Programming Paradigms
Unit 14 — Functors and Monads

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science
IDSE
Outline

1 Functors Revisited

2 Monads
Outline

1 Functors Revisited

2 Monads
What happens if we want to use a function that takes two parameters with a functor?

For example, let's multiply two values Just 2 and Just 5

\[(\text{Just } 2) \times (\text{Just } 5)\]

This does not work, as the multiplication operator \(\times\) expects two numerical values, not two values wrapped in \textit{Maybe}

- Again: pure function \(\times\), impure parameters \text{Just} 2 and \text{Just} 5

We could push \(\times\) into one of the functors

\[
\begin{align*}
> :t \text{fmap } (\times) \text{ (Just 2)} \\
\text{fmap } (\times) \text{ (Just 2)} :: \text{Num } a \Rightarrow \text{Maybe } (a \rightarrow a)
\end{align*}
\]
That means, we now have a function wrapped in a `Just`
We could also rewrite the above as

\[\text{Just\n} (*2) \]

This is a partially evaluated function (remember currying!)

But we still have a problem: \textit{How do we apply a function that is wrapped inside a functor to values inside a functor box?}

\texttt{fmap} only takes \textbf{ordinary functions} and maps them over a functor (box)

- We saw how to map functions over a `Maybe a`, a list `[a]`, a tree `Tree a`, etc.

However, \texttt{fmap} does \textbf{not} work in the following case:

\[\text{fmap\n} (\text{Just(*2)})\n\ (\text{Just\n} 5) \]

So, what do we do? Rewrite all our multi-parameter functions for functors?
Type Class Applicative

Not really, there is a type class Applicative with two important functions

\[\text{pure} :: a \rightarrow f a \]
\[(<*>) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b \]

The function \text{pure} takes a value of any type and returns an applicative functor \(f \) with that value inside it

- i.e., \text{pure} takes a value and wraps it in an applicative functor box

The function \((<*>) \), also called “ap” or “apply”,

- takes a functor \(f \) that contains a function
- and another functor that contains \(a \)’s, and
- extracts the function from the first functor and maps it over the second one

This is exactly what we are looking for, remember:

\[
\begin{align*}
> & :t \text{Just} (*2) \\
\text{Just} (*2) & :: \text{Num } a \Rightarrow \text{Maybe } (a \rightarrow a) \\
> & :t \text{Just } 5 \\
\text{Just } 5 & :: \text{Num } a \Rightarrow \text{Maybe } a
\end{align*}
\]

Compare \((<*> \) to \text{fmap} :: (a \rightarrow b) \rightarrow f a \rightarrow f b \)
Maybe is an instance of Applicative, so we can use its functions right out of the box

- Well, we have to import the module Control.Applicative first...

```haskell
> import Control.Applicative
> (Just (*2)) <*> (Just 5)
Just 10
Success!
```

This also works for values of Nothing

```haskell
> (Just (*2)) <*> Nothing
Nothing
> Nothing <*> (Just 5)
Nothing
```
As mentioned above, `pure` “wraps” a pure value into an impure context (an applicative functor box)

We cannot combine pure and impure values in the same computation

With applicative functors, we wrap the pure value into a (default) impure context:

```haskell
> (Just (*2)) <*> 5
```

does not work

```haskell
> (Just (*2)) <*> (pure 5)
Just 10
```

does work
This does not stop at two parameters

With applicative functors we can chain any number of functors

\[
pure \ f \ \text{<*>} \ x \ \text{<*>} \ y \ \text{<*>} \ z \ \text{<*>} \ \ldots
\]

So, for example we define a function summing up three numbers

\[
\text{sum3} \ x \ y \ z = x + y + z
\]

and then use it in a functor context

\[
> \ pure \ \text{sum3} \ \text{<*>} \ Just \ 4 \ \text{<*>} \ Just \ 9 \ \text{<*>} \ Just \ 2
\]

\[
\text{Just} \ 15
\]

\[
> \ pure \ \text{sum3} \ \text{<*>} \ Just \ 4 \ \text{<*>} \ Nothing \ \text{<*>} \ Just \ 2
\]

\[
\text{Nothing}
\]
This is how `Maybe` is defined as an instance of the type class `Applicative`:

```haskell
instance Applicative Maybe where
    pure = Just
    Nothing <*> _ = Nothing
    (Just f) <*> something = fmap f something
```

- The function to wrap a value inside a context is `Just` (recall that value constructors are functions).
- If the first parameter to `(<<*)` is `Nothing`, we cannot extract a function out of it, so the result is `Nothing`.
- If the first parameter is `Just` with a function `f` inside, this function is mapped over the second parameter.
More Examples of Using Applicative Functors

Here are some more examples

> Just (+3) <*> Just 9
Just 12

> pure (+3) <*> Just 10
Just 13

> Just ("++" world") <*> "Hello"
Hello world

> Just ("++" world") <*> Nothing
Nothing

> Nothing <*> Just "Hi"
Nothing

Notice that pure and Just have the same effect here
Outline

1 Functors Revisited

2 Monads
We will now introduce the concept of monads with the help of an example. Let’s assume \(x \) persons want to divide up \(y \) things:

\[
\text{divideUp} :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
\text{divideUp} \ x \ y = \text{div} \ y \ x
\]

