
 © Shasha, Bonnet 2002-2007

Database Tuning (part 1)

Philippe Bonnet, DIKU
 bonnet@diku.dk

Joint work with Dennis Shasha, NYU
and Alberto Lerner, Google Inc.

EDBT Summer School 2007

mailto:bonnet@diku.dk

What is Database Tuning?

Activity of making a database application run faster:
– Faster means higher throughput (or response
time)
– Avoiding transactions that create bottlenecks or
avoiding queries that run for hours unnecessarily is a
must.

.

Why Database Tuning?

● Troubleshooting:
– Make managers and users

happy given an application and
a DBMS

• Capacity Sizing:
– Buy the right DBMS given

application requirements and
OS/Hardware

• Application Programming:
– Coding your application for

performance

Application

DBMS

OS/Hardware

Why is Database Tuning hard?

The following query
runs too slowly

select *
from R
where R.a > 5;

What do you do?

PARSER
OPTIMIZER

EXECUTION
SUBSYSTEM

 DISK
SYBSYSTEM

CACHE
MANAGER

LOGGING
SUBSYSTEM

 LOCKING
SUBSYSTEM

NETWORKDISK/
CONTROLLERCPUMEMORY

sql commands

Tutorial Objectives

1. Tuning Principles
– Backed by experiments : How do tuning principles

impact performances on my system?
2. Troubleshooting Methodology:

– Troubleshooting (what is happening?)
– Hypothesis formulation

• What is the cause of the problem?
• Apply tuning principles to propose a fix

– Hypothesis verification (experiments)

Concurrency Control

● The CC scheduler cannot see the entire schedule:
– Sees one request at a time and decides whether to

allow it to be serviced
– Makes conflicts explicit

● Request lock on item before it is accessed (S,X, ...)
– Delays operations that are conflicting with non

committed operations
● Locking protocol: 2PL

Check the following web site for documentation About IBM DB2 locks
http://publib.boulder.ibm.com/infocenter/db2help/topic/com.ibm.db2.udb.doc/admin/c0005270.htm

Tuning Course Overview

1. Tuning the guts
a) Lock Tuning
b) Log Tuning
c) Storage Tuning
d) OS Tuning

2. Schema Tuning

3. Index Tuning
4. Query Tuning
5. API Tuning
6. Troubleshooting

Tutorial
 Part 1: Introduction and Lock Tuning
 Part 2: Index Tuning and Troubleshooting

 © Shasha, Bonnet 2002-2007

Concurrency Control Goals

● Performance goals
– Reduce blocking

● One transaction waits
for another to release
its locks

– Avoid deadlocks
● Transactions are

waiting for each other to
release their locks

● Correctness goals
– Serializability: each

transaction appears to
execute in isolation

– The programmer
ensures that serial
execution is correct.

 Trade-off between correctness and concurrency

 © Shasha, Bonnet 2002-2007

Ideal Transaction

● Acquires few locks and favors shared locks
over exclusive locks
– Reduce the number of conflicts -- conflicts are

due to exclusive locks
● Acquires locks with fine granularity

– Reduce the scope of each conflict
● Holds locks for a short time

– Reduce waiting

 © Shasha, Bonnet 2002-2007

Lock Tuning
● Transaction Chopping

– Rewriting applications to obtain best locking
performance

• Isolation Levels
– Relaxing correctness to improve performance

• Bottlenecks
– Using system features to circumvent bottlenecks

 © Shasha, Bonnet 2002-2007

Example: Simple Purchases

• Purchase item I for price P
1. If cash < P then roll back transaction (constraint)
2. Inventory(I) := inventory(I)+P
3. Cash := Cash – P

• Two purchase transaction P1 and P2
– P1 has item I for price 50
– P2 has item I for price 75
– Cash is 100

 © Shasha, Bonnet 2002-2007

Example: Simple Purchases

● If 1-2-3 as one transaction then one of P1,
P2 rolls back.

● If 1, 2, 3 as three distinct transactions:
– P1 checks that cash > 50. It is.
– P2 checks that cash > 75. It is.
– P1 completes. Cash = 50.
– P2 completes. Cash = - 25.

 © Shasha, Bonnet 2002-2007

Example: Simple Purchases

● Orthodox solution
– Make whole program a single transaction

● Cash becomes a bottleneck!
● Chopping solution

– Find a way to rearrange and then chop up the
transactions without violating serializability.

 © Shasha, Bonnet 2002-2007

Example: Simple Purchases

• Chopping solution:
1. If Cash < P then roll back.

Cash := Cash – P.
2. Inventory(I) := inventory(I) + P

• Chopping execution:
– P11: 100 > 50. Cash := 50.
– P21: 75 > 50. Rollback.
– P12: inventory := inventory + 50.

