that the target user liked.

Co-occurrence between target item and query item

Popularity of query item

User-Item Relevance Models
• Probabilistic justification of Item-based CF

– The RSV of a target item is the combination of its

popularity and its co-occurrence with items (query

items) that the target user liked

– Item co-occurrence should be emphasized if more

users express interest in target item as well as query

item

– However, item co-occurrence should be suppressed

when the popularity of the query item is high

User Representation

(Notation)

Other users who liked

 the target itemTarget Item

Target User

R
el

ev
an

ce

{ub}im?

uk

Co-occurrence between the target user and the other users

Popularity of the other users

User-Item Relevance Models
• Probabilistic justification of User-based CF

– The RSV of a target item towards a target user is

calculated by the target user’s co-occurrence with

other users who liked the target item

– User co-occurrence is emphasized if more items liked

by target user are also liked by the other user

– However, this co-occurrence should be suppressed

when this user liked many items

Summarizing

• Language Modeling Approach to IR

– Powerful formalism that has been applied
successfully to many retrieval problems

• Open issue:

– How do these various generative models
interrelate?

• E.g., how to take content and metadata into
account during collaborative filtering?

– How to handle structural knowledge?

Summarizing

• DB+IR

– Desirable now that IR models deal with

more than just bag-of-words

– Efficiency concerns may be addressed

• Open issue:

– Will progress in IR+DB really make IR

research easier?

Finally

• Many thanks to these colleagues for their

contributions to this tutorial:

– Thijs Westerveld

– Georgina Ramirez

– Roberto Cornacchia

– Marcin Zukowski, Sandor Héman and Peter Boncz

– Jun Wang

– Vojkan Mihajlovic and Djoerd Hiemstra

– Mounia Lalmas

