
Programming Paradigms
Unit 9 — Prolog: Accumulators, Order of Goals/Clauses, and the Cut

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 1/38

Outline

1 Accumulators

2 Order of Subgoals and Clauses

3 Backtracking and the Cut Operator

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 2/38

Accumulators

Outline

1 Accumulators

2 Order of Subgoals and Clauses

3 Backtracking and the Cut Operator

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 3/38

Accumulators

Accumulators

Frequently we need to traverse a Prolog structure or list and calculate a
result which depends on what was found so far

At intermediate stages of the traversal, we will have an intermediate result

A common technique to represent the intermediate result is to use an
argument of the predicate, termed an accumulator

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 4/38

Accumulators

Example: listlen/1 without Accumulator

Consider predicate listlen(L,N) that succeeds if N is the length of list L

Some Prolog implementations have a built-in predicate length(L,N)

Lets first look at an implementation without an accumulator

listlen([],0).

listlen([H|T],N) :- listlen(T,N1),

N is N1 + 1.

The base case is a fact stating that the empty list has length 0

The recursive case is a rule stating that the length of a non-empty list can
be calculated by adding one to the length of the tail of the list

Notice that this solution is not tail-recursive

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 5/38

Accumulators

Example: listlen/1 with Accumulator/1

Now lets look at a solution with an accumulator

listlen(L,N) :- listlen acc(L,0,N).

listlen acc([],A,A).

listlen acc([H|T],A,N) :- A1 is A + 1

listlen acc(T,A1,N).

listlen acc(L,A,N) is an auxiliary predicate that uses an accumulator A
and has the following meaning:

the length of list L, when added to the number A, is N

The base case of listacc states that the length of the list is whatever has
been accumulated so far, i.e., A

Equivalent to adding 0 (length of the empty list) to A

In the recursive clause, 1 is added to the accumulated amount A, and recur
on the tail of the list with a new accumulator value A1

This solution is tail-recursive

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 6/38

Accumulators

Example: listlen/1 with Accumulator/2

Notice that the final argument N of the recursive subgoal is the same as the
final argument in the head of the clause

This means that the length N returned for the whole list will be the number
that the recursive subgoal calculates

Thus, the production of the final result is delegated to the recursive subgoal
All extra information that is needed to construct the final result is provided
by the accumulator

We get a sequence of listlen acc goals, all sharing the same last
argument N

listlen acc([a,b,c],0,N).

listlen acc([b,c],1,N).

listlen acc([c],2,N).

listlen acc([],3,N).

The last goal will be matched with the first clause and instantiates N=3,
which is returned as the final result

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 7/38

Accumulators

Using a List as Accumulator/1

The accumulator need not to be a number, but can be a list or another
structure

Consider the predicate revere(L,R) that is true if list R is the reverse of
list L

reverse([],[]).

reverse([H|T], R) :- reverse(T, R1),

append(R1, [H], R).

This predicate does not use an accumulator and is expensive because
append is expensive

In fact, it runs in O(n2) time (prove this!)

Moreover, it is not tail-recursive

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 8/38

Accumulators

Using a List as Accumulator/2

The predicate reverse written with an accumulator

reverse(L, R) :- reverse acc(L, [], R).

reverse acc([], R, R).

reverse acc([H|T], R1, R) :- reverse acc(T, [H|R1], R).

In the predicate reverse acc(L, A, R), list A is used to accumulate
partial reversals of L.

L holds the part of the list that remains to be reversed

When L is empty, A holds the reversed list and the first clause instantiates
R to A.

Notice the linear complexity of this version!

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 9/38

Order of Subgoals and Clauses

Outline

1 Accumulators

2 Order of Subgoals and Clauses

3 Backtracking and the Cut Operator

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 10/38

Order of Subgoals and Clauses

Order of Subgoals/1

Recall our generalized rule about friends: ”X and Y are friends, if X and Y

like the same Z and X and Y are not the same”

What if we translate this in the following Prolog rule:

friend(X,Y) :- \+(X=Y), likes(X,Z), likes(Y,Z).

