The M-Tree

Introduction

Update and Search

What is an M-tree?
- disk-based index structure for metric distances
- reduces search space for similarity query

Features of M-trees:
- dynamic (insertion and deletion of data objects)
- balanced tree (structure does not degenerate)
- supports range and k-nearest neighbor queries

Literature:
- M-trees were introduced by Ciaccia et al. [CPZ97] in 1997
- Textbook by Zezula et al. [ZADB06] covers M-trees
The M-Tree

Introduction

M-Tree: Illustration

- Internal nodes: prune irrelevant subtrees
 - Internal node: tuple of \(m \) entries \((e_1, e_2, \ldots, e_m) \)
 - \(e_i = (p_i, r_{ci}, d(p_i, pp), ptr_i) \)
 - \(p_i \): pivot (some data object)
 - \(r_{ci} \): covering radius around \(p_i \)
 - \(d(p_i, pp) \): distance between \(p_i \) and the parent pivot \(pp \) of \(p_i \)
 - \(ptr_i \): pointer to a child node

- Guarantee: all objects in subtree \(p_i \) are at most at distance \(r_{ci} \) from \(p_i \)

- Leaf nodes: store data objects
 - Leaf node: tuple of \(m \) entries \((f_1, f_2, \ldots, f_m) \)
 - \(f_i = (o_i, d(o_i, pp)) \)
 - \(o_i \): data object
 - \(d(o_i, pp) \): distance between \(o_i \) and the pivot in the parent node

Update and Search

New object \(o_N \) **is inserted as a leaf node**

At each internal node (starting with the root node):

1. find set \(E \) of entries that can store \(o_N \) without increasing covering radius (i.e., \(d(o_N, pp) < r_{ci} \))
2. if \(E = \emptyset \) traverse into subtree of element \(e \in E \) with minimum distance \(d(o_N, pp) \)
3. if \(E = \emptyset \) increase covering radius of element that requires minimum increase and traverse into respective subtree

At leaf node:

1. compute distance between \(o_N \) and parent pivot \(d(o_N, pp) \)
2. try to store new entry \((o_N, d(o_N, pp)) \) in leaf node
3. if node is full (overflow), then split node
The M-Tree
Update and Search

Splitting a Node in the M-Tree

- If a node \(N \) overflows, it must be split

 Node split

 1. create new node \(N' \) at the same level
 2. select two new pivots (for \(N \) and \(N' \))
 3. redistribute the \(m+1 \) objects to \(N \) and \(N' \)
 4. substitute old pivot by the two new pivots
 5. if parent node overflows:
 a. if parent node is non-root: split parent node
 b. if parent node is root: create new root node (tree grows by one level)

How to choose new pivots?

- try to keep covering radii as small as possible to avoid overlaps
- criterion: \(p_i \) and \(p_j \) are used as new pivots if \(\max(r_{ci}, r_{cj}) \) is minimal

Range Query

Definition (Range Query)

Given a set of objects \(X \subseteq D \) from a domain \(D \) and a query object \(q \in D \) with a query radius \(r \). The **range query**, \(R(q, r) \) retrieves all objects in \(X \) within distance \(r \) from \(q \):

\[
R(q, r) = \{ o \in X \mid d(o, q) \leq r \}
\]

Search Algorithm

1. **Start at root node**
2. For each entry \((p, r^c, d(p, p^p), \text{ptr})\) in an internal node:
 - if \(|d(q, p^p) - d(p, p^p)| - r^c > r \) (criterion A), then the subtree of \(p \) can be safely ignored (pruned)
 - if \(|d(q, p^p) - d(p, p^p)| - r^c \leq r \), then compute \(d(q, p) \); if \(d(q, p) - r^c > r \) (criterion B), then prune subtree, otherwise traverse subtree pointed to by \(\text{ptr} \)
3. For each entry \((o, d(o, p^p))\) in a leaf node:
 - if \(|d(q, o^p) - d(o, p^p)| > r \), then ignore object \(o \)
 - otherwise compute \(d(q, o) \); if \(d(q, o) \leq r \), then \(o \) is reported as an answer
Search Algorithm

- Pruning criterion B: \(d(q, p) - r^c > r \)
 - the objects in the subtree of \(p \) are within radius \(r^c \) from \(p \)
 - the range query looks for objects within radius \(r \) from \(q \)
 - if \(d(q, p) > r^c + r \), then the spheres defined by \((p, r^c)\) and \((q, r)\) are too small and do not overlap, thus \(p \) is pruned
- \(d(q, p) \) is only computed if criterion A does not hold
- Pruning criterion A is applied instead: \(|d(q, p^p) - d(p, p^p)| - r^c > r\)
 - both \(d(q, p^p) \) and \(d(p, p^p) \) are known
 - \(|d(q, p^p) - d(p, p^p)| \leq d(q, p)\) follows from the triangle inequality
 - criterion A \(\Rightarrow \) criterion B \(\Rightarrow \) subtree of \(p \) can be pruned

Paolo Ciaccia, Marco Patella, and Pavel Zezula.
M-tree: An efficient access method for similarity search in metric spaces.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko.