Programming Paradigms
Unit 14 — Functors and Monads

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE
Outline

1. Functors Revisited
2. Monads
Outline

1 Functors Revisited

2 Monads
What happens if we want to use a function that takes two parameters with a functor?

For example, let's multiply two values Just 2 and Just 5

\[(\text{Just } 2) \times (\text{Just } 5)\]

This does not work, as the multiplication operator \(\times\) expects two numerical values, not two values wrapped in Maybe.

Again: pure function \(\times\), impure parameters Just 2 and Just 5

We could push \(\times\) into one of the functors

\[
\text{fmap } (*) \text{ (Just } 2)\\
fmap (*) \text{ (Just } 2) :: \text{ Num } a \Rightarrow \text{ Maybe } (a \rightarrow a)
\]
Beefing Up Functors/2

- That means, we now have a function wrapped in a `Just`
- We could also rewrite the above as `Just (*2)`

This is a partially evaluated function (remember currying!)

But we still have a problem: *How do we apply a function that is wrapped inside a functor to values inside a functor box?*

- `fmap` only takes *ordinary functions* and maps them over a functor (box)
 - We saw how to map functions over a `Maybe a`, a list `[a]`, a tree `Tree a`, etc.
- However, `fmap` does **not** work in the following case:

 `fmap (Just(*2)) (Just 5)`

- So, what do we do? Rewrite all our multi-parameter functions for functors?
Type Class Applicative

- Not really, there is a type class Applicative with two important functions:
 - `pure :: a -> f a`
 - `(<>*) :: f (a -> b) -> f a -> f b`

- The function `pure` takes a value of any type and returns an applicative functor `f` with that value inside it:
 - i.e., `pure` takes a value and wraps it in an applicative functor box.

- The function `(<*)`, also called “ap” or “apply”,
 - takes a functor `f` that contains a function
 - and another functor that contains `a`s, and
 - extracts the function from the first functor and maps it over the second one.

- This is exactly what we are looking for, remember:

```
> :t Just (*2)
Just (*2) :: Num a => Maybe (a -> a)

> :t Just 5
Just 5 :: Num a => Maybe a
```

- Compare `(<>*)` to `fmap :: (a -> b) -> f a -> f b`
Maybe is an instance of Applicative, so we can use its functions right out of the box.

- Well, we have to import the module Control.Applicative first...

```haskell
> import Control.Applicative

> (Just (*2)) <*> (Just 5)
Just 10

Success!
```

This also works for values of Nothing

```haskell
> (Just (*2)) <*> Nothing
Nothing

> Nothing <*> (Just 5)
Nothing
```
As mentioned above, pure “wraps” a pure value into an impure context (an applicative functor box)

We cannot combine pure and impure values in the same computation

With applicative functors, we wrap the pure value into a (default) impure context:

> (Just (*2)) <*> 5

does not work

> (Just (*2)) <*> (pure 5)
Just 10

does work
This does not stop at two parameters

With applicative functors we can chain any number of functors

\[\text{pure } f \ <*\> x \ <*\> y \ <*\> z \ <*\> \ldots \]

So, for example we define a function summing up three numbers

\[\text{sum3 } x \ y \ z = x + y + z \]

and then use it in a functor context

\[
> \text{pure sum3 } <*\> \text{Just 4 } <*\> \text{Just 9 } <*\> \text{Just 2 }
> \text{Just 15}
\]

\[
> \text{pure sum3 } <*\> \text{Just 4 } <*\> \text{Nothing } <*\> \text{Just 2 }
> \text{Nothing}
\]
This is how Maybe is defined as an instance of the type class Applicative:

```haskell
instance Applicative Maybe where
    pure = Just
    Nothing <*> _ = Nothing
    (Just f) <*> something = fmap f something
```

- The function to wrap a value inside a context is `Just` (recall that value constructors are functions).
- If the first parameter to `(<*>)` is `Nothing`, we cannot extract a function out of it, so the result is `Nothing`.
- If the first parameter is `Just` with a function `f` inside, this function is mapped over the second parameter.
More Examples of Using Applicative Functors

- Here are some more examples

 \[\text{Just (+3) <*> Just 9} \]
 Just 12

 \[\text{pure (+3) <*> Just 10} \]
 Just 13

 \[\text{Just (+" world") <*> pure "Hello"} \]
 Hello world

 \[\text{Just (+" world") <*> "Hello"} \]
 ... error!

 \[\text{Just (+" world") <*> Nothing} \]
 Nothing

 \[\text{Nothing <*> Just "Hi"} \]
 Nothing

- Notice that pure and Just have the same effect here
Outline

1 Functors Revisited

2 Monads
We will now introduce the concept of monads with the help of an example. Let’s assume \(x \) persons want to divide up \(y \) things:

\[
\text{divideUp} :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
\text{divideUp} \ x \ y = \text{div} \ y \ x
\]

