Outline

1 Functors Revisited

2 Monads
Outline

1. Functors Revisited

2. Monads
What happens if we want to use a function that takes two parameters with a functor?

For example, let's multiply two values `Just 2` and `Just 5`:

\[(\text{Just } 2) \times (\text{Just } 5)\]

This does not work, as the multiplication operator \(\times\) expects two numerical values, not two values wrapped in `Maybe`.

Again: pure function \(\times\), impure parameters `Just 2` and `Just 5`.

We could push \(\times\) into one of the functors:

\[
> :t \text{fmap } (*) (\text{Just } 2) \\
\text{fmap } (*) (\text{Just } 2) :: \text{Num } a \Rightarrow \text{Maybe } (a \rightarrow a)
\]
That means, we now have a function wrapped in a `Just`.

We could also rewrite the above as `Just (*2)`.

This is a partially evaluated function (remember currying!)

But we still have a problem: *How do we apply a function that is wrapped inside a functor to values inside a functor box?*

`fmap` only takes **ordinary functions** and maps them over a functor (box).

- We saw how to map functions over a `Maybe a`, a list `[a]`, a tree `Tree a`, etc.

However, `fmap` does **not** work in the following case:

`fmap (Just(*2)) (Just 5)`

So, what do we do? Rewrite all our multi-parameter functions for functors?
Type Class Applicative

Not really, there is a type class Applicative with two important functions

\[
pure :: a \to f a
\]
\[
(\langle*\rangle) :: f (a \to b) \to f a \to f b
\]

The function \(pure \) takes a value of any type and returns an applicative functor \(f \) with that value inside it

- i.e., \(pure \) takes a value and wraps it in an applicative functor box

The function \(\langle*\rangle \), also called “ap” or “apply”,

- takes a functor \(f \) that contains a function
- and another functor that contains \(a \)'s, and
- extracts the function from the first functor and maps it over the second one

This is exactly what we are looking for, remember:

\[
> :t \text{Just} \ (*2)
\]
\[
\text{Just} \ (*2) :: \text{Num a} \Rightarrow \text{Maybe (a \to a)}
\]

\[
> :t \text{Just 5}
\]
\[
\text{Just 5} :: \text{Num a} \Rightarrow \text{Maybe a}
\]

Compare \(\langle*\rangle \) to \(\text{fmap} :: (a \to b) \to f a \to f b \)
Maybe is an instance of Applicative, so we can use its functions right out of the box

- Well, we have to import the module Control.Applicative first...

> import Control.Applicative
> (Just (*2)) <*> (Just 5)
Just 10

Success!

This also works for values of Nothing

> (Just (*2)) <*> Nothing
Nothing
> Nothing <*> (Just 5)
Nothing
As mentioned above, pure "wraps" a pure value into an impure context (an applicative functor box)
We cannot combine pure and impure values in the same computation
With applicative functors, we wrap the pure value into a (default) impure context:

> (Just (*2)) <*> 5

does not work

> (Just (*2)) <*> (pure 5)
Just 10

does work
This does not stop at two parameters

With applicative functors we can chain any number of functors

\[\text{pure } f \ <**\ x \ <**\ y \ <**\ z \ <**\ \ldots \]

So, for example we define a function summing up three numbers

\[\text{sum3 } x \ y \ z = x + y + z \]

and then use it in a functor context

\[
> \text{pure sum3 } <**\ \text{Just 4 } <**\ \text{Just 9 } <**\ \text{Just 2} \\
\text{Just 15}
\]

\[
> \text{pure sum3 } <**\ \text{Just 4 } <**\ \text{Nothing } <**\ \text{Just 2} \\
\text{Nothing}
\]
Applicative Instance Implementation for Maybe

- This is how Maybe is defined as an instance of the type class Applicative

  ```haskell
  instance Applicative Maybe where
    pure = Just
    Nothing <*> _ = Nothing
    (Just f) <*> something = fmap f something
  ```

- The function to wrap a value inside a context is `Just` (recall that value constructors are functions)
- If the first parameter to `(<*>)` is `Nothing`, we cannot extract a function out of it, so the result is `Nothing`
- If the first parameter is `Just` with a function `f` inside, this function is mapped over the second parameter
More Examples of Using Applicative Functors

- Here are some more examples

 > Just (+3) <*> Just 9
 Just 12

 > pure (+3) <*> Just 10
 Just 13

 > Just ("++" world") <*> pure "Hello"
 Hello world

 > Just ("++" world") <*> "Hello"
 ... error!

