
Programming Paradigms
Unit 12 — Functions and Data Types in Haskell

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 1/45

Outline

1 Functions

2 User-Defined Data Types

3 Type Classes Revisited

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 2/45

Functions

Outline

1 Functions

2 User-Defined Data Types

3 Type Classes Revisited

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 3/45

Functions

Functions and Pattern Matching

Now that we have modules, let’s write slightly more sophisticated functions

Haskell does pattern matching like Prolog

When you call a function, Haskell goes from top to bottom to find a
signature (i.e., pattern) that matches the call
The order of the function definitions matters

Different from Prolog

Only one function definition is executed (i.e., no backtracking!)

The following function computes the factorial of a number

module Factorial (

factorial

) where

factorial :: Integer -> Integer

factorial 0 = 1

factorial x = x * factorial (x-1)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 4/45

Functions

Pattern Matching and Guards

If you need to match in a different or particular order, you can use guards
Guards are boolean conditions that constrain the argument, and hence the
pattern matching process
Guards are indicated by pipes | that follow a function’s name and its
parameters
If the guard is satisfied, the corresponding function body is executed
Otherwise, pattern machting jumps to the next guard

module FactorialGuards (

factorial

) where

factorial :: Integer -> Integer

factorial x

| x > 1 = x * factorial (x-1)

| otherwise = 1

Often, the last guard is otherwise, which catches everything

Usually, a blank or tab is required before each | symbol

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 5/45

Functions

Lazy Evaluation of Functions/1

We are now going to unleash more of the power of Haskell

Lets write a function for the Fibonacci numbers using lazy evaluation

Lazy evaluaton means that expressions are not evaluated when they are
bound to variables, but when their results are needed by other computations
It is often used in combination with list construction to construct an infinite
list, which however never need to be computed completely

module Fibonacci (

lazyFib,

fib

) where

lazyFib :: Integer -> Integer -> [Integer]

lazyFib x y = x:(lazyFib y (x + y))

fib :: Int -> Integer

fib x = head(drop (x-1) (lazyFib 1 1))

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 6/45

Functions

Lazy Evaluation of Functions/2

lazyFib generates an infinite sequence of Fibonacci numbers

> lazyFib 1 1

[1,1,2,3,5,8,13,21,34,55,89,144,...

Due to lazy evaluation, we never actually generate the whole list

fib drops the first x-1 elements of the “infinite” list of Fibonacci numbers,
and then takes the head of the remaining list

> fib 4

3

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 7/45

Functions

Function Composition/1

Combining lots of functions to get a result is a common pattern in
functional languages

This is called function composition

As this is very common, Haskell has a shortcut notation

Instead of writing

f(g(h(i(j(k(l(m(n(o(x))))))))))

you can write

f.g.h.i.j.k.l.m.n.o x

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 8/45

Functions

Function Composition/2

So our Fibonacci code could be rewritten into

module Fibonacci (

lazyFib,

fib

) where

lazyFib :: Integer -> Integer -> [Integer]

lazyFib x y = x:(lazyFib y (x + y))

fib :: Int -> Integer

fib x = (head.drop (x-1)) (lazyFib 1 1)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 9/45

Functions

Anonymous Functions or Lambdas

Anonymous functions are termed lambdas in Haskell and do not have a
name

They are useful if a function is needed only once

Usually used to pass a function as parameter to a higher-order function

The syntax is

(\parameter 1,...,parameter n -> function body)

Lets write a function that just returns the input parameter

> (\x -> x) "mirror, mirror on the wall"

"mirror, mirror on the wall"

> (\x -> x ++ " world!") "Hello"

"Hello world!"