 © Shasha, Bonnet 2002-2007

Transaction Chopping

● Execution rules:
– When pieces execute, they follow the partial

order defined by the transactions.
– If a piece is aborted because of a conflict, it will

be resubmitted until it commits
– If a piece is aborted because of an abort, no

other pieces for that transaction will execute.

 © Shasha, Bonnet 2002-2007

Transaction Chopping

● Let T1, T2, …, Tn be a set of transactions.
A chopping partitions each Ti into pieces
ci1, ci2, …, cik.

● A chopping of T is rollback-safe if (a)T does
not contain any abort commands or (b) if
the abort commands are in the first piece.

 © Shasha, Bonnet 2002-2007

Correct Chopping
● Chopping graph (variation of the serialization

graph):
– Nodes are pieces
– Edges:

● C-edges: C stands for conflict. There is a C-edge between two
pieces from different transactions if they contain operations
that access the same data item and one operation is a write.

● S-edges: S stands for siblings. There is an S-edge between
two pieces, iff they come from the same transaction.

● A chopping graph contains an S-C cycle if it
contains a cycle that includes at least one S-edge
and one C-edge.

 © Shasha, Bonnet 2002-2007

Correct Chopping

● A chopping is correct if it is rollback safe
and its chopping graph contains no SC-
cycle.

T1: r(x) w(x) r(y) w(y)
T2: r(x) w(x)
T3: r(y) w(y)

T1

T2 T3

T11: r(x) w(x)
T12: r(y) w(y)

T11 T12

T3T2

S

C C

T11: r(x)
T12: w(x)
T13: r(y) w(y)

T12 T13

T3T2

S

C C

T11
S

C

CORRECT

NOT CORRECT

 © Shasha, Bonnet 2002-2007

Chopping Example

T1: RW(A) RW (B)
T2: RW(D) RW(B)
T3: RW(E) RW(C)
T4: R(F)
T5: R(E)
T6: R(A) R(F) R(D) R(B) R(E) R(G) R(C)

 © Shasha, Bonnet 2002-2007

Chopping Example

T1 T2

T4 T5

T3

T62T61

T61: R(A) R(F) R(D) R(B)
T62: R(E) R(G) R(C)

C C

C
C

C

S

 © Shasha, Bonnet 2002-2007

Finest Chopping

● A private chopping of transaction Ti, denoted
private(Ti) is a set of pieces {ci1, ci2, …, cik} such
that:
– {ci1, ci2, …, cik} is a rollback safe chopping
– There is no SC-cycle in the graph whose nodes are

{T1, …, Ti-1, ci1, ci2, …, cik, Ti+1, … Tn}
● The chopping consisting of {private(T1),

private(T2), …, private(T2)} is rollback-safe and
has no SC-cycles.

 © Shasha, Bonnet 2002-2007

Finest Chopping

● In: T, {T1, .. Tn-1}
● Initialization

– If there are abort commands
● then p_1 := all writes of T (and all non swappable

reads)that may occur before or concurrently with
any abort command in T

● else p_1 := first database access
– P := {x | x is a database operation not in p_1}
– P := P U {p_1}

 © Shasha, Bonnet 2002-2007

Finest Chopping

● Merging pieces
– Construct the connected components of the

graph induced by C edges alone on all
transactions {T1, …, Tn-1} and on the pieces in
P.

– Update P based on the following rule:
● If p_j and p_k are in the same connected

component and j < k, then
– add the accesses from p_k to p_j
– delete p_k from P

 © Shasha, Bonnet 2002-2007

Lock Tuning
● Transaction Chopping

– Rewriting applications to obtain best locking
performance

• Isolation Levels
– Relaxing correctness to improve performance

• Bottlenecks
– Using system features to circumvent bottlenecks

 © Shasha, Bonnet 2002-2007

Sacrificing Isolation
for Performance

A transaction that holds locks during a screen
interaction is an invitation to bottlenecks

– Airline Reservation
1. Retrieve list of seats available
2. Talk with customer regarding availability
3. Secure seat

• Single transaction is intolerable, because each
customer would hold lock on seats available.

• Keep user interaction outside a transactional context
Problem: ask for a seat but then find it’s unavailable. More

tolerable.

 © Shasha, Bonnet 2002-2007

Isolation Levels

● Read Uncomitted (No lost update)
– Exclusive locks for write operations are held for the duration of the

transactions
– Lock for writes until commit time. No locks for reads

● Read Committed (No inconsistent retrieval)
– Lock for writes until commit time.
– Shared locks are released as soon as the read operation

terminates.
● Repeatable Read (no unrepeatable reads)

– Strict two phase locking: lock for writes and reads until commit
time.

