
Programming Paradigms
Unit 14 — Functors and Monads

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 14 – Functors and Monads 1/23



Outline

1 Functors Revisited

2 Monads

PP 2018/19 Unit 14 – Functors and Monads 2/23



Functors Revisited

Outline

1 Functors Revisited

2 Monads

PP 2018/19 Unit 14 – Functors and Monads 3/23



Functors Revisited

Beefing Up Functors/1

What happens if we want to use a function that takes two parameters with
a functor?

For example, lets multiply two values Just 2 and Just 5

(Just 2) * (Just 5)

This does not work, as the multplication operator * expects two numerical
values, not two values wrapped in Maybe

Again: pure function *, impure parameters Just 2 and Just 5

We could push * into one of the functors

> :t fmap (*) (Just 2)

fmap (*) (Just 2) :: Num a => Maybe (a -> a)

PP 2018/19 Unit 14 – Functors and Monads 4/23



Functors Revisited

Beefing Up Functors/2

That means, we now have a function wrapped in a Just

We could also rewrite the above as

Just (*2)

This is a partially evaluated function (remember currying!)

But we still have a problem: How do we apply a function that is wrapped

inside a functor to values inside a functor box?

fmap only takes ordinary functions and maps them over a functor (box)

We saw how to map functions over a Maybe a, a list [a], a tree Tree a, etc.

However, fmap does not work in the following case:

fmap (Just(*2)) (Just 5)

So, what do we do? Rewrite all our multi-parameter functions for functors?

PP 2018/19 Unit 14 – Functors and Monads 5/23



Functors Revisited

Type Class Applicative

Not really, there is a type class Applicative with two important functions

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

The function pure takes a value of any type and returns an applicative
functor f with that value inside it

i.e., pure takes a value and wraps it in an applicative functor box

The function <*>, also called “ap” or “apply”,
takes a functor f that contains a function
and another functor that contains a’s, and
extracts the function from the first functor and maps it over the second one

This is exactly what we are looking for, remember:

> :t Just (*2)

Just (*2) :: Num a => Maybe (a -> a)

> :t Just 5

Just 5 :: Num a => Maybe a

Compare (<*>) to fmap :: (a -> b) -> f a -> f b

PP 2018/19 Unit 14 – Functors and Monads 6/23



Functors Revisited

Using Applicative Functors/1

Maybe is an instance of Applicative, so we can use its functions right out
of the box

Well, we have to import the module Control.Applicative first . . .

> import Control.Applicative

> (Just (*2)) <*> (Just 5)

Just 10

Success!

This also works for values of Nothing

> (Just (*2)) <*> Nothing

Nothing

> Nothing <*> (Just 5)

Nothing

PP 2018/19 Unit 14 – Functors and Monads 7/23



Functors Revisited

Using Applicative Functors/2

As mentioned above, pure “wraps” a pure value into an impure context
(an applicative functor box)

We cannot combine pure and impure values in the same computation

With applicative functors, we wrap the pure value into a (default) impure
context:

> (Just (*2)) <*> 5

does not work

> (Just (*2)) <*> (pure 5)

Just 10

does work

PP 2018/19 Unit 14 – Functors and Monads 8/23



Functors Revisited

Using Applicative Functors/3

This does not stop at two parameters

With applicative functors we can chain any number of functors

pure f <*> x <*> y <*> z <*> ...

So, for example we define a function summing up three numbers

sum3 x y z = x + y + z

and then use it in a functor context

> pure sum3 <*> Just 4 <*> Just 9 <*> Just 2

Just 15

> pure sum3 <*> Just 4 <*> Nothing <*> Just 2

Nothing

PP 2018/19 Unit 14 – Functors and Monads 9/23



Functors Revisited

Applicative Instance Implementation for Maybe

This is how Maybe is defined as an instance of the type class Applicative

instance Applicative Maybe where

pure = Just

Nothing <*> = Nothing

(Just f) <*> something = fmap f something

The function to wrap a value inside a context is Just (recall that value
constructors are functions)

If the first parameter to (<*>) is Nothing, we cannot extract a function
out of it, so the result is Nothing

If the first parameter is Just with a function f inside, this function is
mapped over the second parameter

PP 2018/19 Unit 14 – Functors and Monads 10/23



Functors Revisited

More Examples of Using Applicative Functors

Here are some more examples

> Just (+3) <*> Just 9

Just 12

> pure (+3) <*> Just 10

Just 13

> Just (++" world") <*> pure "Hello"

Hello world

> Just (++" world") <*> "Hello"

... error!