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 10/45

Functions

Higher-Order Functions/1

Haskell (as functional language) supports higher-order functions, i.e.,
functions that can take functions as parameters or return functions

Examples of built-in higher-order functions are the usual list functions, such
as map, foldl, foldr, filter

map expects

a function and a list as input and
returns a list which is the result of applying the function to each element in
the input list

> map (\x -> x * x) [1,2,3]

[1,4,9]

> map (+ 1) [1,2,3]

[2,3,4]

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 11/45

Functions

Higher-Order Functions/2

foldl expects

as input a function with two input parameter, an initial accumulator value,
and an input list
and returns a single value resulting from applying the function to each
element in the list and the accumulator

> foldl (\x sum -> sum + x) 0 [1..10]

55

> foldl (+) 0 [1,2,3]

6

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 12/45

Functions

Curried Functions/1

Every function in Haskell officially only takes one parameter

We’ve already defined functions with multiple input parameters, so how
does this work?

Haskell uses the concept of curried functions

A function with multiple arguments is split into multiple functions with one
argument each
That is, functions are applied partially, i.e., one parameter at a time

Let’s have a look at an example

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 13/45

Functions

Curried Functions/2

Consider a function to multiply two numbers

> let prod x y = x * y

What is really going on behind the scences, if Haskell computes the
product of two numbers, say prod 2 4?

1 Apply prod 2, which returns the function (\y -> 2 * y)
2 Apply (\y -> 2 * y) 4, which gives 2 * 4, yielding the final result 8

So what is actually computed is

(prod 2) 4

(prod 2) is a partial evaluation of a function, i.e.,

only one argument is provided and substituted in the function definition
the partially evaluated function is returned

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 14/45

Functions

Type of Functions Revisited

Let’s have a look at the type of the function prod

> :t prod

prod :: Num a => a -> a -> a

What this really says is the following:

prod takes an inputer parameter of type a and returns a function that takes
an input parameter of type a and returns a value of type a

To make this more explicit, it could be written as

Num a => a -> (a -> a)

. . . and the function can also be called as

> (prod 2) 4

8

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 15/45

Functions

Advantages of Curried Functions

We can create new functions on the fly, already partially evaluating a
function in a different context

It makes formal proofs about programs simpler, because all functions are
treated in the same way

There are some techniques used in Haskell where currying becomes
important

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 16/45

Functions

Partial Application of Functions

Partial application of functions binds some of the arguments but not all
and returns a function that is partially evaluated

Consider again the function prod to multiply two numbers

> let prod x y = x * y

We can partially apply prod to create some new functions

> let double = prod 2

> let triple = prod 3

These two function definitions apply prod, but only with one parameter
This subsitutes the first parameter in the definition of prod and
returns a partially evaluted function, e.g., prod 2 gives prod y = 2 * y

The newly defined functions work just as you expect

> double 3

6

> triple 4

12

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 17/45

User-Defined Data Types

Outline

1 Functions

2 User-Defined Data Types

3 Type Classes Revisited

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 18/45

User-Defined Data Types

User-Defined Types

You can declare your own data types using the keyword data

The simplest version is an enumeration: a finite list of values separated by
a vertical bar (|)

data Verdict = Guilty | Innocent

That means, a variable of type Verdict will have a single value, either
Guilty or Innocent

Verdict is called a type constructor

The parts after the = are called value constructors, as they specify the
different values that this type can have

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 19/45

User-Defined Data Types

Enumerated Types/1

In the following module definition, Suit and Rank are type constructors

module Cards where

data Suit = Spades | Clubs | Hearts | Diamonds

data Rank = Ace | Ten | King | Queen | Jack

Loading this module and then trying to use one of these values leads to an
error message

> :l Cards

[1 of 1] Compiling Cards

Ok, modules loaded: Cards.

*Cards> Spades

<interactive>:1:1:

No instance for (Show Suit)

...

