Programming Paradigms
Unit 17 — Erlang Processes

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE

PP 2018/19 Unit 17 — Erlang Processes 1/44



I
QOutline

© Basic Concepts of Processes

9 Messaging

© Reliability through Process Links

PP 2018/19 Unit 17 — Erlang Processes 2/44



)
QOutline

© Basic Concepts of Processes

PP 2018/19 Unit 17 — Erlang Processes 3/44



Processes

@ Processes are the fundamental units of concurrency in Erlang
@ They communicate with each other via messages

@ Processes are also the basic container for program state in Erlang
@ No shared state, which makes it easier to proof the correctness of programs

PP 2018/19 Unit 17 — Erlang Processes 4/44



Basic Primitives for Processes

@ There are 3 basic primitives for processes

o Creating a new process (with spawn)
@ Sending a message (with !, pronounced "bang")
o Receiving a message (with receive)

@ That's enough to get us started

@ Let’s write a simple translation process that gets a word in Spanish and
replies with an English translation

@ The process should run in a loop, waiting for words to translate

PP 2018/19 Unit 17 — Erlang Processes 5/44



Translation Example/1

-module (translate) .
—export ([loop/0]) .

loop() —>
receive

"casa" ->
io:format ("house™n"),
loop(O);

"blanca" ->
io:format("white™n"),
loopQ);

_ >
io:format ("I don’t understand™n"),
loop()

end.

PP 2018/19 Unit 17 — Erlang Processes 6/44



Translation Example/2

@ The first two lines define the module translate and the export of function
loop/0

@ The next block defines the function loop()
loop() —->
end.

@ loop is called recursively in the body of the function and loops forever

@ This is OK, since it is tail-recursion, and Erlang is optimized for
tail-recursion

PP 2018/19 Unit 17 — Erlang Processes 7/44



Translation Example/3

®

The next block is the function receive

receive —->

@ This function will receive a message from another process

@ receive works similar to the other pattern matching constructs, such as
the case statement and function definitions

@ |t tries to match a received message to one of the matching clauses

"Casa" _>
io:format("house™n"),
loop();

@ If statements in a matching clause span more than one line, they are
separated by commas

PP 2018/19 Unit 17 — Erlang Processes 8/44



Running a Process

@ After compiling the module translate, we can create a process running
the function loop

>c(translate).
{ok,translate}

> Pid = spawn(fun translate:loop/0).
<0.130.0>

@ To start a process, function spawn is used

9 It takes a function as argument, starts this function in a new process, and
returns the process ID

@ Now we have the process (with ID 0.130.0) up and running
@ Variable Pid stores the process ID

@ So far, the process is not doing much: it's just sitting there waiting for
messages

PP 2018/19 Unit 17 — Erlang Processes 9/44



Sending Messages

@ Let us send some messages to the process

> Pid ! '"casa".
house

"casa"

> Pid ! "blanca".
white

"blanca"

> Pid ! "loco".

I don’t understand
"loco"

@ The ! operator (pronounced "bang”) is used to send messages and has the
general form Pid ! message

@ Pid is any process ID
@ message can be any value, e.g., primitive values, lists, tuples

PP 2018/19 Unit 17 — Erlang Processes 10/44



Variations on Processes

@ You can also spawn processes on a remote machine using a slightly
different syntax

Pid = spawn(node@server, function).

@ Similar, it is possible to send messages to processes running on other nodes

{Pid, node@server} ! message

PP 2018/19 Unit 17 — Erlang Processes 11/44



QOutline

9 Messaging

PP 2018/19 Unit 17 — Erlang Processes 12/44



Messaging

@ What we've just implemented is called asynchronous messaging

@ In asynchronous messaging, the sender sends a message, but does not wait
actively for a reply

o E-mails and SMS text messages are asynchronous

@ In synchronous messaging, the sender sends a message and actively waits
for the response

@ Phone calls and loading a web page are synchronous

PP 2018/19 Unit 17 — Erlang Processes 13/44



Synchronous Messaging

@ To change the message model to synchronous messaging we need to do the
following steps:

@ Each receive clause will also have to match the process ID of the
requesting sender (in addition to the “original” message, e.g., the word)

@ Each receive clause has to send a response to the sender (instead of, e.g.,
just printing the result)

© On the sender side, instead of using !, we'll write a simple function that
sends a request and waits for the response

PP 2018/19 Unit 17 — Erlang Processes 14/44



Synchronous Messaging — Receiver

@ First, we rewrite the receive clause of the translation service

-module (translate2).
-export ([loop/0]) .
loop() —>
receive
{Pid,"casa"} -> Pid ! "house", loop();
{Pid, "blanca"} -> Pid ! "white", loop();
{Pid, -} -> Pid ! "???", loop()
end.

