
Programming Paradigms
Unit 8 — Prolog Structures and Lists

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 8 – Prolog Structures and Lists 1/46

Outline

1 Structures

2 Equality, Matching and Arithmetic

3 Lists

4 Examples

PP 2018/19 Unit 8 – Prolog Structures and Lists 2/46

Structures

Outline

1 Structures

2 Equality, Matching and Arithmetic

3 Lists

4 Examples

PP 2018/19 Unit 8 – Prolog Structures and Lists 3/46

Structures

Structures/1

If we want to say that Wallace and Wendolene own books, we could
formulate the following facts

owns(wallace, book).

owns(wendolene, book).

However, this means that Wallace owns the same object that Wendolene
owns

Specifying the title to distinguish may not help:

owns(wallace, perfume).

owns(wendolene, russell the sheep).

It’s not clear that we are talking about books here

This can be solved by introducing a structure for books

PP 2018/19 Unit 8 – Prolog Structures and Lists 4/46

Structures

Structures/2

A structure in Prolog is a single object which consists of a collection of
other objects, called components

A structure can be decomposed into

a functor and
one or more components

The functor names the general kind of structure, and corresponds to a data
type in other langues

Using a structure for books, we have

owns(wallace, book(perfume,suesskind)).

owns(wendolene, book(russell the sheep,scotton)).

Looking at book(perfume,suesskind)

book is the functor of the structure
perfume and suesskind are its components

PP 2018/19 Unit 8 – Prolog Structures and Lists 5/46

Structures

Nested Structures

Structures can be nested (arbitrarily deep)

Since there were three Brontë writers, we might want to present the author
in more detail with another structure author, e.g.,

owns(gromit, book(wuthering heights, author(emily,bronte))).

Prolog allows you to create arbitrarily complex structures to represent
information/knowledge

We could improve the book structure by adding an additional argument to
represent which copy the book was

e.g., the third argument uniquely identifies the book

owns(gromit, book(wuthering heights, author(emily,bronte), 3129)).

PP 2018/19 Unit 8 – Prolog Structures and Lists 6/46

Structures

Querying Structures

Structures my participate in query processing, including the use of variables

For example, if we want to know if Gromit owns any books written by one
of the Brontë sisters, we would query

?- owns(gromit, book(X, author(Y, bronte))).

X = wuthering heights

Y = emily

owns(gromit, book(wuthering heights, author(emily,bronte), 3129)).

That is: structures are matched similar as goals

from left to right
functor names are literally matched (such as predicates)
components: atoms are litererally matched, variables match everything
recursive matching of recursive structures

PP 2018/19 Unit 8 – Prolog Structures and Lists 7/46

Structures

Structures and Facts

The syntax for structures and facts is identical

A predicate (used in facts and rules) is actually the functor of a structure
The arguments of a fact or rule are components of a structure

So, Prolog programs are essentially structures, which has several
advantages.

All parts of Prolog, even Prolog programs themselves, are made up of
constants, variables and structures.

PP 2018/19 Unit 8 – Prolog Structures and Lists 8/46

Equality, Matching and Arithmetic

Outline

1 Structures

2 Equality, Matching and Arithmetic

3 Lists

4 Examples

PP 2018/19 Unit 8 – Prolog Structures and Lists 9/46

Equality, Matching and Arithmetic

Equality and Matching

Prolog has a number of built-in predicates

One of them is equality written as “=”

The expression X = Y attempts to match X and Y

i.e., tries to make X and Y equal

The goal succeeds if X and Y match; otherwise it fails

Following Prolog syntax, it should be written as =(X,Y)

While this works, Prolog also allows you to use an infix notation: X = Y

PP 2018/19 Unit 8 – Prolog Structures and Lists 10/46

Equality, Matching and Arithmetic

Equality and Matching of Atoms and Numbers

Integers and atoms are always equal to themselves

?- wallace = wallace.

yes

?- cheese = cake.

no

?- 1066 = 1066.

yes

?- 1206 = 1583.

no

PP 2018/19 Unit 8 – Prolog Structures and Lists 11/46

Equality, Matching and Arithmetic

Equality and Matching of Variables/1

A variable always matches itself, i.e., X = X always succeeds

?- X = X.

yes

If we match two different variables, i.e., X = Y, we have to distinguish
three cases

Case 1: none of the variables is instantiated

The goal always succeeds

?- X = Y.

X = Y

yes

PP 2018/19 Unit 8 – Prolog Structures and Lists 12/46

Equality, Matching and Arithmetic

Equality and Matching of Variables/2

Case 2: one of the two variables (say Y) is
instantiated

Goal succeeds, and X is instantiated with
the value of Y

?- X = gromit.

X = gromit.

?- X = likes(wallace,toast).

X = likes(wallace,toast).

?- X = Y, likes(X,toast).

X = wallace.

Y = wallace.

Knowledge base

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

PP 2018/19 Unit 8 – Prolog Structures and Lists 13/46

Equality, Matching and Arithmetic

Equality and Matching of Variables/3

Case 3: both variables are already
instantiated

The values the two variables are
instantiated with are compared
Might require the comparison of
structures

Knowledge base

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

?- likes(X,cheese), likes(Y,cake), X = Y.

X = gromit

Y = gromit

?- likes(X,toast), likes(Y,cake), X = Y.

no

PP 2018/19 Unit 8 – Prolog Structures and Lists 14/46

Equality, Matching and Arithmetic

Equality and Matching of Structures

Two structures are equal if
they have the same functor and number of components and
all the corresponding components are equal

?- likes(gromit,cheese) = likes(gromit,X).