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 20/45

User-Defined Data Types

Enumerated Types/2

Haskell tells us that it does not know how to show values of these types

In order to show them, we have to make Suit and Rank instances of the
type class Show using the keyword deriving

module Cards where

data Suit = Spades | Clubs | Hearts | Diamonds

deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack

deriving (Show)

Now we can load the module again and show the values

> Clubs

Clubs

> Ten

Ten

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 21/45

User-Defined Data Types

Composite Types/1

When building more complex composite types, we can use alias types,
which start with the keyword type

data Suit = Spades | Clubs | Hearts | Diamonds

deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack

deriving (Show)

type Card = (Rank,Suit)

type Hand = [Card]

> let card = (Ten,Hearts)

> card

(Ten,Hearts)

Card is now essentially a synonym (alias type) for (Rank,Suit), and Hand

for [Card]

Type synonyms are mostly just a convenience

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 22/45

User-Defined Data Types

Composite Types/2

An alternative way is to use a new type constructor (keyword data)

data Suit = Spades | Clubs | Hearts | Diamonds

deriving (Show)

data Rank = Ace | Ten | King | Queen | Jack

deriving (Show)

data Card = Crd(Rank,Suit) deriving (Show)

data Hand = Hnd[Card] deriving (Show)

> let card = Crd(Ten,Hearts)

> card

Crd (Ten,Hearts)

> let hand = Hnd[Crd(Ten,Hearts), Crd(King,Diamonds)]

> hand

Hnd [Crd (Ten,Hearts), Crd (King,Diamonds)]

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 23/45

User-Defined Data Types

Composite Types/3

If we want to know the value of a card, we could write a function taking a
Rank and returning an Int

value :: Rank -> Int

value Ace = 11

value Ten = 10

value King = 4

value Queen = 3

value Jack = 2

Applying this function:

> let card = (Ace,Spades)

> let (r,s) = card

> value r

11

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 24/45

User-Defined Data Types

Value Constructurs and Optional Parameters

Value constructors can optionally be followed by some types (parameters)
that define the values it will contain

Lets define a type to store shapes, such as circles or rectangles

data Shape = Circle Float Float Float |

Rectangle Float Float Float Float deriving(Show)

> let c = Cirlce 10 10 5

> c

Circle 10.0 10.0 5.0

Circle and Rectangle are value constructors followed by type parameters

Circle: the first two values are the center and the third value is the radius
Rectangle: upper-left corner and lower-right corner

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 25/45

User-Defined Data Types

Value Constructurs are Functions

Value constructors are actually functions like (almost) everything else in
Haskell; they ultimately return a value of a data type

Let’s take a look at the type signatures for the two value constructors of
the Shape data type

> :t Circle

Circle :: Float -> Float -> Float -> Shape

> :t Rectanlge

Rectangle :: Float -> Float -> Float -> Float -> Shape

Both value constructures take Float parameters in input and return a
Shape

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 26/45

User-Defined Data Types

Using User-Defined Data Types

Lets write a function to compute the surface of the shapes

module Surface (surface) where

surface :: Shape -> Float

surface (Circle r) = pi * r ^ 2

surface (Rectangle x1 y1 x2 y2) = (abs (x2 - x1)) * (abs (y2 - y1))

> surface (Circle 10 10 5)

78.53982

> surface (Rectangle 0 0 10 10)

78.53982

The underscore () means that this parameter is not used (as in Prolog)

Notice that the value constructors Circle and Rectangle are used in pattern
matching

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 27/45

User-Defined Data Types

Polymorphism in Functions

A function that reverses a list of cards could look like this

backwards :: Hand -> Hand

backwards [] = []

backwards (h:t) = backwards t ++ [h]

However, that would restrict the function to lists of items of type Hand

If we want it to work with general lists, we can introduce any type by using
type variables

backwards :: [a] -> [a]

backwards [] = []

backwards (h:t) = backwards t ++ [h]

This is known as polymorphism, as a can be any type

backwards takes now a list of elements of type a and produces a list of
elements of the same type a

backwards is polymorphic

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 28/45

User-Defined Data Types

Polymorphism in User-Defined Types/1

User-defined types can also be made polymorphic by using so-called type
variables

For example, you need a type that stores a list of pairs of any type

data ListOfPairs a = LoP [(a,a)] deriving (Show)

> let list1 = LoP[(1,2),(2,3),(3,4)]

> list1

LoP [(1,2),(2,3),(3,4)]

