Outline

1. Functors Revisited

2. Monads
Outline

1. Functors Revisited

2. Monads
Beefing Up Functors/1

- What happens if we want to use a function that takes two parameters with a functor?
- For example, let's multiply two values `Just 2` and `Just 5`:

 \[(\text{Just } 2) \times (\text{Just } 5)\]

- This does not work, as the multiplication operator `*` expects two numerical values, not two values wrapped in `Maybe`.
 - Again: pure function `*`, impure parameters `Just 2` and `Just 5`.
- We could push `*` into one of the functors:

  ```haskell
  > :t fmap (*) (Just 2)
  fmap (*) (Just 2) :: Num a => Maybe (a -> a)
  ```
Beefing Up Functors/2

- That means, we now have a function wrapped in a `Just`
- We could also rewrite the above as
  ```
  Just (*2)
  ```
- This is a partially evaluated function (remember currying!)
- But we still have a problem: How do we apply a function that is wrapped inside a functor to values inside a functor box?
- `fmap` only takes ordinary functions and maps them over a functor (box)
 - We saw how to map functions over a `Maybe a`, a list `[a]`, a tree `Tree a`, etc.
- However, `fmap` does **not** work in the following case:
  ```
  fmap (Just(*2)) (Just 5)
  ```
- So, what do we do? Rewrite all our multi-parameter functions for functors?
Type Class Applicative

Not really, there is a type class Applicative with two important functions:

- `pure :: a -> f a`
- `(<=*>) :: f (a -> b) -> f a -> f b`

The function `pure` takes a value of any type and returns an applicative functor `f` with that value inside it.

- i.e., `pure` takes a value and wraps it in an applicative functor box.

The function `<*>`, also called “ap” or “apply”,

- takes a functor `f` that contains a function,
- and another functor that contains `a`’s, and
- extracts the function from the first functor and maps it over the second one.

This is exactly what we are looking for, remember:

```haskell
> :t Just (*2)
Just (*2) :: Num a => Maybe (a -> a)

> :t Just 5
Just 5 :: Num a => Maybe a
```

Compare `<*>` to `fmap :: (a -> b) -> f a -> f b`
Maybe is an instance of Applicative, so we can use its functions right out of the box

Well, we have to import the module Control.Applicative first ...

> import Control.Applicative

> (Just (*2)) <*> (Just 5)
Just 10

Success!

This also works for values of Nothing

> (Just (*2)) <*> Nothing
Nothing

> Nothing <*> (Just 5)
Nothing
As mentioned above, **pure** “wraps” a pure value into an impure context (an applicative functor box).

We cannot combine pure and impure values in the same computation.

With applicative functors, we wrap the pure value into a (default) impure context:

```haskell
> (Just (*2)) <> 5

does not work

> (Just (*2)) <> (pure 5)
Just 10

does work
This does not stop at two parameters.

With applicative functors we can chain any number of functors

\[ \text{pure } f \leftrightarrow x \leftrightarrow y \leftrightarrow z \leftrightarrow \ldots \]

So, for example we define a function summing up three numbers

\[ \text{sum3 } x \ y \ z = x + y + z \]

and then use it in a functor context

\[
\begin{align*}
> & \text{pure sum3} \leftrightarrow \text{Just 4} \leftrightarrow \text{Just 9} \leftrightarrow \text{Just 2} \\
& \text{Just 15} \\
> & \text{pure sum3} \leftrightarrow \text{Just 4} \leftrightarrow \text{Nothing} \leftrightarrow \text{Just 2} \\
& \text{Nothing}
\end{align*}
\]
Applicative Instance Implementation for Maybe

This is how Maybe is defined as an instance of the type class Applicative:

```haskell
instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just f) <*> something = fmap f something
```

The function to wrap a value inside a context is `Just` (recall that value constructors are functions).

If the first parameter to `(<>*)` is `Nothing`, we cannot extract a function out of it, so the result is `Nothing`.

If the first parameter is `Just` with a function `f` inside, this function is mapped over the second parameter.
Here are some more examples

> Just (+3) <*> Just 9
   Just 12

> pure (+3) <*> Just 10
   Just 13

> Just (++" world") <*> "Hello"
   Hello world

> Just (++" world") <*> Nothing
   Nothing

> Nothing <*> Just "Hi"
   Nothing

Notice that pure and Just have the same effect here
Outline

1 Functors Revisited

2 Monads
We will now introduce the concept of monads with the help of an example.

Let’s assume $x$ persons want to divide up $y$ things:

```haskell
divideUp :: Int -> Int -> Int
divideUp x y = div y x
```

This is not going to work, as the following should fail (but it doesn’t):

