
Programming Paradigms
Unit 11 — Functional Programming with Haskell

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 11 – Functional Programming with Haskell 1/37

Outline

1 Basic Concepts

2 Lists and Tuples

3 Basics of Haskell’s Type System

4 Modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 2/37

Basic Concepts

Outline

1 Basic Concepts

2 Lists and Tuples

3 Basics of Haskell’s Type System

4 Modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 3/37

Basic Concepts

Background

Now we’ll study a purely functional programming language: Haskell

Was developed in 1990 by a committee of experts combining the best
features of existing functional programming languages
Named after the American mathematician and logician Haskell Curry

Haskell is a statically and strongly typed, compiled, pure functional
programming language

Not very surprisingly, the centerpiece of Haskell are functions that have
input parameters and compute a result

PP 2018/19 Unit 11 – Functional Programming with Haskell 4/37

Basic Concepts

Referential Transparency

Referential transparency is a useful property of pure functional languages:

functions return the same output, given the same input
functions do not have side effects, i.e., they do not modify program state
a variable can only be assigned (matched) a value once within a scope or
program execution

Haskell supports referential transparency

PP 2018/19 Unit 11 – Functional Programming with Haskell 5/37

Basic Concepts

Advantages of Referential Transparency

Allows a compiler to figure out a program’s behavior more easily

Allows a programmer to show correctness of the code more easily

Helps in building correct programs by putting together smaller, correct
functions, that always behave in the same way

Allows Haskell to do lazy evaluation: it will not compute anything until the
result is actually needed

For example, an infinite data structure is not a problem (as long as you
don’t try to access all of it!)

PP 2018/19 Unit 11 – Functional Programming with Haskell 6/37

Basic Concepts

What Do the “Experts” Say?/1

Functional programming is considered an elegant style of programming

PP 2018/19 Unit 11 – Functional Programming with Haskell 7/37

Basic Concepts

What Do the “Experts” Say?/2

It is considered to be a bit academic, though

PP 2018/19 Unit 11 – Functional Programming with Haskell 8/37

Basic Concepts

Functional Programming in Practice

The functional style of programming is applied in practice

There are users in the financial industry

Mainly for building complex models
More details are provided here:
http://www.haskell.org/haskellwiki/Haskell_in_industry

Unreal Engine 4 is a software framework (game engine) designed for the
creation and development of video games

Has taken functional programming concepts on board, e.g. see here:
http://graphics.cs.williams.edu/archive/SweeneyHPG2009/TimHPG2009.pdf

Purists would disagree, as the engine is written in C++, but functional
concepts are applied

PP 2018/19 Unit 11 – Functional Programming with Haskell 9/37

http://www.haskell.org/haskellwiki/Haskell_in_industry
http://graphics.cs.williams.edu/archive/SweeneyHPG2009/TimHPG2009.pdf

Basic Concepts

Starting the Interpreter

Although Haskell is usually compiled, there is also an interactive interpreter

To start the interpreter in Linux, open a console and type ghci

The GHC interpreter prompt > shows up, which means that the interpreter
is ready to evaluate an expression

Here are a few arithmetic expressions

> 2+3*4

14

> (2+3)*4

20

> sqrt (3^2 + 4^2)

5.0

PP 2018/19 Unit 11 – Functional Programming with Haskell 10/37

Basic Concepts

Hello World

Let’s write a ”Hello, world!” program in Haskell

Prelude> "Hello, World!"

"Hello, World!"

The Haskell system evaluated the string, and printed the result, which is
the string itself.

We can try a variation to print directly to standard output

Prelude> putStrLn "Hello World"

Hello World

Later we will see how to make an exectuable ”Hello World” program

PP 2018/19 Unit 11 – Functional Programming with Haskell 11/37

Basic Concepts

Haskell is Strongly Typed

Haskell is a strongly typed language, it doesn’t like you to mix types

> 5 + 3

8

> 5 + "string"

<interactive>:8:3:

... some lengthy error message ...

However, in some situations types can be inferred

> 2 + 3.5

5.5

PP 2018/19 Unit 11 – Functional Programming with Haskell 12/37

Basic Concepts

Variables

Variables in Haskell begin with a lower-case letter

> a = 5

<interactive>:1:3: parse error on input ’=’

To assign a value to a variable in the shell, you have to use the function let

> let a = 5

> a

5

let binds the value 5 to the variable a in the local scope (i.e., the console)

PP 2018/19 Unit 11 – Functional Programming with Haskell 13/37

Basic Concepts

Using Functions

min and max are two built-in functions with the obvious meaning

When calling functions, parameters are not enclosed in parentheses, you
just list them

> min 8 12

8

Functions can be nested inside each other

Parentheses are used to indicate precedence

> max (min 8 12) (min 3 7)