● Serializable (no phantoms)
– Table locking or index locking to avoid phantoms

 © Shasha, Bonnet 2002-2007

Example: relation R (E#,name,…)
constraint: E# is key
use tuple locking

R E# Name ….
o1 55 Smith
o2 75 Jones

Phantom Problem

 © Shasha, Bonnet 2002-2007

T1: Insert <99,Povl,…> into R
T2: Insert <99,Eric,…> into R

 T1 T2

S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3 [99,Povl,..]
 Insert o4[99,Eric,..]

...

...

 © Shasha, Bonnet 2002-2007

Solutions to the
Phantom Problem

● Table locks
– No problems
– No concurrency

● Index locks
– Range locking (using next Key locking)
– More complex
– More concurrency

Check out Mohan's ARIES KVL paper:
http://www.vldb.org/conf/1990/P392.PDF

 © Shasha, Bonnet 2002-2007

MySQL Locking Case
 Create table rate_type(id int, name varchar(20), rate int) type = InnoDB;

create table counter(id int primary key) type=InnoDB;
insert into counter values (1, 1);

T: start transaction;
select @id := nextkey, @name := concat('rate', nextkey), @rate := FLOOR(1000 +
RAND() * 4000) from counter for update;
insert into rate_type values (@id, @name, @rate);
update counter set nextkey = @id + 1;
commit;

Using a few concurrent threads running T at read committed level,
students observed the following::

 mysql> Failed to execute: select @id := nextkey, @name := concat('rate', nextkey),
@rate := floor(1000 + rand() * 4000) from counter for update
...
mysql> Deadlock found when trying to get lock; try restarting transaction

 © Shasha, Bonnet 2002-2007

MySQL Locking Case

LATEST DETECTED DEADLOCK

061005 15:16:14
*** (1) TRANSACTION:
TRANSACTION 0 82502, ACTIVE 0 sec, OS thread id 812 starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 24, query id 632 localhost 127.0.0.1 root Sending data
select @id := nextkey, @name := concat('rate', nextkey), @rate := FLOOR(1000 + R
AND() * 4000) from counter for update
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 3525 n bits 72 index `GEN_CLUST_INDEX` of table
`tuning/counter` trx id 0 82502 lock_mode X locks rec but not gap waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
0: len 6; hex 0000017e4800; asc ~H ;; 1: len 6; hex 000000014241; asc BA
;; 2: len 7; hex 0000000de11ad2; asc ? ?;; 3: len 4; hex 8000000a; asc ;
;
*** (2) TRANSACTION:
TRANSACTION 0 82499, ACTIVE 0 sec, OS thread id 1644 starting index read, thread
declared inside InnoDB 500
mysql tables in use 1, locked 1
4 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 3, query id 633 localhost 127.0.0.1 root Updating
update counter set nextkey = @id + 1
*** (2) HOLDS THE LOCK(S):

 © Shasha, Bonnet 2002-2007

MySQL Locking Case
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 0 page no 3525 n bits 72 index `GEN_CLUST_INDEX` of table
`tuning/counter` trx id 0 82499 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
0: len 6; hex 0000017e4800; asc ~H ;; 1: len 6; hex 000000014241; asc BA
;; 2: len 7; hex 0000000de11ad2; asc ? ?;; 3: len 4; hex 8000000a; asc ;
;

*** WE ROLL BACK TRANSACTION (1)

In other words:
- T1's select for update waits to acquire an exclusive row lock on
counter.nextkey
- T2 already has an exclusive row lock on counter.nextkey and wants
to acquire a table lock (update).

That is called a lock upgrade.

This causes a deadlocks because T2 cannot get the table lock while T1
waits for a row lock and T1 cannot get its lock while T2 has it.

 © Shasha, Bonnet 2002-2007

MySQL Locking Case
The reason the updates wants a table lock is that there is no other

solution (the update statement on counter has no where clause).

Two solutions:

(1) use serializable isolation level to force table locks for both select for
update and update

(2) use a solution that forces select for update and update to use row
locks:

create table counter(id int not null primary key, nextkey int) type=InnoDB;
insert into counter values (1, 1);

 start transaction;
select @id := nextkey, @name := concat('rate', nextkey), @rate := FLOOR(1000 + RAND() *
4000) from counter where id = 1 for update;
insert into RATE_TYPE_ADHOC values (@id, @name, @rate);
update counter set nextkey = @id + 1 where id = 1;
commit;

 © Shasha, Bonnet 2002-2007

Snapshot isolation

T1

T2

T3

TIME

R(Y) re
turns 1

R(Z) re
turns 0

R(X) re
turns 0

W(Y:=1)

W(X:=2, Z:=3)

X=Y=Z=0

● Each transaction executes
against the version of the data
items that was committed when
the transaction started:
– No locks for read
– Locks for writes
– Costs space (old copy of data

must be kept)
● Almost serializable level:

– T1: x:=y
– T2: y:= x
– Initially x=3 and y =17
– Serial execution:

x,y=17 or x,y=3
– Snapshot isolation:

x=17, y=3 if both transactions
start at the same time.