 > Just ("++" world") <*> Nothing
 Nothing

 > Nothing <*> Just "Hi"
 Nothing

- Notice that pure and Just have the same effect here
Outline

1 Functors Revisited

2 Monads
We will now introduce the concept of monads with the help of an example. Let’s assume x persons want to divide up y things:

```
divideUp :: Int -> Int -> Int
divideUp x y = div y x
```

This is not going to work, as the following should fail (but it doesn’t):

```
> divideUp 5 12
2
```
We could give back `Maybe Int`

- If the function fails, we return `Nothing`
- Otherwise, we return `Just "the result"

```
divideAmong :: Int -> Int -> Maybe Int
divideAmong x y = 
  if mod y x /= 0 then
    Nothing
  else
    Just (div y x)
```

> divideAmong 5 12
Nothing

> divideAmong 6 12
Just 2

So far, so good
What happens if we want to divide up one lot among further persons, i.e.:

\[
\text{divideAmong} \ 3 \ (\text{divideAmong} \ 2 \ 12)
\]

This is not going to work, as \text{divideAmong} expects pure \text{Int}s as parameters, while it returns a \text{Maybe} functor (i.e., a \text{Maybe} box containing the value)

Let's try using an applicative functor:

\[
> \text{pure (divideAmong)} \ <\text{*} \ \text{Just} \ 2 \ <\text{*} \ \text{Just} \ 12
\]

Just (Just 6)

Nope, this adds yet another layer . . .
Is implementing this manually the only option left?

```haskell
divideAmongTwice :: Int -> Int -> Int -> Maybe Int
divideAmongTwice x y z =
    if mod y x /= 0 then
        Nothing
    else
        if mod (div y x) z /= 0 then
            Nothing
        else
            Just (div (div y x) z)
```

Keeping track of every step that can fail is very awkward and error-prone!

Monads can help out here
Monads are a type class with two important functions:

\[
\text{return} :: a \rightarrow m a \\
(\gg\gg=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b
\]

The first function \textbf{return} wraps a pure value \(a\) into an impure context, termed a \textbf{monad} \(m a\)
- Works like \textit{pure} for applicative functors

The second function \(\gg\gg=\), called \textbf{bind},
- takes a \textbf{monadic value} \(m a\), i.e., a value of type \(a\) inside a monadic context
- and a \textbf{function} \(a \rightarrow m b\) that takes a \textit{pure value} \(a\) and returns a \textbf{monadic value} \(m b\)
- and applies the function to the first parameter (or feeds the parameter into the function), returning a \textbf{monadic value} \(m b\)

That is, monads allow \textit{sequenced actions}, i.e., to put together two actions, returning the result of the second one
Now we can chain together calls of the function

```haskell
> divideAmong 2 120 >>= divideAmong 3 >>= divideAmong 5
Just 4
```

And Haskell will keep track of any failures on the way for us

```haskell
> divideAmong 5 12 >>= divideAmong 3 >>= divideAmong 5
Nothing

> divideAmong 6 12 >>= divideAmong 3 >>= divideAmong 5
Nothing
```
Do Notation

Monads are so important in Haskell that they have their own special notation: the **do notation**

This notation allows you to chain together monadic function calls in a seemingly imperative way

```haskell
routine :: Maybe Int
routine = do
    x <- divideAmong 2 120
    y <- divideAmong 3 x
    divideAmong 4 y

routine
Just 5
```

The statements are executed line by line

- With `<-` we bind a monadic `Maybe` value (impure) to a variable (pure)
- The result of the final execution is the result of `routine`
IO is a Monad

- Yes, you have seen this notation before in the context of IO
- And, yes, this means that IO is a monad!
- It doesn’t end there:
 - There are monads for representing state
 - For dealing with indeterminism
 - Even lists can be interpreted as monads
- There are lots of other things to say about monads
 - All instances of monads need to follow certain laws (instances of (applicative) functors as well)
- But we are going to stop here
Mathematical Foundation

- The concepts used in Haskell did not just fall from the sky
- They are rooted in mathematical theory, category theory to be more specific
- In category theory, mathematicians try to capture the underlying properties of mathematical concepts
- Expressed in simplified terms, it is like finding and defining “type classes” for mathematical structures
Summary – Strengths of Haskell

- The **type system (strong/static)** prevents you from making a lot of mistakes
 - Nevertheless, it is quite **flexible** when it comes to extending it with user-defined types
- Haskell offers a lot in terms of **expressiveness**, yielding very **concise code**
- Haskell is a **pure** functional language, providing **referential transparency**
 - Functions give the same output for the same input
 - Functions have no side effects
 - A variable can only be assigned a value once
- Haskell uses **curried functions** in combination with **partial evaluation** of functions,
 - I.e., internally, functions have only one input parameter;
 - Functions with multiple input parameters are decomposed into a sequence of partial functions, each having one parameter
- It is easier to show the **correctness** of your programs, due to the **pure functional** style
- It does **lazy evaluation**, which gives you an additional tool for writing programs efficiently
- It supports **list comprehension** and **infinite lists**
The pure functional paradigm also has a price: dealing with messy real-world situations such as IO and state is not easy.

Haskell has a steep learning curve, i.e., it takes a while to learn how to wield the power of Haskell.

This may also explain the fact that the Haskell community is relatively small.