
Programming Paradigms
Unit 15 — Concurrent Programming with Erlang

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 1/32

Outline

1 Serial vs. Parallel Programs

2 Basic Concepts of Erlang

3 Lists and Tuples

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 2/32

Serial vs. Parallel Programs

Outline

1 Serial vs. Parallel Programs

2 Basic Concepts of Erlang

3 Lists and Tuples

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 3/32

Serial vs. Parallel Programs

Serial vs. Parallel/1

The programming world used to be much simpler

Almost all programs ran in a serial fashion on a single CPU
A programmer would not have to deal with parallelism or concurrency

Developers could rely on the fact that more powerful CPUs would appear,
making their code run faster

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 4/32

Serial vs. Parallel Programs

Serial vs. Parallel/2

However, things have changed

At some point we will reach the limits of Moore’s law
Designers of CPUs are facing severe problems with power dissipation (due to
high integration)

One solution to these problems is to build multi-core and/or distributed
systems

In order to fully exploit these systems, programmers have to embrace a
different programming style

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 5/32

Serial vs. Parallel Programs

Multi-threaded Programming

In many programming languages, such as Java or C++, threads were
introduced to parallelize programs

This should lead to better performance, as multiple cores can actually be
utilized

However, there is a downside to multi-threading

Threads share resources
Resource contention leads to bottlenecks
Writing (and debugging) multi-threaded code is very complex

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 6/32

Serial vs. Parallel Programs

Concurrent Programming in Erlang

We are going to look at Erlang, a programming
language specifically designed for concurrency

Erlang is a compiled concurrent functional
programming language (with some roots in Prolog)

The name has two interpretations:

Ericsson Language; it was originally developed at Ericsson
Agner Karup Erlang was a Danish mathematician, whose work was used in
telephone network analysis

In 1986, Joe Armstrong developed the first version at Ericsson

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 7/32

Serial vs. Parallel Programs

Concurrency

Put simply, concurrent means that tasks can be done in any order without
compromising the results

For example, shuffling two decks of cards: can be done in any order or even
in parallel

This is not the same as parallelism:

concurrent tasks do not have to be done in parallel;
however, we can run them in parallel without any negative effects.

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 8/32

Serial vs. Parallel Programs

Performance

Performance was not one of the main features of the languages we looked
at so far

Erlang was developed with high performance in mind

It has to satisfy the requirements of telecom companies:

Hundreds of thousands of processes have to run in a highly distributed
environment
Processes should not be able to corrupt each other’s memory
Systems cannot be taken down to upgrade software, i.e., hot-swapping of
code has to be possible
Has to be able to deal with crashing processes reliably

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 9/32

Serial vs. Parallel Programs

Erlang in Industry

Erlang has been progressed in the 1990s to become an industry-strength
language that today is used in many different projects

CouchDB, a document-based database
SimpleDB, a distributed database that is part of Amazon Web Services
Mnesia, a distributed database
Zotonic, a content management system and web framework
Chat service in Facebook, handling more than 200 million active users
Messaging servers in WhatsApp, achieving up to 2 million connected users
per serve
T-Mobile uses Erlang in its SMS and authentication systems
Goldman Sachs, high-frequency trading programs

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 10/32

Basic Concepts of Erlang

Outline

1 Serial vs. Parallel Programs

2 Basic Concepts of Erlang

3 Lists and Tuples

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 11/32

Basic Concepts of Erlang

Processes

The basic building block of Erlang is a process

Can be seen as an agent running a piece of code
This is done concurrently to other processes, every process running at its
own pace

Processes don’t share any resources

Frequently also referred to as lightweight processes

Erlang processes/programs run on a virtual machine that automatically
adapts to the underlying hardware

Runs on multiple cores, multiple CPUs in a distributed system, or on a
single CPU

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 12/32

Basic Concepts of Erlang

Process Communication

Sometimes processes have to interact with each other

This is done via message passing, i.e., copying some information and
sending it to another process

This happens even if both processes are running on the same machine

This makes it possible to distribute Erlang applications quite easily

Has the downside that things that are simple to formulate in other
languages are a bit harder in Erlang

As a programmer you have to start thinking in terms of concurrent
processes

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 13/32

Basic Concepts of Erlang

Fault Tolerance

Rather than trying to achieve perfect error handling, Erlang follows the
philosophy of “Let it crash”

Part of the system goes down in a controlled way, and then is restarted
from a clean state

The event leading to a crash and the crash are logged, so this can be
analyzed to find a possible fault

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 14/32

Basic Concepts of Erlang

Functional Programming

Erlang borrows a couple of concepts from functional programming, though
it is not a “pure” functional language

In particular, “functional programming” in Erlang means

Programs are built entirely out of functions, no objects anywhere
Functions will (usually) return the same values, given the same inputs
Functions will (usually) not have side effects, i.e., they don’t modify
program state
A variable can only be assigned a value once

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 15/32

Basic Concepts of Erlang

Getting Started in Erlang

Although most programs will be compiled, we’ll start out with the
interactive Erlang shell

Start the Erlang interpreter at the command line by typing erl, like this:

carbon$ erl

Erlang R16B03 (erts-5.10.4) ...

Eshell V5.10.4 (abort with ˆG)
1>

Now you can execute basic statements

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 16/32

Basic Concepts of Erlang

Hello World in Erlang

Here’s the obligatory “Hello World!” program in Erlang

> io:format("Hello World!\n").
Hello World!

ok

Each statement ends with a period (’.’) at the end!

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 17/32

Basic Concepts of Erlang

Standard Data Types and Operators

Erlang knows the standard data types and operators

> 2 + 2.

4

> 2 + 2.0.

4.0

> "This is a string".

"This is a string"

Erlang has strong typing

> 4 + "string".

** exception error:

bad argument in an arithmetic expression

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 18/32

Basic Concepts of Erlang

Atoms

Erlang has some similarities with Prolog

An atom is a literal (constant with a name) and is used to refer to
real-world things

An atom starts with a lower-case letter, or need to be enclosed in single
quotes (’) if it does not begin with a lower-case letter or if it contains a
space

> hello.

hello

> phone number.

phone number

> ’Monday’.

’Monday’

> ’phone number’.

’phone number’

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 19/32

Basic Concepts of Erlang

Variables and Pattern Matching/1

Here are some more similarities to Prolog

Variables start with an upper-case letter

Pattern matching is used to bind variable to values using the = operator
The = operator is the match operator (and not an assignment operator)

The left-hand side pattern is matched against a right-hand side term
If successful, any unbound variables in the pattern become bound

> X.

** 1: variable ’X’ is unbound **

> X = 2.

2

> X + 1.

3

Variables can only be instantiated once (similar to Haskell)

> X = 1.

** exception error: no match of right hand side value 1

Pattern matching can also be used with more complex structures (see later)

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 20/32

Basic Concepts of Erlang

Variables and Pattern Matching/2

Notice that the pattern with the unbound variables must be on the
left-hand side of the match operator

i.e., the expression on the right-hand side must be fully instantiated

> X = 1.

1

> 1 = Y

variable ’Y’ is unbound

Variables cannot be matched to variables (unlike in Prolog)

> X = Y.

variable ’Y’ is unbound

The right-hand term can also be an expression that is first evaluated

> X = 1 + 2.

3

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 21/32

Lists and Tuples

Outline

1 Serial vs. Parallel Programs

2 Basic Concepts of Erlang

3 Lists and Tuples

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 22/32

Lists and Tuples

Lists/1

Erlang knows lists, which similar to Prolog are enclosed in brackets

> [1,2,3].

[1,2,3]

> [72,97,32,72,97,32,72,97].

"Ha Ha Ha"

> [1,2,72,97,32,72,97,32,72,97].

[1,2,72,97,32,72,97,32,72,97].

> [9,12].

"\t\f"

Printable characters (e.g., ≥ 32 and ≤ 126) are shown (if all elements are
printable)

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 23/32

Lists and Tuples

Lists/2

A list can contain any number of elements, with possibly different types

> [1,2,3,a,b,c,"hello"].

[1,2,3,a,b,c,"hello"]

Lists can be nested, containing other lists

> [this, list, contains, a, [list]].

[this, list, contains, a, [list]]

> [1, [3, [5]]].

[1, [3, [5]]]

The function length() returns the length of a list

> length([this, list, contains, a, [list]]).

5

> length([]).

0

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 24/32

Lists and Tuples

Concatenating and Subtracting Lists

The list concatenation operator ++ appends its second argument to its first
and returns the resulting list.

> [1,2,3]++[a,b,c].

[1,2,3,a,b,c]

The list subtraction operator -- produces the difference of two lists as
follows:

for each element in the second argument, the first occurrence of this
element (if any) is removed from the first argument.

> [1,2,3,2,1,2]--[2,1,2].

[3,1,2]

> [2,1,2]--[1,2,3,2,1,2].

[]

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 25/32

Lists and Tuples

Lists and Pattern Matching

Pattern matching can be applied to lists with head and tail elements

Like in Prolog, the "|" operator separates the head from the tail

> [Head|Tail] = [1,2,3,4].

[1,2,3,4]

> Head.

1

> Tail.

[2,3,4]

> [A,B,C] = [1,2,3]

[1,2,3]

> A.

1

Differently to Prolog, Erlang will not do an exhaustive search to match all
possible values

There is no backtracking to bind variables to other values such as in Prolog

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 26/32

Lists and Tuples

List Comprehension/1

Similar to Haskell, Erlang supports list comprehension

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].

[a,4,b,5,6]

i.e., the list of X such that X is taken from the list [1,2,a,...] and X is
greater than 3

The expression X <- [1,2,a,...] is a generator

The expression X > 3 is a filter

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 27/32

Lists and Tuples

List Comprehension/2

An additional filter, integer(X), can be added to restrict the result to
integers

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].

[4,5,6]

Generators can be combined, e.g., the Carteasian product of two lists

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].

[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 28/32

Lists and Tuples

Tuples/1

Tuples are fixed-length (heterogeneous) lists and enclosed in curly braces

> Origin = {0, 0, "null point"}.
{0, 0, "null point"}.

Tuples can be nested

> Person = {person, {name,"Joe Smith"}, {age,24}}.
{person, {name,"Joe Smith"}, {age,24}}

As shown in this example, tuples are often used as maps or hashes

Atoms are used for the hash keys and strings (or other data types) for the
values

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 29/32

Lists and Tuples

Tuples/2

The function element/2 extracts individual elements from a tuple

> element(1,Person)

person

> element(2,Person)

{name,"Joe Smith"}

The function setelement/3 sets an element in a tuple

> P2 = setelement(3,Person,{age,25}).
{person, {name,"Joe Smith"}, {age,25}}

> P2.

{person, {name,"Joe Smith"}, {age,25}}

> Person.

{person, {name,"Joe Smith"}, {age,24}}

Notice that the variable Person has not been modified, only the new
variable P2

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 30/32

Lists and Tuples

Tuples/3

The function tuple size returns the size of a tuple

> tuple size(Person)

3

> tuple size({})
0

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 31/32

Lists and Tuples

Tuples and Pattern Matching

Pattern matching can be used to extract values from a tuple

> Person = {person, {name,"Joe Smith"}, {age,24}}.
{person, {name,"Joe Smith"}, {age,24}}

> {person, {name,Name}, {age,Age}} = Person

{person, {name,"Joe Smith"}, {age,24}}

> Name.

"Joe Smith"

> Age.

24

In the first line, variable Person has been bound to a tuple

In the second line, the variables Name and Age are bound to a string and a
number, respectively

PP 2018/19 Unit 15 – Concurrent Programming with Erlang 32/32

	Serial vs. Parallel Programs
	Basic Concepts of Erlang
	Lists and Tuples