This is not going to work, as the following should fail (but it doesn’t):

\[
> \text{divideUp} 5 12 \\
2
\]
Second Try

- We could give back `Maybe Int`
 - If the function fails, we return `Nothing`
 - Otherwise, we return `Just "the result"

```haskell
divideAmong :: Int -> Int -> Maybe Int
divideAmong x y =
  if mod y x /= 0 then
    Nothing
  else
    Just (div y x)
```

> divideAmong 5 12
Nothing

> divideAmong 6 12
Just 2

- So far, so good
What happens if we want to divide up one lot among further persons, i.e.:

```
divideAmong 3 (divideAmong 2 12)
```

This is not going to work, as `divideAmong` expects pure `Ints` as parameters, while it returns a `Maybe` functor (i.e., a `Maybe` box containing the value).

Let's try using an applicative functor:

```
> pure (divideAmong) <*> Just 2 <*> Just 12
Just (Just 6)
```

Nope, this adds yet another layer ...
Is implementing this manually the only option left?

```haskell
divideAmongTwice :: Int -> Int -> Int -> Maybe Int
divideAmongTwice x y z =
  if mod y x /= 0 then
    Nothing
  else
    if mod (div y x) z /= 0 then
      Nothing
    else
      Just (div (div y x) z)
```

Keeping track of every step that can fail is very awkward and error-prone!

Monads can help out here
Monads are a type class with two important functions:

\[\text{return} :: a \rightarrow m\ a \]
\[(\gg\gg=) :: m\ a \rightarrow (a \rightarrow m\ b) \rightarrow m\ b \]

The first function \texttt{return} wraps a pure value \texttt{a} into an impure context, termed a monad \texttt{m\ a}.

- Works like \texttt{pure} for applicative functors

The second function \texttt{(\gg\gg=}), called \texttt{bind},

- takes a monadic value \texttt{m\ a}, i.e., a value of type \texttt{a} inside a monadic context and a function \texttt{a \rightarrow m\ b} that takes a pure value \texttt{a} and returns a monadic value \texttt{m\ b}
- and applies the function to the first parameter (or feeds the parameter into the function), returning a monadic value \texttt{m\ b}

That is, monads allow sequenced actions, i.e., to put together two actions, returning the result of the second one.
Now we can chain together calls of the function

> divideAmong 2 120 >>= divideAmong 3 >>= divideAmong 5
Just 4

And Haskell will keep track of any failures on the way for us

> divideAmong 5 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
> divideAmong 6 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
Monads are so important in Haskell that they have their own special notation: the do notation.

This notation allows you to chain together monadic function calls in a seemingly imperative way.

```haskell
routine :: Maybe Int
routine = do
    x <- divideAmong 2 120
    y <- divideAmong 3 x
    divideAmong 4 y

routine
Just 5
```

- The statements are executed line by line.
- With `<-` we bind a monadic `Maybe` value (impure) to a variable (pure).
- The result of the final execution is the result of `routine`.
IO is a Monad

- Yes, you have seen this notation before in the context of IO
- And, yes, this means that IO is a monad!
- It doesn’t end there:
 - There are monads for representing state
 - For dealing with indeterminism
 - Even lists can be interpreted as monads
- There are lots of other things to say about monads
 - All instances of monads need to follow certain laws (instances of (applicative) functors as well)
- But we are going to stop here
Mathematical Foundation

- The concepts used in Haskell did not just fall from the sky
- They are rooted in mathematical theory, category theory to be more specific
- In category theory, mathematicians try to capture the underlying properties of mathematical concepts
- Expressed in simplified terms, it is like finding and defining “type classes” for mathematical structures
Summary – Strengths of Haskell

- The **type system** (strong/static) prevents you from making a lot of mistakes
 - Nevertheless, it is quite **flexible** when it comes to extending it with user-defined types
- Haskell offers a lot in terms of **expressiveness**, yielding very **concise code**
- Haskell is a **pure** functional language, providing **referential transparency**
 - Functions give the same output for the same input
 - Functions have no side effects
 - A variable can only be assigned a value once
- Haskell uses **curried functions** in combination with **partial evaluation** of functions,
 - I.e., internally, functions have only one input parameter;
 - Functions with multiple input parameters are decomposed into a sequence of partial functions, each having one parameter
- It is easier to show the **correctness** of your programs, due to the **pure functional** style
- It does **lazy evaluation**, which gives you an additional tool for writing programs efficiently
- It supports **list comprehension** and **infinite lists**
Summary – Weaknesses of Haskell

- The pure functional paradigm also has a price: dealing with messy real-world situations such as IO and state is not easy.
- Haskell has a steep learning curve, i.e., it takes a while to learn how to wield the power of Haskell.
- This may also explain the fact that the Haskell community is relatively small.