Might not look like a big change, but this has serious consequences

If we run the query friend(wallace,Y)

with the above rule, we get

?- friend(wallace,Y).

no

But both of them like cheese! What is
going wrong?

Knowledge base

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 11/38

Order of Subgoals and Clauses

Order of Subgoals/2

The subgoals are in the wrong order!

The position of the predicate \+(X=Y) has a big impact

Prolog tries to satisfy subgoals from left to right

\+(X=Y) fails if X=Y can be satisfied

X and Y start off uninstantiated in the above case
This makes X=Y true, resulting in \+(X=Y) being false
Consequently, the first subgoal always fails

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 12/38

Order of Subgoals and Clauses

Order of Subgoals/3

If we arrange the predicates in a different order

friend(X, Y) :- likes(X,Z), likes(Y,Z), \+(X=Y).

then X and Y will be instantiated when reaching the subgoal \+(X=Y)

If X and Y have a different value at that point, then \+(X=Y) will succeed

It is important to get the order right in which variables are instantiated!

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 13/38

Order of Subgoals and Clauses

Order of Clauses/1

Similar as for subgoals in a body of a rule, the order of clauses/rules is
crucial

Consider the following predicate is in2 to find/check elements in a list

We just swapped the order of the base case and the recursive case

is in2(X, [|T]) :- is in2(X, T).

is in2(X, [X|]).

Checking membership and the enumeration of the elements works

?- is in2(a,[1,2,a]).

true

?- is in2(X,[1,2,a]).

X = 1;

X = 2;

X = a

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 14/38

Order of Subgoals and Clauses

Order of Clauses/2

But what happens with the query is in2(a, L)?

is in2(X, [|T]) :- is in2(X, T).

is in2(X, [X|]).

Rules are matched in the order they occur in the program

In this example, the first predicate/rule always succeeds, leading to a
recursive call

As a consequence, the base case never occurs, and we get a stack error

?- is in2(a, L)

ERROR: Out of local stack

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 15/38

Backtracking and the Cut Operator

Outline

1 Accumulators

2 Order of Subgoals and Clauses

3 Backtracking and the Cut Operator

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 16/38

Backtracking and the Cut Operator

“Cutting” the Number of Solutions/1

If you ask Prolog to keep looking for further solutions (by answering with
";"), it will go through all possible solutions using backtracking:

dance pairs(X,Y) :- boy(X), girl(Y).

boy(adam).

boy(bert).

...

girl(angela).

girl(betty).

...

?- dance pairs(X,Y).

X = adam, Y = angela ;

X = adam, Y = betty ;

...

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 17/38

Backtracking and the Cut Operator

“Cutting” the Number of Solutions/2

Sometimes we are not interested in exhaustively going through all
solutions:

We only want to know if a solution exists
We are happy with a certain subset of solutions
In some recursive cases, there may be an infinite number of solutions

For instance, the following goal succeeds twice

is in(a, [a,b,a]).

true ;

true ;

false.

However, to check membership, it should succeed only once!

Prolog provides the cut operator to force it not to consider certain choices

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 18/38

Backtracking and the Cut Operator

The Cut Operator/1

The cut operator is denoted by "!" and can be inserted into a rule as a
subgoal

What does it do?

foo :- a, b.

foo :- c, d, !, e, f.

foo :- g, h.

First of all, the ! operator always succeeds

e.g., if c and d are satisfied in the second rule, then Prolog will immediately
start matching e

Second, the ! operator stops backtracking

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 19/38

Backtracking and the Cut Operator

The Cut Operator/2

There are two levels where backtracking occurs and is blocked by !

First, backtracking within a rule
Assuming c and d are satisfied while checking the second rule, then the
choices made for c and d are “locked in”

Prolog may not go back and search for other solutions for c and d

It may still do backtracking for e and f, though

Second, backtracking across rules
If the second rule fails after the ! operator, Prolog may not go beyond this
rule to try to satisfy foo

In particular, it will not try out the third rule foo :- g,h.

foo :- a, b.

foo :- c, d, !, e, f.

foo :- g, h.

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 20/38

Backtracking and the Cut Operator

The memberchk/2 Predicate

The built-in predicate memberchk/2 checks whether the first parameter
occurs in the list of elements passed as second parameter

memberchk(X,[X|]) :- !.

memberchk(X,[|T]):- memberchk(X,T).

The ! operator is used to avoid that the predicate succeeds for every
occurence of the first parameter in the second parameter.

memberchk(a, [a,b,a]).

true.

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 21/38

Backtracking and the Cut Operator

Using the Cut Operator

We will show three common ways how to use the cut operator in practice:

to confirm a choice of a rule
as a cut-fail combination
in the generate and test pattern

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 22/38

Backtracking and the Cut Operator

Confirming Choice of a Rule/1

The first use is to tell Prolog that it has found the “right rule” to apply

Assume we want to add up the numbers from 1 to N

sum to(1,1).

sum to(N,Result) :-

TmpN is N-1,

sum to(TmpN,TmpRes),

Result is TmpRes + N.

While this works, it may start an infinite recursion if we ask for a second
solution

?- sum to(3,X).

X = 6 ? ;

Fatal Error: local stack overflow

So, what happens here?

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 23/38

Backtracking and the Cut Operator

Confirming Choice of a Rule/2

The first solution is reported when the first rule matches for the first time,
i.e., sum to(1,TmpRes)

Asking for another solution forces Prolog to search for another solution for
sum to(1,TmpRes), applying the second rule sum to(N,Result) to it

The second rule executes a recursive call sum to(0,TmpRes)

This in turn will match again with the second rule, which executes a
recursive call sum to(-1,TmpRes) and so on . . . yielding an endless loop

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 24/38

Backtracking and the Cut Operator

Confirming Choice of a Rule/3

We want to tell Prolog that once it has matched the fact sum to(1,1), it
should not try searching for further solutions

We can achieve this by rewriting the first rule

sum to(1,1) :- !.

sum to(N,Result) :-

TmpN is N-1,

sum to(TmpN,TmpRes),

Result is TmpRes + N.

?- sum to(3,X).

X = 6.

Notice that Prolog is not offering you a second solution!

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 25/38

Backtracking and the Cut Operator

Confirming Choice of a Rule/4

We could just tell Prolog to stop searching for further solutions in the
above example

However, this may not always be under our control

go :- sum to(1,X), foo(apples).

?- go.

If foo(apples) fails, then this will trigger backtracking on sum to(1,X)

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 26/38

Backtracking and the Cut Operator

“Cut-Fail” Combination/1

The second use of the cut operator is as a “cut-fail” combination

i.e., the ! operator followed by the fail predicate: !, fail

The built-in predicate fail cannot be satisfied

This pattern is used in situations where it is known that, if the current rule
fails, there is no need trying further rules for the same predicate since no
other solutions exists

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 27/38

Backtracking and the Cut Operator

“Cut-Fail” Combination/2

Consider the following step function

f (x) =

0 if X < 3

2 if X >= 3 ∧ X < 6

4 if X >= 6

This is the corresponding Prolog code:

f(X,0) :- X < 3.

f(X,2) :- X >= 3, X < 6.

f(X,4) :- X >= 6.

What happens when we ask:

?- f(1,Y), 2 < Y.

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 28/38

Backtracking and the Cut Operator

“Cut-Fail” Combination/3

What happens when we ask:

?- f(1,Y), 2 < Y.

The first rule matches and binds variable Y to 0

The second goal becomes 2 < 0, which fails

Prolog then tries through backtracking two other (useless) alternatives for
f(1,Y)

Since the 3 rules for f(.,.) are mutually exclusive, there is no point in
trying another one

The ! operator explicitly tells Prolog not to do so and waste time if no
other solution exists

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 29/38

Backtracking and the Cut Operator

“Cut-Fail” Combination – Another Example

To figure out the correct tax rate for people, we define a predicate to
determine average taxpayers

However, there is a special tax rate for non-residents, i.e., they never pay
the average rate

average taxpayer(X) :- non resident(X), fail.

average taxpayer(X) :- income(X,Inc), ...