> Just (++" world") <*> Nothing

Nothing

> Nothing <*> Just "Hi"

Nothing

Notice that pure and Just have the same effect here

PP 2018/19 Unit 14 – Functors and Monads 11/23



Monads

Outline

1 Functors Revisited

2 Monads

PP 2018/19 Unit 14 – Functors and Monads 12/23



Monads

Monads

We will now introduce the concept of monads with the help of an example

Let’s assume x persons want to divide up y things:

divideUp :: Int -> Int -> Int

divideUp x y = div y x

This is not going to work, as the following should fail (but it doesn’t)

> divideUp 5 12

2

PP 2018/19 Unit 14 – Functors and Monads 13/23



Monads

Second Try

We could give back Maybe Int

If the function fails, we return Nothing

Otherwise, we return Just ”the result”

divideAmong :: Int -> Int -> Maybe Int

divideAmong x y =

if mod y x /= 0 then

Nothing

else

Just (div y x)

> divideAmong 5 12

Nothing

> divideAmong 6 12

Just 2

So far, so good

PP 2018/19 Unit 14 – Functors and Monads 14/23



Monads

Further Divisions/1

What happens if we want to divide up one lot among further persons, i.e.:

divideAmong 3 (divideAmong 2 12)

This is not going to work, as divideAmong expects pure Ints as
parameters, while it returns a Maybe functor (i.e., a Maybe box containing
the value)

Let’s try using an applicative functor:

> pure (divideAmong) <*> Just 2 <*> Just 12

Just (Just 6)

Nope, this adds yet another layer . . .

PP 2018/19 Unit 14 – Functors and Monads 15/23



Monads

Further Divisions/2

Is implementing this manually the only option left?

divideAmongTwice :: Int -> Int -> Int -> Maybe Int

divideAmongTwice x y z =

if mod y x /= 0 then

Nothing

else

if mod (div y x) z /= 0 then

Nothing

else

Just (div (div y x) z)

Keeping track of every step that can fail is very awkward and error-prone!

Monads can help out here

PP 2018/19 Unit 14 – Functors and Monads 16/23



Monads

Monads/1

Monads are a type class with two important functions:

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The first function return wraps a pure value a into an impure context,
termed a monad m a

Works like pure for applicative functors

The second function (>>=), called bind,

takes a monadic value m a, i.e., a value of type a inside a monadic context
and a function a -> m b that takes a pure value a and returns a monadic
value m b

and applies the function to the first parameter (or feeds the parameter into
the function), returning a monadic value m b

That is, monads allow sequenced actions, i.e., to put together two actions,
returning the result of the second one

PP 2018/19 Unit 14 – Functors and Monads 17/23



Monads

Monads/2

Now we can chain together calls of the function

> divideAmong 2 120 >>= divideAmong 3 >>= divideAmong 5

Just 4

And Haskell will keep track of any failures on the way for us

> divideAmong 5 12 >>= divideAmong 3 >>= divideAmong 5

Nothing

> divideAmong 6 12 >>= divideAmong 3 >>= divideAmong 5

Nothing

PP 2018/19 Unit 14 – Functors and Monads 18/23



Monads

Do Notation

Monads are so important in Haskell that they have their own special
notation: the do notation

This notation allows you to chain together monadic function calls in a
seemingly imperative way

routine :: Maybe Int

routine = do

x <- divideAmong 2 120

y <- divideAmong 3 x

divideAmong 4 y

routine

Just 5

The statements are executed line by line

With <- we bind a monadic Maybe value (impure) to a variable (pure)

The result of the final execution is the result of routine

PP 2018/19 Unit 14 – Functors and Monads 19/23



Monads

IO is a Monad

Yes, you have seen this notation before in the context of IO

And, yes, this means that IO is a monad!

It doesn’t end there:

There are monads for representing state
For dealing with indeterminism
Even lists can be interpreted as monads

There are lots of other things to say about monads

All instances of monads need to follow certain laws (instances of
(applicative) functors as well)

But we are going to stop here

PP 2018/19 Unit 14 – Functors and Monads 20/23



Monads

Mathematical Foundation

The concepts used in Haskell did not just fall from the sky

They are rooted in mathematical theory, category theory to be more specific

In category theory, mathematicians try to capture the underlying properties
of mathematical concepts

Expressed in simplified terms, it is like finding and defining “type classes”
for mathematical structures

PP 2018/19 Unit 14 – Functors and Monads 21/23



Summary – Strengths of Haskell

The type system (strong/static) prevents you from making a lot of
mistakes

Nevertheless, it is quite flexible when it comes to extending it with
user-defined types

Haskell offers a lot in terms of expressiveness, yielding very concise code
Haskell is a pure functional language, providing referential transparency

function give the same output for the same input
functions have no side effects
a variable can only be assigned a value once

Hasekell uses curried functions in combination with partial evaluation of
functions,

i.e., internally, functions have only one input parameter;
functions with multiple input parameters are decomposed into a sequence of
partial functions, each having one parameter

It is easier to show the correctness of your programs, due to the pure
functional style
It does lazy evaluation, which gives you an additional tool for writing
programs efficiently
It supports list comprehension and infinite lists

PP 2018/19 Unit 14 – Functors and Monads 22/23



Summary – Weaknesses of Haskell

The pure functional paradigm also has a price: dealing with messy
real-world situations such as IO and state is not easy

Haskell has a steep learning curve, i.e., it takes a while to learn how to
wield the power of Haskell

This may also explain the fact that the Haskell community is relatively small

PP 2018/19 Unit 14 – Functors and Monads 23/23


	Functors Revisited
	Monads