This is not going to work, as the following should fail (but it doesn’t):

\[
\texttt{> divideUp 5 12} \\
2
\]
Second Try

- We could give back `Maybe Int`
 - If the function fails, we return `Nothing`
 - Otherwise, we return `Just "the result"

```haskell
divideAmong :: Int -> Int -> Maybe Int
divideAmong x y =
    if mod y x /= 0 then
        Nothing
    else
        Just (div y x)
```

```haskell
> divideAmong 5 12
Nothing
> divideAmong 6 12
Just 2
```

- So far, so good
What happens if we want to divide up one lot among further persons, i.e.:

\[
\text{divideAmong } 3 \ (\text{divideAmong } 2 \ 12)
\]

This is not going to work, as `divideAmong` expects pure `Int`s as parameters, while it returns a `Maybe` functor (i.e., a `Maybe` box containing the value).

Let's try using an applicative functor:

\[
> \text{pure} \ (\text{divideAmong}) \ <\star> \ \text{Just} \ 2 \ <\star> \ \text{Just} \ 12 \\
\text{Just} \ (\text{Just} \ 6)
\]

Nope, this adds yet another layer ...
Monads

Further Divisions/2

Is implementing this manually the only option left?

```haskell
divideAmongTwice :: Int -> Int -> Int -> Maybe Int
divideAmongTwice x y z =
    if mod y x /= 0 then
        Nothing
    else
        if mod (div y x) z /= 0 then
            Nothing
        else
            Just (div (div y x) z)
```

Keeping track of every step that can fail is very awkward and error-prone!

Monads can help out here
Monads are a type class with two important functions:

\[
\text{return} :: \ a \rightarrow m\ a \\
(\gg\gg) :: m\ a \rightarrow (a \rightarrow m\ b) \rightarrow m\ b
\]

The first function \text{return} wraps a pure value \(a\) into an impure context, termed a monad \(m\ a\)
- Works like \text{pure} for applicative functors

The second function \((\gg\gg)\), called \text{bind},
- takes a monadic value \(m\ a\), i.e., a value of type \(a\) inside a monadic context
- and a function \(a \rightarrow m\ b\) that takes a pure value \(a\) and returns a monadic value \(m\ b\)
- and applies the function to the first parameter (or feeds the parameter into the function), returning a monadic value \(m\ b\)

That is, monads allow sequenced actions, i.e., to put together two actions, returning the result of the second one
Now we can chain together calls of the function

```haskell
> divideAmong 2 120 >>= divideAmong 3 >>= divideAmong 5
Just 4
```

And Haskell will keep track of any failures on the way for us

```haskell
> divideAmong 5 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
> divideAmong 6 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
```
Do Notation

- Monads are so important in Haskell that they have their own special notation: the `do` notation
- This notation allows you to chain together monadic function calls in a seemingly imperative way

```haskell
routine :: Maybe Int
routine = do
    x <- divideAmong 2 120
    y <- divideAmong 3 x
    divideAmong 4 y

routine
Just 5
```

- The statements are executed line by line
- With `<-` we bind a monadic `Maybe` value (impure) to a variable (pure)
- The result of the final execution is the result of `routine`
IO is a Monad

- Yes, you have seen this notation before in the context of IO
- And, yes, this means that IO is a monad!
- It doesn’t end there:
 - There are monads for representing state
 - For dealing with indeterminism
 - Even lists can be interpreted as monads
- There are lots of other things to say about monads
 - All instances of monads need to follow certain laws (instances of (applicative) functors as well)
- But we are going to stop here
Mathematical Foundation

- The concepts used in Haskell did not just fall from the sky
- They are rooted in mathematical theory, category theory to be more specific
- In category theory, mathematicians try to capture the underlying properties of mathematical concepts
- Expressed in simplified terms, it is like finding and defining “type classes” for mathematical structures
Summary – Strengths of Haskell

- The **type system (strong/static)** prevents you from making a lot of mistakes
 - Nevertheless, it is quite **flexible** when it comes to extending it with user-defined types
- Haskell offers a lot in terms of **expressiveness**, yielding very **concise code**
- Haskell is a **pure** functional language, providing **referential transparency**
 - Function give the same output for the same input
 - Functions have no side effects
 - A variable can only be assigned a value once
- Haskell uses **curried functions** in combination with **partial evaluation** of functions,
 - I.e., internally, functions have only one input parameter;
 - Functions with multiple input parameters are decomposed into a sequence of partial functions, each having one parameter
- It is easier to show the **correctness** of your programs, due to the **pure functional** style
- It does **lazy evaluation**, which gives you an additional tool for writing programs efficiently
- It supports **list comprehension** and **infinite lists**
Summary – Weaknesses of Haskell

- The pure functional paradigm also has a price: dealing with messy real-world situations such as IO and state is not easy.
- Haskell has a steep learning curve, i.e., it takes a while to learn how to wield the power of Haskell.
- This may also explain the fact that the Haskell community is relatively small.