8

PP 2018/19 Unit 11 – Functional Programming with Haskell 14/37

Basic Concepts

Writing Your Own Functions/1

When defining a function of your own in the console, you have to use the
function let similar as we did for variable assignments

Then, you have to provide the following parts:

The name of the function
A list of parameters
The symbol =
The actual definition (body) of the function

> let doubleMe x = x + x

> doubleMe 8

16

The = separates the head of the function from the body of the function,
which specifies the actual definition of the function

The head is also called signature

PP 2018/19 Unit 11 – Functional Programming with Haskell 15/37

Basic Concepts

Writing Your Own Functions/2

If you want to double two numbers and add them, you could start from
scratch

let doubleUs x y = x * 2 + y * 2

However, it is good (functional) programming style to re-use correct code

let doubleUs x y = (doubleMe x) + (doubleMe y)

PP 2018/19 Unit 11 – Functional Programming with Haskell 16/37

Basic Concepts

Conditionals

Conditionals are functions in Haskell, so they always have to return
something:

> let doubleSmallNumber x = if x > 100 then x else x*2

Writing statements spanning more than one line in the shell can be a bit of
a pain

> :{
| let { doubleSmallNumber x = if x > 100

| ;then x

| ;else x*2}
| :}

PP 2018/19 Unit 11 – Functional Programming with Haskell 17/37

Lists and Tuples

Outline

1 Basic Concepts

2 Lists and Tuples

3 Basics of Haskell’s Type System

4 Modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 18/37

Lists and Tuples

Lists/1

Haskell also supports lists with the standard square bracket notation

> let numberlist = [1,2,3]

All elements of a list have to be of the same type

The head and the tail of a list can be obtained by the operator :

[] represents the empty list

> let a:b = numberlist

> a

1

> b

[2,3]

Internally, a list [1] is represented as 1:[]

Notice the similarity to Prolog lists that are represented as structures

PP 2018/19 Unit 11 – Functional Programming with Haskell 19/37

Lists and Tuples

Lists/2

You can also extract more than one elements from a list:

> let a:b:c = numberlist

> a

1

> b

2

> c

[3]

The : operator can also be used to construct new lists

> 10:[11,12]

[10,11,12]

Another way is to concatenate two lists with the operator ++

> [1] ++ [2,3]

[1,2,3]

PP 2018/19 Unit 11 – Functional Programming with Haskell 20/37

Lists and Tuples

Lists/3

Alternatively, you can call the functions head and tail

> head numberlist

1

> tail numberlist

[2,3]

There are also functions to take and drop the first n elements of a list

> take 2 numberlist

[1,2]

> drop 2 numberlist

[3]

There is a large number of other built-in list functions

PP 2018/19 Unit 11 – Functional Programming with Haskell 21/37

Lists and Tuples

Infinite Lists

You can also create an infinite list!

> let naturalNumbers = [1..]

> take 5 naturalNumbers

[1,2,3,4,5]

This works since Haskell is lazy, i.e., Haskell won’t execute functions and
calculate things until it’s really forced to show you a result, e.g., the first
five numbers.

PP 2018/19 Unit 11 – Functional Programming with Haskell 22/37

Lists and Tuples

Ranges

Similar to Ruby, you can create lists of numbers in a certain range

> [1..10]

[1,2,3,4,5,6,7,8,9,10]

You can also skip some numbers or count backwards:

> [2,4..20]

[2,4,6,8,10,12,14,16,18,20]

> [10,7..1]

[10,7,4,1]

PP 2018/19 Unit 11 – Functional Programming with Haskell 23/37

Lists and Tuples

List Comprehensions/1

Set comprehension is a mathematical way of defining specific sets, given a
more general set

For example, the first ten even natural numbers can be defined by

Seven10 = {2x |x ∈ N, x ≤ 10}

Set comprehensions are usually described by

an output function (here 2x)
a variable (here x)
an input set (here N)
a predicate (here x ≤ 10)

PP 2018/19 Unit 11 – Functional Programming with Haskell 24/37

Lists and Tuples

List Comprehensions/2

In Haskell this concept can be applied to lists, called list comprehension

Allows you to generate lists that are too complex for ranges

For example, out of the first five odd natural numbers, we want those
whose square is not equal to 25

[x | x <- [1,3..9], (x*x) /= 25]

<- stands for ∈ (or is interpreted as “drawn from”)

The above list comprehension will output

[1,3,7,9]

PP 2018/19 Unit 11 – Functional Programming with Haskell 25/37

Lists and Tuples

Tuples

Haskell also knows tuples, which are enclosed in round brackets:

(1,"one","uno")

Unlike lists, tuples can combine different data types in the same tuple

Similar to Prolog structures, except that there is no functor

Tuples can also be nested

(1, ("one", "EN"), ("uno", "IT"))