This will not work, as a non-resident will fail the first rule and then one of
the following rules will be applied

However, that’s exactly what we don’t want to happen

The following will make sure that none of the following rules will be applied

average taxpayer(X) :- non resident(X), !, fail.

average taxpayer(X) :- income(X,Inc), ...

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 30/38

Backtracking and the Cut Operator

Generate and Test/1

The third major use of cut is in the “generate and test” pattern

It is a common programming pattern in Prolog and has the form

foo :- g1, g2, ..., gn,

t1, t2, ..., tm.

The sequence of predicates g1, g2, ..., gn is called generator and can
succeed in many different ways

They generate lots of different potential solutions

The sequence of predicates t1, t2, ..., tm is called tester and tests
whether something generated by g1, g2, ..., gn is actually a solution

If something is not a solution, this causes g1, g2, ..., gn to backtrack
and generate the next candidate

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 31/38

Backtracking and the Cut Operator

Generate and Test/2

We want to define integer division just using addition and multiplication

First we build a predicate that generates all integers

is integer(0).

is integer(X) :- is integer(Y), X is Y+1.

Then we check the numbers generated by is integer

idiv(X,Y,Result) :-

is integer(Result),

Prod1 is Result*Y,

Prod2 is (Result+1)*Y,

Prod1 =< X,

Prod2 > X,

!.

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 32/38

Backtracking and the Cut Operator

Generate and Test/3

The first line in idiv is the generator, the other lines implement the tester

We know that there can only be one possible solution

After reaching it, we stop the search

Otherwise, on backtracking is integer would keep on producing integers

None of these integers would pass the test, resulting in an endless loop

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 33/38

Backtracking and the Cut Operator

Cutting too Deeply/1

The cut operator is a dangerous tool and should be used sparingly!

It can behave in unexpected ways.

We want to formulate that every person has two parents, except Adam and
Eve who have no parents

number of parent(adam,0) :- !.

number of parent(eve,0) :- !.

number of parent(X,2).

Works fine if we want to retrieve the number of parents

?- number of parent(eve,X).

X = 0

?- number of parent(john,X).

X = 2

But does not correctly verify the number of parents

?- number of parent(eve,2).

yes

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 34/38

Backtracking and the Cut Operator

Cutting too Deeply/2

A general lesson is that if we introduce cuts to obtain correct behaviours

when the goals are of one form, there is no guarantee that anything

sensible will happen if goals of another form start appearing.

The goal
number of parent(eve,X)

works fine, while
number of parent(eve,2)

does not!

How can we address this problem?

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 35/38

Backtracking and the Cut Operator

Replace Cut by Not/1

It is considered good programming style to replace cuts by the use of
negation, \+ or not (if possible)

parent(adam,0).

parent(eve,0).

parent(X,2) :- \+(X = adam), \+(X = eve).

?- parent(eve,X).

X = 0 ? ;

no

?- parent(john,X).

X = 2

?- parent(eve,2).

no

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 36/38

Backtracking and the Cut Operator

Replace Cut by Not/2

The program computing the sum of the numbers from 1 to N can also be
rewritten without a cut operator

sum to(1,1).

sum to(N,Result) :-

not(N=1),

TmpN is N-1,

sum to(TmpN,TmpRes),

Result is TmpRes + N.

or

sum to(N,1) :- N =< 1.

sum to(N,Result) :-

N > 1,

TmpN is N-1,

sum to(TmpN,TmpRes),

Result is TmpRes + N.

This programming style makes it clear, which rule to use when

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 37/38

Backtracking and the Cut Operator

Cut versus Not

A general pattern with cut might look as following

A :- B, !, C.

A :- D.

A general pattern with not might look as following

A :- B, C.

A :- not(B), D.

The not operator makes the program more readable

The cut operator makes the program more efficient

If backtracking occurs, B needs to be evaluated for the second rule as well

PP 2018/19 Unit 9 – Prolog: Accumulators, Order of Goals/Clauses, and the Cut 38/38

	Accumulators
	Order of Subgoals and Clauses
	Backtracking and the Cut Operator