 © Shasha, Bonnet 2002-2007

Value of Serializability -- Data
Settings:

accounts(number, branchnum, balance);
create clustered index c on accounts(number);
– 100000 rows
– Cold buffer; same buffer size on all systems.
– Row level locking
– Isolation level (SERIALIZABLE or READ COMMITTED)
– SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID controller

from Adaptec (80Mb), 4x18Gb drives (10000RPM), Windows
2000.

 © Shasha, Bonnet 2002-2007

Value of Serializability --
transactions

Concurrent Transactions:
– T1: summation query [1 thread]
select sum(balance) from accounts;

– T2: swap balance between two account numbers (in
order of scan to avoid deadlocks) [N threads]
valX:=select balance from accounts where number=X;
valY:=select balance from accounts where number=Y;
update accounts set balance=valX where number=Y;
update accounts set balance=valY where number=X;

Value of Serializability -- results

● With SQL Server and DB2
the scan returns incorrect
answers if the read
committed isolation level
is used (default setting)

● With Oracle correct
answers are returned
(snapshot isolation), but
beware of swapping

Cost of Serializability

Because the update
conflicts with the scan,
correct answers are
obtained at the cost of
decreased concurrency
and thus decreased
throughput.

Value of Serializability - MySQL

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

serializable
read committed

Number of Threads

Th
ro

ug
hp

ut
 (t

ra
ns

/s
ec

)

 Read committed yields a higher
throughput than serializable.
This is because at the
serializable isolation level, the
sum transaction sets next-key
locks while scanning the table,
whereas at the read committed
isolation level, the sum
transaction relies on snapshot
isolation, i.e., no read lock are
used.

 © Shasha, Bonnet 2002-2007

Lock Tuning

• Transaction Chopping
– Rewriting applications to obtain best locking

performance
● Isolation Levels

– Relaxing correctness to improve performance
● Bottlenecks

– Using system features to circumvent bottlenecks

 © Shasha, Bonnet 2002-2007

Latches and Locks
● Locks are used for concurrency control

– Requests for locks are queued
● Lock and wait set associated to each data item
● All lock elements that belong to a Transaction are associated
● Entries from wait set promoted to lock set when possible

– Lock data structure
● Item id, mode, granularity,

● Latches are used for mutual exclusion
– Requests for latch succeeds or fails

● Active wait (spinning) on latches on multiple CPU.
– Single location in memory

● Test and set for latch manipulation

 © Shasha, Bonnet 2002-2007

Locking in SQL Server 7

syslockinfo
dbid objid lock

granularity
lock owner lock waiterlock

mode

1 117 RID X

1 117 PAG IX

1 117 TAB IX

1 118 RID S

LO1

LO1

LO1

LO2, LO3 LW2

LW3

spid

10

10

10

10

Lock – 32 bytes Lock owner block – 32 bytes
Lock waiter block – 32 bytes

LW1, LW4

 © Shasha, Bonnet 2002-2007

Locking in Oracle 8i

Data page

row

Interested transaction list
 (fixed array - INITRANS – MAXTRANS)

T1

T1
lock

Enqueue resource structure
(fixed array – default 4 entries per transaction)

T1

Enqueued locks array

T2
lock

Enqueue wait
 (time out ~ 3sec)

Process

T3
lock

Deadlock detection

H

2 - Tuning the Guts © Shasha, Bonnet 2002-2007 44

Logical Bottleneck: Sequential
Key generation

● Consider an application in which one needs
a sequential number to act as a key in a
table, e.g. invoice numbers for bills.

● Ad hoc approach: a separate table holding
the last invoice number. Fetch and update
that number on each insert transaction.

● Counter approach: use facility such as
Sequence (Oracle)/Identity(SQL Server).

 © Shasha, Bonnet 2002-2007

Counter Facility -- data

Settings:

– default isolation level: READ COMMITTED; Empty tables
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID controller

from Adaptec (80Mb), 4x18Gb drives (10000RPM), Windows
2000.

accounts(number, branchnum, balance);
create clustered index c on accounts(number);

counter (nextkey);
insert into counter values (1);

 © Shasha, Bonnet 2002-2007

Counter Facility -- transactions

No Concurrent Transactions:
– System [100 000 inserts, N threads]

● SQL Server 7 (uses Identity column)
insert into accounts values (94496,2789);

● Oracle 8i
insert into accounts values (seq.nextval,94496,2789);

– Ad-hoc [100 000 inserts, N threads]
begin transaction
 NextKey:=select nextkey from counter;
 update counter set nextkey = NextKey+1;
commit transaction
begin transaction
 insert into accounts values(NextKey,?,?);
commit transaction

 © Shasha, Bonnet 2002-2007

Avoid Bottlenecks: Counters
● System generated counter

(system) much better than a
counter managed as an
attribute value within a table
(ad hoc).

● The Oracle counter can
become a bottleneck if every
update is logged to disk, but
caching many counter
numbers is possible.

● Counters may miss ids.

 © Shasha, Bonnet 2002-2007

Database Tuning (part 2)

Philippe Bonnet, DIKU
 bonnet@diku.dk

Joint work with Dennis Shasha, NYU

EDBT Summer School 2007

mailto:bonnet@diku.dk

Tuning Course Overview

1. Tuning the guts
a) Lock Tuning
b) Log Tuning
c) Storage Tuning
d) OS Tuning

2. Schema Tuning

3. Index Tuning
4. Query Tuning
5. API Tuning
6. Troubleshooting

Tutorial
 Part 1: Introduction and Lock Tuning
 Part 2: Index Tuning and Troubleshooting

 © Shasha, Bonnet 2002-2007

Index

An index is a data structure that supports
efficient access to data

Set of
Records

index
Condition

on
attribute

value

Matching
records

(search key)

 © Shasha, Bonnet 2002-2007

Search Keys
● A (search) key is a sequence of attributes.

create index i1 on accounts(branchnum, balance);
● Types of keys

– Sequential: the value of the key is monotonic
with the insertion order (e.g., counter or
timestamp)

– Non sequential: the value of the key is
unrelated to the insertion order (e.g., social
security number)

 © Shasha, Bonnet 2002-2007

Data Structures
● Most index data structures can be viewed as

trees.
● In general, the root of this tree will always be in

main memory, while the leaves will be located on
disk.
– The performance of a data structure depends on the

number of nodes in the average path from the root to
the leaf.

– Data structure with high fan-out (maximum number of
children of an internal node) are thus preferred.

 © Shasha, Bonnet 2002-2007

B+-Tree

● A B+-Tree is a balanced tree whose leaves
contain a sequence of key-pointer pairs.

96

75 83 107

96 98 103 107 110 12083 92 9575 80 8133 48 69

 © Shasha, Bonnet 2002-2007

B+-Tree Performance
● Tree levels

– Tree Fanout
● Size of key
● Page utilization

● Tree maintenance
– Online

● On inserts
● On deletes

– Offline
● Tree locking
● Tree root in main memory

 © Shasha, Bonnet 2002-2007

B+-Tree Performance

● Key length influences fanout
– Choose small key when creating an index
– Key compression

● Prefix compression (Oracle 8, MySQL): only store that part of
the key that is needed to distinguish it from its neighbors: Smi,
Smo, Smy for Smith, Smoot, Smythe.

● Front compression (Oracle 5): adjacent keys have their front
portion factored out: Smi, (2)o, (2)y. There are problems with
this approach:

– Processor overhead for maintenance
– Locking Smoot requires locking Smith too.

 © Shasha, Bonnet 2002-2007

Hash Index

● A hash index stores key-value pairs based
on a pseudo-randomizing function called a
hash function.

Hashed key values

0
1

n

R1 R5
R3 R6 R9 R14 R17 R21 R25

Hash
function

key

2341

The length of
these chains impacts
performance

 © Shasha, Bonnet 2002-2007

Clustered / Non clustered index

● Clustered index
(primary index)
– A clustered index on

attribute X co-locates
records whose X values are
near to one another.

● Non-clustered index
(secondary index)
– A non clustered index does

not constrain table
organization.

– There might be several
non-clustered indexes per
table.

Records Records

 © Shasha, Bonnet 2002-2007

Dense / Sparse Index

● Sparse index
– Pointers are associated to

pages

● Dense index
– Pointers are associated to

records
– Non clustered indexes are

dense

P1 PiP2 record

record record

 © Shasha, Bonnet 2002-2007

Clustered Index

● Because there is only one clustered index
per table, it might be a good idea to
replicate a table in order to use a clustered
index on two different attributes
• Yellow and white pages in a paper telephone

book
• Low insertion/update rate

 © Shasha, Bonnet 2002-2007

Clustered Index

Benefits of a clustered index:
1. A sparse clustered index stores fewer pointers

than a dense index.
• This might save up to one level in the B-tree index.