PP 2018/19 Unit 11 – Functional Programming with Haskell 26/37

Lists and Tuples

Combining Tuples and Lists

Consider a triangle in the Euclidean space, which is represented by 3
points; each point is represented by a tuple

The following list comprehension flips the triangle along the diagonal

> [(y,x) | (x,y) <- [(1,2), (2,3), (3,4)]]

[(2,1), (3,2), (4,3)]

This list comprehension has no condition, which means that it is always true

Shift the triangle horizontally

> [(4-x,y) | (x,y) <- [(1,2), (2,3), (3,4)]]

[(3,2), (2,3), (1,1)]

PP 2018/19 Unit 11 – Functional Programming with Haskell 27/37

Basics of Haskell’s Type System

Outline

1 Basic Concepts

2 Lists and Tuples

3 Basics of Haskell’s Type System

4 Modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 28/37

Basics of Haskell’s Type System

Haskell’s Type System/1

After mentioning types a few times now, it’s time to have a closer look

The :t command gives you the type of an expression

> :t ’a’

’a’ :: Char

> :t True

True :: Bool

> :t "hello!"

"hello!" :: [Char]

> :t (True,’a’)

(True,’a’) :: (Bool, Char)

> :t 4==5

4==5 :: Bool

All the major built-in types of other languages are also available in Haskell

Types start with an upper-case letter

PP 2018/19 Unit 11 – Functional Programming with Haskell 29/37

Basics of Haskell’s Type System

Haskell’s Type System/2

You can also find out the type of functions

> :t doubleMe

doubleMe :: Integer -> Integer

> :t doubleUs

doubleUs :: Integer -> Integer -> Integer

The last type is the return type

The others are the type of the input parameters

e.g., doubleUs has two input parameters of type Integer and returns a
value of type Integer

PP 2018/19 Unit 11 – Functional Programming with Haskell 30/37

Basics of Haskell’s Type System

Type Variables

Let’s look at more subtle typing issues

For example, what is the type of the function head?

The function head can be applied to lists of different types

> :t head

head :: [a] -> a

a is a type variable, i.e., a can be of any type

So, the head function accepts a list of any type a and returns a single
element of the same type a

PP 2018/19 Unit 11 – Functional Programming with Haskell 31/37

Basics of Haskell’s Type System

Type Classes/1

In Haskell, types are organized in type classes

Let’s look at the type of the comparison operator?

> :t (==)

(==) :: Eq a => a -> a -> Bool

The symbol => is called a type constraint

The left-hand side represents that type variable a has to be a member of
type class Eq
The right-hand side is the type specification of the function ==

two arguments of a type that is a member of the type class Eq and

a boolean return type

Haskell supports a couple of type classes, e.g.,

Ord for types that have ordering
Num for types that have numerical values

PP 2018/19 Unit 11 – Functional Programming with Haskell 32/37

Basics of Haskell’s Type System

Type Classes/2

Type classes are similar to interfaces

They tell you what kind of functions a type supports

For example,

types belonging to the type class Num support all the standard mathematical
operators: +, -, *, /, . . .
Show converts values to strings
Read is the opposite: takes a string and converts it to a value

PP 2018/19 Unit 11 – Functional Programming with Haskell 33/37

Modules

Outline

1 Basic Concepts

2 Lists and Tuples

3 Basics of Haskell’s Type System

4 Modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 34/37

Modules

Writing Modules

Let’s start with some proper programming and define code in a module

The code below shows a complete module MyModule, which we store in a
file MyModule.hs

module MyModule (

doubleMe

) where

doubleMe :: Integer -> Integer

doubleMe x = x + x

Module names start with an upper-case letter and lists the functions that
are exported

The last two lines are the function definition:

the first line specifies the type of the function doubleMe,
the second line defines the function itself

Note that the function let is not required inside modules

PP 2018/19 Unit 11 – Functional Programming with Haskell 35/37

Modules

Compiling and Using Modules

You can load the file MyModule.hs into the interpreter with the :l function

> :l MyModule

[1 of 1] Compiling MyModule

(MyModule.hs, interpreted)

Ok, modules loaded: MyModule.

*MyModule>

Now you can use the functions defined in the module

> doubleMe 2

4

Alternatively, you can also compile the module using the OS command ghc

and then load the compiled version with :l as above

PP 2018/19 Unit 11 – Functional Programming with Haskell 36/37

Modules

Importing other Modules

If you want to re-use code from a module in another module, you can
import it

module YAM (

doubleUs

) where

import MyModule

doubleUs :: Integer -> Integer -> Integer

doubleUs x y = (doubleMe x) + (doubleMe y)

PP 2018/19 Unit 11 – Functional Programming with Haskell 37/37

	Basic Concepts
	Lists and Tuples
	Basics of Haskell's Type System
	Modules