@ Instead of just matching a word, we match a tuple consisting of the process
ID of the sender and a word

@ Instead of printing the result, we send it back to the requesting process

PP 2018/19 Unit 17 — Erlang Processes 15/44



Synchronous Messaging — Sender/1

@ Starting a process with the new modified 1oop function and sending
something to it is not enough

> Trans = spawn(fun translate2:loop/0).
<0.144.0>

> Trans ! {self(),"casa"}.
{<0.61.0>,"casa"}

@ We send the correct tuple to the translation process, but we don't pick up
its answer

@ Function self () returns the own process ID
@ Next we'll write a function that will send a message and wait for the reply

PP 2018/19 Unit 17 — Erlang Processes 16/44



Synchronous Messaging — Sender/2

@ In the synchronous model, the sender must send a message and then
immediately wait for a response

@ Given a process ID in Receiver, a general sender looks as follows:

Receiver ! {self(), "message"},
receive
Message -> do_something with(Message)
end.

@ The sender sends its own process ID and a message to the receiver process

@ Then, the sender uses a receive function to wait for the response

PP 2018/19 Unit 17 — Erlang Processes 17/44



Synchronous Messaging — Sender/3

@ Since we are using the translation service frequently, we encapsulate the
request for a translation into a new function

translate(Trans, Word) ->
Trans ! {self(), Word},
receive
Translation ->
io:format ("Translation of “p is “p™n", [Word,Translation])
end.

@ The complete module is shown on the next slide

PP 2018/19 Unit 17 — Erlang Processes 18/44



Synchronous Messaging — Translation Example/1

-module(translate2).
-export ([loop/0]).
-export ([translate/2]).

loop() ->
receive
{Pid, "casa"} -> Pid ! "house", loop();
{Pid, "blanca"} -> Pid ! "white", loop();
{Pid, _} -> Pid ! "???", loop()
end.

translate(Trans, Word) ->
To ! {self(),Word},
receive
Translation ->
io:format ("Translation of “p is “p~n", [Word,Trans
end.

PP 2018/19 Unit 17 — Erlang Processes 19/44



Synchronous Messaging — Translation Example/2

@ After compiling it, we can spawn a process running loop and then send
messages using translate

> Trans = spawn(fun translate2:loop/0).
<0.39.0>

> translate2:translate(Trans, "blanca").
"The translation is: white"

> translate2:translate(Trans, "xxxx").
ll???ll

@ The new version of translate sends a message and then waits for the
reply

PP 2018/19 Unit 17 — Erlang Processes 20/44



)
QOutline

© Reliability through Process Links

PP 2018/19 Unit 17 — Erlang Processes 21/44



Rell

ility through Process Links

Adding Reliability

@ Erlang has exception handling for catching errors in a piece of code
@ This is very similar to what Java offers, so we are not covering it here
@ In addition to this Erlang provides process links

@ This is a system for handling process failures
@ We are going to have a closer look at process links

PP 2018/19 Unit 17 — Erlang Processes 22/44



Process Links

@ Whenever an Erlang process dies unexpectedly, an exit signal is generated

@ All processes linked to the dying process receive that signal and can react
accordingly

@ By default, the receiver will exit as well (sending another exit signal)
@ So you can have a whole cascade of exiting processes

@ However, you can overwrite the default behaviour and react in an
appropriate way

@ What is the advantage of this?

@ Allows you to have a group of processes behave as a single application
@ You don't have to worry about leftover processes still running

PP 2018/19 Unit 17 — Erlang Processes 23/44



Reliability through Process Links

Supervision
@ You don't always want to shut down a process when receiving an exit signal
@ Someone needs to be there to restart parts of the system when receiving
exit signals
@ These so-called supervisor processes need to be able to overwrite the
default exiting behavior
@ This can be done by trapping an exit signal, i.e., you get informed, but don't
exit yourself
@ Non-trapping processes are usually called worker processes
@ Let's look at an example

PP 2018/19 Unit 17 — Erlang Processes 24/44



Russian Roulette/1

@ First, let's build a process that can be killed deliberately

-module (roulette).
—export ([loop/0]) .

loop() —>
receive
3 >
io:format ("bang! "n"),
exit({roulette,die,at,erlang:time()});
->
io:format("click. n"),
loop()

end.

@ The code is essentially a message loop:
@ Matching 3 kills the process by calling function exit
@ Anything else prints a message and goes back to the top of the loop

PP 2018/19 Unit 17 — Erlang Processes 25/44



Russian Roulette/2

@ Let's start the process and try it out

> Gun = spawn(fun roulette:loop/0).
<0.39.0>

> Gun ! 1.

click.

1

> erlang:is_process_alive(Gun).
true

> Gun ! 3.

bang!

3

> erlang:is_process_alive(Gun).
false

@ Function erlang:is_process_alive(PID) checks whether process PID is
running

PP 2018/19 Unit 17 — Erlang Processes 26/44



Monitoring Processes/1

@ Now let's build a monitor process that tells us whether a process dies by
trapping exit signals

-module (coroner) .

-export ([loop/0]).
loop() ->
process_flag(trap_exit,true),
receive
{monitor,Process} ->
link(Process),
io:format ("Monitoring process “p."n", [Process]),
loop();
{’EXIT’ ,From,Reason} ->
io:format(""p died: “p"n",[From,Reason]),
io:format("Please start another omne.™n"),
loop();
- =>
io:format ("Unexpected message received.™n"),
loop()

end.
PP 2018/19 Unit 17 — Erlang Processes 27/44



Monitoring Processes/2

@ The first step in the loop is to register the process as one that will trap exit
signals:

process_flag(trap_exit,true)

@ otherwise exit signals are not received

PP 2018/19 Unit 17 — Erlang Processes 28/44



Reliability through Process Links

Monitoring Processes/3

@ The receive gets two types of tuples

@ Tuples beginning with atom monitor

{monitor,Process} ->
link(Process),
io:format ("Monitoring process. n"),
loop();

@ Links the coroner process (i.e., the loop/0 function that implements the
monitor) to the process with ID Process

@ Hence, if Process dies, the coroner process gets a message

@ Tuples beginning with atom ’EXIT’

{’EXIT’,From,Reason} ->

io:format(""p died: “p"n",[From,Reason]),
io:format("Please start another ome."n"),
loop(Q);

@ PID of dying process is printed together with the reason

@ The user is asked to start another process
PP 2018/19

Unit 17 — Erlang Processes 29/44



Monitoring Processes/4

@ After compiling the modules coroner and roulette, we create two
processes

> Coroner = spawn(fun coroner:loop/0).
<0.44.0>

> Gun = spawn(fun roulette:loop/0).
<0.46.0>

@ Then, we ask process Coroner to monitor process Gun

> Coroner ! {monitor,Gun}.
Monitoring process.
{monitor,<0.46.0>}

> Gun ! 3.

bang!

3

<0.46.0> died: {roulette,die,at,{14,42,57}}
Please start another one.

PP 2018/19 Unit 17 — Erlang Processes 30/44



ility through Process Links

Coroner

@ The module coroner does not do much at this point
@ [t only notices that the roulette process died
@ We are going to improve the module by

@ moving the creation of a new roulette process into this new process

@ automatically respawning a new roulette process if it gets killed
9 registering the roulette process ID with an atom called gun

@ So a user does not have to remember the PID to play

PP 2018/19 Unit 17 — Erlang Processes 31/44



Meet the Doctor/1

-module(doctor) .
-export ([loop/0]).

loop() ->
process_flag(trap_exit,true),
receive
new ->
io:format ("Creating and monitoring new roulette process.™n"),
register(gun,spawn_link(fun roulette:loop/0)),

loop(Q);
{’EXIT’,From,Reason} ->
io:format(""p died: ~p~n",[From,Reason]),
io:format ("Restarting. n"),
self() ! new,
loop();
o>
io:format ("Unexpected message received.™n"),
loop()

end.

PP 2018/19 Unit 17 — Erlang Processes 32/44



Meet the Doctor/2

@ spawn_link creates a new process and links it to the calling process
@ Hence, doctor will be notified whenever a roulette process dies

@ register(gun,...) binds the PID returned by spawn_link to the atom
gun
@ Users can now send messages to this process by using gun ! message

@ For restarting a roulette process, the doctor process just sends the
message new to itself

@ Now let's have a look

PP 2018/19 Unit 17 — Erlang Processes 33/44



Meet the Doctor/3

> Doc = spawn(fun doctor:loop/0).
<0.44.0>

> Doc ! new.
Creating and monitoring new process.
new

>gun ! 1.
click.
1

> gun ! 3.
bang!
3

<0.48.0> died: {roulette,die,at,{15,0,32}}

Restarting.
Creating and monitoring new process.