2. A clustered index is good for multipoint queries
• White pages in a paper telephone book

3. A clustered index based on a B-Tree supports
range, prefix, extremal and ordering queries well.

 © Shasha, Bonnet 2002-2007

Clustered Index

4. A clustered index (on attribute X) can reduce lock
contention:

Retrieval of records or update operations using an
equality, a prefix match or a range condition based on
X will access and lock only a few consecutive pages of
data

Cost of a clustered index
1. Cost of overflow pages

• Due to insertions
• Due to updates (e.g., a NULL value by a long string)

 © Shasha, Bonnet 2002-2007

Non-Clustered Index

Benefits of non-clustered
indexes

2. A dense index can
eliminate the need to
access the underlying
table through covering.

• It might be worth creating
several indexes to
increase the likelihood that
the optimizer can find a
covering index

1. A non-clustered index is good
if each query retrieves
significantly fewer records
than there are pages in the
table.

• Point queries
• Multipoint queries:
number of distinct key values >

c * number of records per page
Where c is the number of pages

retrieved in each prefetch

 © Shasha, Bonnet 2002-2007

Index Implementations in some
major DBMS

● SQL Server
– B+-Tree data structure
– Clustered indexes are

sparse
– Indexes maintained as

updates/insertions/deletes
are performed

● DB2
– B+-Tree data structure,

spatial extender for R-tree
– Clustered indexes are

dense
– Explicit command for index

reorganization

● Oracle
– B+-tree, hash, bitmap,

spatial extender for R-Tree
– No clustered index until 10g

● Index organized table
(unique/clustered)

● Clusters used when
creating tables.

● MySQL/InnoDB
– B+-Tree organized tables,

R-Tree (geometry and pairs
of integers)

– Indexes maintained as
updates/insertions/deletes
are performed

 © Shasha, Bonnet 2002-2007

Constraints and Indexes

● Primary Key, Unique
– A non-clustered index is constructed on the

attribute(s) that compose the primary key with
the constraint that values are unique.

● Foreign Key
– By default, no index is created to enforce a

foreign key constraint.

 © Shasha, Bonnet 2002-2007

Index Tuning

● Index data structure
● Search key
● Size of key
● Clustered/Non-clustered/No index
● Covering

 © Shasha, Bonnet 2002-2007

Types of Queries

1. Point Query

SELECT balance
FROM accounts
WHERE number = 1023;

2. Multipoint Query

SELECT balance
FROM accounts
WHERE branchnum = 100;

1. Range Query

SELECT number
FROM accounts
WHERE balance > 10000;

2. Prefix Match Query

SELECT *
FROM employees
WHERE name = ‘Jensen’

 and firstname = ‘Carl’
 and age < 30;

 © Shasha, Bonnet 2002-2007

Types of Queries

1. Extremal Query

SELECT *
FROM accounts
WHERE balance =
 max(select balance from accounts)

2. Ordering Query

SELECT *
FROM accounts
ORDER BY balance;

1. Grouping Query

SELECT branchnum, avg(balance)
FROM accounts
GROUP BY branchnum;

2. Join Query

SELECT distinct branch.adresse
FROM accounts, branch
WHERE
 accounts.branchnum =

branch.number
and accounts.balance > 10000;

Clustered Index
● Multipoint query that

returns 100 records
out of 1000000.

● Cold buffer
● Clustered index is

twice as fast as non-
clustered index and
orders of magnitude
faster than a scan.

Scan Wins More Often than Not
● Range Query
● We observe that if a query

retrieves 10% of the
records or more, scanning
is often better than using
a non-clustering non-
covering index.

● MySQL hardcoded this
rule in their optimizer:
scan is used if query
selectivity > 10%

● However, crossover
depends on record size,
table organization and
HDD characteristics!

DB2, 10000 RPM HDD

MySQL, 7500 RPM HDD

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

0

0,5

1

1,5

2

2,5

3

1 5 10 20 33 50

nci

scan

Covering Index - defined

● Select name from employee where
department = “marketing”

● Good covering index would be on
(department, name)

● Index on (name, department) less useful.
● Index on department alone moderately

useful.

Covering Index - impact

● Covering index performs
better than clustering
index when first attributes
of index are in the where
clause and last attributes
in the select.

● When attributes are not in
order then performance is
much worse.

 © Shasha, Bonnet 2002-2007

Index on Small Tables

● Tuning manuals suggest to avoid indexes
on small tables
– If all data from a relation fits in one page then

an index page adds an I/O
– If each record fits in a page then an index helps

performance

 © Shasha, Bonnet 2002-2007

Index on Small Tables
● Small table: 100 records
● Two concurrent processes

perform updates (each
process works for 10ms
before it commits)

● No index: the table is
scanned for each update.
No concurrent updates.

● A clustered index allow to
take advantage of row
locking.

 © Shasha, Bonnet 2002-2007

Index Tuning Summary

1. Use a hash index for point queries only. Use a B-
tree if multipoint queries or range queries are
used

2. Use clustering
• if your queries need all or most of the fields of each

records returned
• if multipoint or range queries are asked

3. Use a dense index to cover critical queries
4. Don’t use an index if the time lost when inserting

and updating overwhelms the time saved when
querying

 © Shasha, Bonnet 2002-2007

Index Tuning Wizard
● MS SQL Server 7 and

above
● In:

– A database (schema + data
+ existing indexes)

– Trace representative of the
workload

● Out:
– Evaluation of existing

indexes
– Recommendations on

index creation and deletion

● The index wizard
– Enumerates possible

indexes on one
attribute, then several
attributes

– Traverses this search
space using the query
optimizer to associate
a cost to each index

 © Shasha, Bonnet 2002-2007

A Systematic Approach to Monitoring

● Question 1: Are critical
queries being served in
the most efficient
manner?

● Question 2: Are
subsystems making
optimal use of resources?

● Question 3: Are there
enough primary resources
available?

Extract indicators to answer the following questions

 © Shasha, Bonnet 2002-2007

Investigating High Level Consumers

• Answer question 1:
“Are critical queries being served in
the most efficient manner?”

1. Identify the critical queries
2. Analyze their access plans
3. Profile their execution

 © Shasha, Bonnet 2002-2007

Event Monitors to Identify
Critical Queries

● User complains
● Capture usage measurements at end of

each query and then sort by usage x time.
● Less overhead than other type of tools

because indicators are usually by-product of
operations monitored and are accessed in a
convenient time

● Typical measures include CPU used, IO
used, locks obtained etc.

 © Shasha, Bonnet 2002-2007

Diagnose Expensive Queries:
 analyzing access plans

● SQL commands are translated into an internal executable
format before they are processed

● After parsing, the optimizer enumerates and estimates the
cost of a number of possible ways to execute that query

● The best choice, according to the existing statistics, is
chosen

sql parse rewrite enumerate/
cost plans

generate
chosen plan plan

PARSER/OPTIMIZER

 © Shasha, Bonnet 2002-2007

Access Plan Explainers to
Analyze Plans

● Explainers usually depict an access plan as a
(graphical) single-rooted tree in which sources at
the leaf end are tables or indexes, and internal
nodes are operators

● These form an assembly line (actually tree) of
tuples!

● Most explainers will let you see the estimated costs
for CPU consumption, I/O, and cardinality of each
operator. If you see something strange, change an
index.

 © Shasha, Bonnet 2002-2007

An example Plan Explainer

• Access plan according
to SQLServer Query
Analyzer

• Similar tools: DB2’s
Visual Explain and
Oracle’s SQL Analyze
Tool

 © Shasha, Bonnet 2002-2007

Finding Strangeness in Access Plans

What to pay attention to on a plan
● Access paths for each table
● Sorts or intermediary results
● Order of operations
● Algorithms used in the operators

 © Shasha, Bonnet 2002-2007

To Index or not to index?
select c_name, n_name from CUSTOMER join NATION
on c_nationkey=n_nationkey where c_acctbal > 0

Which plan performs best?
(nation_pk is an non-clustered index over
n_nationkey, and similarly for acctbal_ix over
c_acctbal)

 © Shasha, Bonnet 2002-2007

Non-clustering indexes can be trouble

For a low selectivity predicate, each access to
the index generates a random access to the
table – possibly duplicate! It ends up that the
number of pages read from the table is greater
than its size, i.e., a table scan is
way better

Table Scan Index Scan

5 sec
143,075 pages
6,777 pages

136,319 pages
7 pages

76 sec
272,618 pages
131,425 pages
273,173 pages

552 pages

CPU time
data logical reads

data physical reads
index logical reads

index physical reads

 © Shasha, Bonnet 2002-2007

Profiling a Query’s Execution

● A query was found critical but its plan looks
okay. What’s going on? Put it to run. (We
just did in the previous example.)