```haskell
> divideUp 5 12
2
```
Second Try

- We could give back Maybe Int
  - If the function fails, we return Nothing
  - Otherwise, we return Just "the result"

\[
\text{divideAmong} :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Maybe Int}
\]
\[
\text{divideAmong } x \ y = \\
\quad \text{if } \mod y x \neq 0 \text{ then} \\
\qquad \text{Nothing} \\
\quad \text{else} \\
\qquad \text{Just } (\text{div } y x)
\]

> divideAmong 5 12
Nothing

> divideAmong 6 12
Just 2

- So far, so good
What happens if we want to divide up one lot among further persons, i.e.:

\[
\text{divideAmong } 3 \ (\text{divideAmong } 2 \ 12)
\]

This is not going to work, as `divideAmong` expects pure Ints as parameters, while it returns a `Maybe` functor (i.e., a `Maybe` box containing the value).

Let's try using an applicative functor:

```haskell
> pure (divideAmong) <*> Just 2 <*> Just 12
Just (Just 6)
```

Nope, this adds yet another layer ...
Further Divisions/2

Is implementing this manually the only option left?

\[
\text{divideAmongTwice} :: \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \rightarrow \text{Maybe Int}
\]
\[
\text{divideAmongTwice} x y z = \\
\quad \text{if } \text{mod } y x /= 0 \text{ then} \\
\quad \quad \text{Nothing} \\
\quad \text{else} \\
\quad \quad \text{if } \text{mod } (\text{div } y x) z /= 0 \text{ then} \\
\quad \quad \quad \text{Nothing} \\
\quad \quad \text{else} \\
\quad \quad \quad \text{Just } (\text{div } (\text{div } y x) z)
\]

Keeping track of every step that can fail is very awkward and error-prone!

Monads can help out here
Monads are a type class with two important functions:

\[
\text{return} :: \text{a} \rightarrow \text{m a} \\
(\gg\gg=) :: \text{m a} \rightarrow (\text{a} \rightarrow \text{m b}) \rightarrow \text{m b}
\]

The first function `return` wraps a pure value `a` into an impure context, termed a monad `m a`

- Works like `pure` for applicative functors

The second function `(\gg\gg=)`, called `bind`,

- takes a monadic value `m a`, i.e., a value of type `a` inside a monadic context
- and a function `a \rightarrow m b` that takes a pure value `a` and returns a monadic value `m b`
- and applies the function to the first parameter (or feeds the parameter into the function), returning a monadic value `m b`

That is, monads allow sequenced actions, i.e., to put together two actions, returning the result of the second one
Now we can chain together calls of the function

> divideAmong 2 120 >>= divideAmong 3 >>= divideAmong 5
Just 4

And Haskell will keep track of any failures on the way for us

> divideAmong 5 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
> divideAmong 6 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
Monads are so important in Haskell that they have their own special notation: the **do notation**

This notation allows you to chain together monadic function calls in a seemingly imperative way

```haskell
routine :: Maybe Int
routine = do
 x <- divideAmong 2 120
 y <- divideAmong 3 x
 divideAmong 4 y
```

The result of the final execution is the result of `routine`

Just 5

The statements are executed line by line

With `<-` we bind a monadic `Maybe` value (impure) to a variable (pure)
IO is a Monad

- Yes, you have seen this notation before in the context of IO
- And, yes, this means that IO is a monad!
- It doesn’t end there:
  - There are monads for representing state
  - For dealing with indeterminism
  - Even lists can be interpreted as monads
- There are lots of other things to say about monads
  - All instances of monads need to follow certain laws (instances of (applicative) functors as well)
- But we are going to stop here
Mathematical Foundation

- The concepts used in Haskell did not just fall from the sky
- They are rooted in mathematical theory, category theory to be more specific
- In category theory, mathematicians try to capture the underlying properties of mathematical concepts
- Expressed in simplified terms, it is like finding and defining “type classes” for mathematical structures
Summary – Strengths of Haskell

- The **type system (strong/static)** prevents you from making a lot of mistakes
  - Nevertheless, it is quite **flexible** when it comes to extending it with user-defined types
- Haskell offers a lot in terms of **expressiveness**, yielding very **concise code**
- Haskell is a **pure** functional language, providing **referential transparency**
  - Functions give the same output for the same input
  - Functions have no side effects
  - A variable can only be assigned a value once
- Haskell uses **curried functions** in combination with **partial evaluation** of functions,
  - I.e., internally, functions have only one input parameter;
  - Functions with multiple input parameters are decomposed into a sequence of partial functions, each having one parameter
- It is easier to show the **correctness** of your programs, due to the **pure functional** style
- It does **lazy evaluation**, which gives you an additional tool for writing programs efficiently
- It supports **list comprehension** and **infinite lists**
The pure functional paradigm also has a price: dealing with **messy real-world situations** such as IO and state is not easy.

- Haskell has a **steep learning curve**, i.e., it takes a while to learn how to wield the power of Haskell.
- This may also explain the fact that the Haskell community is relatively small.