> gun ! 1.
click.
1

PP 2018/19 Unit 17 — Erlang Processes

34/44



Managing Subsystems/1

@ Usually a supervisor monitors more
than one process

@ Typically it manages different
groups of processes

@ These subsystems can then be
cleanly restarted

@ On the right hand side, one of the / : B
processes in the left subgroup

g
e,
|
crashes ... SO0 C

@ ... the whole subgroup is
terminated and restarted

PP 2018/19 Unit 17 — Erlang Processes 35/44



Managing Subsystems/2

@ Usually you should build a whole supervision tree with multiple layers of
supervisors

@ This gives you a finer granularity in terms of “rebooting” certain parts of
the system

PP 2018/19 Unit 17 — Erlang Processes 36/44



Ping Pong Example/1

@ Lets write an Erlang program that creates two processes ping and pong
which send messages to each other a number of times.

@ The process ping stars and terminates the game.

@ After sending a message to pong, ping waits for a message from pong,
before the next round is played (recursive call with parameter N-1).

-module (pingpong) .
-export([start/1, ping/2, pong/0]).

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("Ping finished™n", []1);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong -> io:format("Ping received pong™n", [])
end,
ping(N - 1, Pong PID).

PP 2018/19 Unit 17 — Erlang Processes 37/44



Ping Pong Example/2

@ The process pong waits for messages from ping

@ If the atom finished is received the process terminates
o Otherwise, a recursive call keeps the process running for the next round

pong () ->
receive

finished —>
io:format ("Pong finished™n", [1);

{ping, Ping PID} ->
io:format ("Pong received ping™n", [1),
Ping PID ! pong,
pong ()

end.
@ This function starts the game with a user-defined parameter N

start(N) ->
Pong PID = spawn(pingpong, pong, [1),
spawn(pingpong, ping, [N, Pong PID]).

PP 2018/19 Unit 17 — Erlang Processes 38/44



Reliability through Process Links

Ping Pong Example/3

@ Lets now play ping poing

> c(pingpong) .
{ok,pingpong}

> pingpong:start(3).
Pong received ping
<0.55.0>

Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Ping finished

Pong finished

>

PP 2018/19

Unit 17 — Erlang Processes

39/44



Client-Server Calculator Example/1

@ A simple client-server system that provides a math calculator service.

-module (mathserver) .
—-export ([loop/0,client/2]).

loop() ->

receive
{From,{add, A, B}} -> From!A+B, loop();
{From,{mul, A, B}} -> From!Ax*B, loop();
{From,{minus, A, B}} -> From!A-B, loop();
{From,{division, A, B}} -> From!A/B, loop();
{From,_} -> From!nop, loop()

end.

client (Pid,Request)->
Pid ! self(), Request,
receive
Response ->io:format("Response is “p™n" , [Response])
end.

PP 2018/19 Unit 17 — Erlang Processes 40/44



Client-Server Calculator Example/2

@ Here is how to use the math calculator

> c(mathserver).
ok,mathserver

> M = spawn(mathserver, loop, []).
<0.41.0>

> mathserver:client(M, add, 1, 2).
Response is 3
ok

> mathserver:client(M, mul, 1, 2).
Response is 2
ok

> mathserver:client(M, division, 4, 2).
Response is nop
ok

PP 2018/19 Unit 17 — Erlang Processes 41/44



Reliability through Process Links

Open Telecom Platform

@ We were only able to cover a small part of Erlang
@ The Open Telecom Platform (OTP) is a powerful package that helps
Erlang reach its full potential

@ It's not specific to telecom applications and helps you in
@ writing stable and reliable code (OTP has been thoroughly used and tested)
@ providing frameworks for applications
@ offering functionality for code upgrades

PP 2018/19 Unit 17 — Erlang Processes 42/44



-
Summary — Strengths of Erlang

@ The shared-nothing, message-passing process model is very powerful when
it comes to implementing concurrency

@ Concurrency means any execution order (e.g., parallel or serial) without
compromising the correctness of the program

@ Erlang offers a lot in terms of reliability and fault tolerance
@ Controlled crash
@ Erlang was developed with the aim to achieve industrial-strength high
performance

@ Erlang processes run on a virtual maching that automatically adapts to the
underlying hardware

@ Runs on as many cores/machines as available

@ Language supports some powerful features of functional and logic-oriented
languages

@ e.g., pattern matching, optimized for tail-recursion

@ OTP provides a lot of functionality to make it easier to implement
concurrent applications

PP 2018/19 Unit 17 — Erlang Processes 43/44



-
Summary — Weaknesses of Erlang

@ The syntax of the language is a weird mix of Prolog with functional
language constructs thrown in

@ While Erlang shines when it comes to concurrency, programming simpler
(serial) things tend to be harder than in other languages

PP 2018/19 Unit 17 — Erlang Processes 44/44



	Basic Concepts of Processes
	Messaging
	Reliability through Process Links