> let list2 = LoP[(’a’,’b’),(’b’,’c’),(’c’,’d’)]

> list2

LoP [(’a’,’b’),(’b’,’c’),(’c’,’d’)]

Notice the parameter a in the type definition

If the pairs have different types, we get an error
e.g., let list3 = LoP[(1,’a’),(2,’b’),(3,’c’)] yields an error

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 29/45

User-Defined Data Types

Polymorphism in User-Defined Types/2

If you need the pairs to store different kinds of types, you have to use
different type variables

data AdvListOfPairs a b = ALoP [(a,b)] deriving (Show)

> let list1 = ALoP[(1,’a’),(2,’b’)]

> list1

ALoP [(1,’a’),(2,’b’)]

> let list2 = ALoP[(1,2),(2,3),(3,4)]

> list2

ALoP [(1,2),(2,3),(3,4)]

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 30/45

User-Defined Data Types

Recursive Types/1

You can have recursive types in Haskell

Let’s look at an example: defining a polymorphic tree structure

data Tree a = Nil | Node a (Tree a) (Tree a)

deriving (Show)

let tree1 = Nil

> tree1

Nil

> let tree2 = Node ’a’ (Node ’b’ Nil Nil)

(Node ’c’ Nil Nil)

> tree2

Node ’a’ (Node ’b’ Nil Nil) (Node ’c’ Nil Nil)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 31/45

User-Defined Data Types

Recursive Types/2

Pattern matching can be used to access individual nodes and sub-trees

data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show)

> let tree = Node ’a’ (Node ’b’ Nil Nil) (Node ’c’ Nil Nil)

> let (Node val child1 child2) = tree

> val

’a’

> child1

(Node ’b’ Nil Nil)

> let (Node v c1 c2) = child1

> v

’b’

> c1

Nil

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 32/45

User-Defined Data Types

Depth of a Tree

Operating on recursive types often needs recursive functions as well

If we want to determine the depth of a tree, we could do it like this:

depth :: Tree a -> Int

depth Nil = 0

depth (Node a left right) = 1 + max (depth left) (depth right)

The first case is straightforward: an empty tree has depth 0

The second case traverses the tree recursively and adds one to the depth of
the deeper subtree

A tail-recursive version of the depth function

depthTR :: Tree a -> Int -> Int

depthTR Nil n = n

depthTR (Node a l r) n = max (depthTR l n+1) (depthTR r n+1)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 33/45

User-Defined Data Types

Traversal of a Tree

Preorder traversal

preorder :: Tree a -> [a]

preorder Nil = []

preorder (Node a l r) = a : (preorder l) ++ (preorder r)

Postorder traversal

postorder :: Tree a -> [a]

postorder Nil = []

postorder (Node a l r) = a : (postorder l) ++ (postorder r)

Inorder traversal

inorder :: Tree a -> [a]

inorder Nil = []

inorder (Node a l r) = (inorder l) ++ [a] ++ (inorder r)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 34/45

Type Classes Revisited

Outline

1 Functions

2 User-Defined Data Types

3 Type Classes Revisited

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 35/45

Type Classes Revisited

Type Classes Revisited

Recall that type classes define which operations can work on which inputs
(similar to interfaces in other programming languages)

That is, a type class provides function signatures
A type is an instance of a (type) class if it supports all functions of that class

We are now going to have another look at type classes

So far we’ve automatically made some of our types instances of existing
type classes with the keyword deriving

e.g., data ListOfPairs a = LoP [(a,a)] deriving (Show)

We will now

make a type instance of a type class explicitly, which includes also the
definition of some functions (Haskell may not always be able to derive them
automatically as in the case of the type class Show)
create our own type classes

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 36/45

Type Classes Revisited

Creating an Instance of a Type Class/1

Let’s build a simple enumerated type called TrafficLight

data TrafficLight = Red | Yellow | Green

We want this type to be comparable, i.e., be an instance of type class Eq,
which is defined as follows:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

The keyword class introduces a new type class and the overloaded
operations, which must be supported by any type that is an instance of
that class