● Profiling it would determine the quantity of
the resources used by a query and
assessing how efficient this use was

● Resources
– DBMS subsystems: cache, disk, lock, log
– OS raw resources: CPU

 © Shasha, Bonnet 2002-2007

Performance Monitors to
Profiling Queries

● Access or compute performance
indicators’ values at any time

● Many, many flavors
– Generic (all indicators) or Specific

(indicators of a given subsystem or a
given query)

– Aggregated counters vs. time-base
– Snapshot, Continuous, or Alarm modes
– Textual or Graphical

 © Shasha, Bonnet 2002-2007

An example
Performance Monitor (query level)

• Details of buffer and
CPU consumption on a
query’s report
according to DB2’s
Benchmark tool

• Similar tools: MSSQL’s
SET STATISTICS
switch and Oracle’s
SQL Analyze Tool

Statement number: 1
select C_NAME, N_NAME
from DBA.CUSTOMER join DBA.NATION on C_NATIONKEY = N_NATIONKEY
where C_ACCTBAL > 0

Number of rows retrieved is: 136308
Number of rows sent to output is: 0
Elapsed Time is: 76.349 seconds

…
Buffer pool data logical reads = 272618
Buffer pool data physical reads = 131425
Buffer pool data writes = 0
Buffer pool index logical reads = 273173
Buffer pool index physical reads = 552
Buffer pool index writes = 0
Total buffer pool read time (ms) = 71352
Total buffer pool write time (ms) = 0
…
Summary of Results
==================
 Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 76.349 6.670 136308 0

 © Shasha, Bonnet 2002-2007

An example
Performance Monitor (session level)

• Oracle 10g
time based
profile

 © Shasha, Bonnet 2002-2007

Investigating Primary Resources

• Answer question 3:
“Are there enough primary resources
available for a DBMS to consume?”

• Primary resources are: CPU,
disk/controllers, memory, and network

• Analyze specific OS-level indicators to
discover bottlenecks.

• A system-level Performance Monitor is the
right tool here

 © Shasha, Bonnet 2002-2007

CPU Consumption Indicators
at the OS Level

100%

CPU
% of

utilization

70%

time

Sustained utilization
over 70% should
trigger the alert.

System utilization
shouldn’t be more

than 40%.
DBMS (in a non-

dedicated machine)
should be getting a
decent time share.

total usage

system usage

 © Shasha, Bonnet 2002-2007

Disk Performance Indicators
at the OS Level

Wait queue

Average Queue Size

New requests
Disk Transfers

/second

Should be
close to zero

Wait times
should also
be close to

zeroIdle disk with
pending requests?
Check controller

contention.
Also, transfers

should be
balanced among
disks/controllers

 © Shasha, Bonnet 2002-2007

Memory Consumption Indicators
at the OS Level

pagefile

real
memory

virtual
memory

Page faults/time
should be close
to zero. If paging
happens, at least

not DB cache pages.

% of pagefile in
use (it’s used a fixed
file/partition) will tell

you how much
memory is “lacking”.

 © Shasha, Bonnet 2002-2007

Investigating Intermediate
Resources/Consumers

• Answer question 2:
“Are subsystems making optimal use of
resources?”

• Main subsystems: Cache Manager, Disk
subsystem, Lock subsystem, and
Log/Recovery subsystem

• Similarly to Q3, extract and analyze relevant
Pis

• A Performance Monitor is usually useful, but
sometimes specific tools apply

 © Shasha, Bonnet 2002-2007

Cache Manager Performance Indicators

Table
scan

readpage()

Free Page slots

Page reads/
writes

Pick
victim

strategy Data Pages

Cache
Manager

If page is not in the
cache, readpage

(logical) generate an
actual IO (physical).

Ratio of readpages that
did not generate

physical IO should be
90% or more

Pages are regularly
saved to disk to make

free space.
of free slots should

always be > 0

 © Shasha, Bonnet 2002-2007

Disk Manager Performance Indicators

rows

page

extent

file

Storage
Hierarchy
(simplified)

disk

Row displacement: should kept
under 5% of rows

Free space fragmentation:
pages with few space should

not be in the free list

Data fragmentation: ideally files
that store DB objects (table,

index) should be in one or few
(<5) contiguous extents

File position: should balance
workload evenly among all

disks

 © Shasha, Bonnet 2002-2007

Lock Manager Performance Indicators

Lock
request

Object Lock Type TXN ID

Lock
List

Locks
pending list

Deadlocks and timeouts
should be virtually

inexistent or extremely low
(no more then 1% of the

transactions)

Lock wait time for a
transaction should be a

small fraction of the whole
transaction time.

Number of locks on wait
should be a small fraction of
the number of locks on the

lock list.

 © Shasha, Bonnet 2002-2007

Troubleshooting

● Monitoring a DBMS’s performance can be
done in a systematic way
– The consumption chain helps distinguishing

problems’ causes from their symptoms
– Existing tools help extracting relevant

performance indicators
– The three questions guide the whole monitoring

process

Tuning Principles Leitmotifs

● Think globally, fix locally (does it matter?)
● Partitioning breaks bottlenecks (temporal

and spatial)
● Start-up costs are high; running costs are

low (disk transfer, cursors)
● Be prepared for trade-offs (indexes and

inserts)

http://www.distlab.dk/dbtune