The last two lines mean that Haskell can figure out the definition of the
other function, i.e., only one of the two need actually to be implemented

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 37/45

Type Classes Revisited

Creating an Instance of a Type Class/2

In order to make TrafficLight an instance of Eq, we have to

declare TrafficLight an instance of Eq using the keyword instance

declare one of the two functions (==) or (/=)

data TrafficLight = Red | Yellow | Green

instance Eq TrafficLight where

Red == Red = True

Green == Green = True

Yellow == Yellow = True

== = False

Now variables of type TrafficLight can be compared

> Red == Red

True

> Red == Green

False

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 38/45

Type Classes Revisited

User-Defined Type Classes/1

Let’s build our own user-defined type classes

In other languages, you can use lots of different values for conditionals

For example, in JavaScript, 0 and ”” evaluate to false, any other integer and
non-empty string to true

To introduce this behavior into Haskell, we write a YesNo type class that
takes a value and returns a Boolean value

The keyword class begins the definition of a new type class

class YesNo a where

yesno :: a -> Bool

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 39/45

Type Classes Revisited

User-Defined Type Classes/2

Next, we’ll make Int/Integer an instance of our new type class

This allows us to evaluate integer numbers to a boolean value

instance YesNo Int where

yesno 0 = False

yesno = True

instance YesNo Integer where

yesno 0 = False

yesno = True

> yesno 4

True

> yesno 0

False

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 40/45

Type Classes Revisited

Functor Type Class/1

The Functor type class is a built-in type class, which is basically for things
that can be mapped, i.e., the map operator can be applied

e.g., lists are an instance of this type class

How is this class defined?

class Functor f where

fmap :: (a -> b) -> f a -> f b

This definition essentially says: give me a function a -> b and a box with
a’s in it and I’ll give you a box with b’s in it

f is a type constructor, i.e., a constructor that takes a type
parameter/variable to create a new type

For example, a list is a type that takes a type parameter

A concrete value always has to be a list of some type, e.g., a list of strings,
it cannot be just a generic list

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 41/45

Type Classes Revisited

Functor Type Class/2

So, a functor allows us to map functions over various data types

A functor takes

a function of type a -> b

and some data type f a (i.e., a type constructor f with type parameter a)

and returns

some data type f b (i.e., a type constructor with type parameter b)

For example, for a list of type a and a function a -> b

you get as return value a list of type b

And that’s exactly what a map operator does on a list

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 42/45

Type Classes Revisited

A List is an Instance of the Functor Type Class

A list ([...]) is an instance of the type class Functor

instance Functor [] where

fmap = map

[] is a type constructor (actually the list constructor)

Compare the signature of fmap and map

> :t fmap

fmap :: Functor f => (a -> b) -> f a -> f b

> :t map

map :: (a -> b) -> [a] -> [b]

Notice that the type constructor f is replaced by the list constructor []

Using the map function

> map (\x -> x * x) [1,2,3]

[1,4,9]

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 43/45

Type Classes Revisited

A Tree as an Instance of the Functor Type Class/1

Now we make Tree an instance of class Functor

instance Functor Tree where

fmap f Nil = Nil

fmap f (Node x left right) =

Node (f x) (fmap f left) (fmap f right)

Doing a map on an empty tree is straightforward: it returns an empty tree

For any other tree, we have to recursively go down the left and right
subtrees

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 44/45

Type Classes Revisited

A Tree as an Instance of the Functor Type Class/2

Now we can run a map (more specifically an fmap) on our tree

> let tree1 = Node 1 (Node 2 Nil Nil) (Node 3 Nil Nil)

> fmap (+2) tree1

Node 3 (Node 4 Nil Nil) (Node 5 Nil Nil)

> fmap (show) tree1

Node "1" (Node "2" Nil Nil) (Node "3" Nil Nil)

PP 2018/19 Unit 12 – Functions and Data Types in Haskell 45/45

	Functions
	User-Defined Data Types
	Type Classes Revisited