X = cheese

?- f(a,g(a,b)) = f(X,g(Y,Z)).

X = Y, Y = a,

Z = b.

?- a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,g(H,i,j)))

B = b

C = c

E = e

F = f

H = h

J = j

?- letter(c) = word(c).

no.

PP 2018/19 Unit 8 – Prolog Structures and Lists 15/46

Equality, Matching and Arithmetic

Comparison and Matching

Prolog also offers other built-in comparison operators

?- 2 > 3.

no

?- 3 >= 2.

yes

?- 3 =< 2.

no

?- X \= Y.

no

The \= operator means that X cannot be made equal to Y

not(X=Y) could also be used

PP 2018/19 Unit 8 – Prolog Structures and Lists 16/46

Equality, Matching and Arithmetic

Arithmetic

Prolog also offers the standard arithmetic operators: +, -, *, /, mod,

Just typing in an arithmetic operation will not actually carry it out

?- 3 + 4.

ERROR: toplevel: Undefined procedure: (+)/2 ...

?- X = 3 + 4.

X = 3 + 4.

?- 7 = 3 + 4.

no

Using the is operator will evaluate the right-hand side and match it to the
left-hand side

?- 7 is 3 + 4.

yes

?- X is 3 + 4.

X = 7.

PP 2018/19 Unit 8 – Prolog Structures and Lists 17/46

Equality, Matching and Arithmetic

Arithmetic Example/1

Given the following fact base, compute the population density of countries

pop(usa,313).

pop(italy,61).

pop(uk,63).

area(usa,9.826).

area(italy,0.301).

area(uk,0.243).

The following rule computes the density

density(X,Y) :- pop(X,P),

area(X,A),

Y is P/A.

This rule is read as follows:
The population density of country X is Y, if:

The population of X is P, and
The area of X is A, and
Y is calculated by dividing P by A.

PP 2018/19 Unit 8 – Prolog Structures and Lists 18/46

Equality, Matching and Arithmetic

Arithmetic Example/2

Compute population density of USA

?- density(usa,Y).

Y = 31.854264197028289

yes

Compute all densities

?- density(X,Y).

X = usa

Y = 31.854264197028289 ? ;

X = italy

Y = 202.65780730897012 ? ;

X = uk

Y = 259.25925925925924.

PP 2018/19 Unit 8 – Prolog Structures and Lists 19/46

Lists

Outline

1 Structures

2 Equality, Matching and Arithmetic

3 Lists

4 Examples

PP 2018/19 Unit 8 – Prolog Structures and Lists 20/46

Lists

Lists/1

We have already seen structures as a construct to build more complicated
data types

Another important type supported by Prolog is a list

The elements of a list are enclosed in square brackets []

?- [1,2,3] = [1,2,3].

yes

?- [1,2,3] = [X,Y,Z].

X = 1,

Y = 2,

Z = 3.

Lists are matched similar to structures

PP 2018/19 Unit 8 – Prolog Structures and Lists 21/46

Lists

Lists/2

The elements of a list can be any terms – constants, variables, structures,
lists

. . . and they can be mixed

Examples of valid lists are

[]

[2,3,5,a,b]

[the,cat,sat,[on,the,mat]]

[a,V,b,[X,Y]]

[the,book([programming,in,prolog]),by,authors(C,M)]

PP 2018/19 Unit 8 – Prolog Structures and Lists 22/46

Lists

Internal Representation of Lists

Internally, lists are represented as compound terms using

the functor "."/2 (dot, list constructor), where the first argument is the
first element and the second argument is the rest of the list, and
the atom [] representing the empty list, which is the second argument on
the innermost level.

For example, the list

[a,b,c]

corresponds to the compound term

.(a, .(b, .(c, [])))

So, [1,2,3] is just a more convenient notation for an important structure

We can verify this in Prolog:

?- X = .(a, .(b, .(c,[]))).

X = [a, b, c]

Yes

In SWI Prolog v7, the functor "." has been replaced by the functor "[|]"

PP 2018/19 Unit 8 – Prolog Structures and Lists 23/46

Lists

Splitting Lists in Head and Tail/1

We can split lists into a head and tail using the ”|” operator

Head is the first element of the list
Tail is the (possibly empty) rest of the list, and it is a list

?- [Head|Tail] = [1,2,3].

Head = 1,

Tail = [2,3].

?- [Head|Tail] = [].

no.

?- [Head|Tail] = [1].

Head = 1,

Tail = [].

PP 2018/19 Unit 8 – Prolog Structures and Lists 24/46

Lists

Splitting Lists in Head and Tail/2

Some more examples

?- [H|T] = [[the,cat],sat].

H = [the,cat],

T = [sat].

?- [H|T] = [the,[cat,sat],down].

H = the,

T = [[cat,sat],down].

?- [H|T] = [X+Y,x+y].

H = X+Y,

T = [x+y].

?- [H1,H2,H3|T] = [1,2,3].

H1 = 1,

H2 = 2,

H3 = 3,

T = [].

PP 2018/19 Unit 8 – Prolog Structures and Lists 25/46

Lists

Lists and Recursion/1

Let’s assume we want to find out if an element is part of a list

Prolog has the built-in predicate member(X,Y), but define our own predicate

We have to do this recursively in Prolog

There are no loops like in other programming languages

Recursion in Prolog means that a predicate appears on the left- and the
right-hand side of a rule

For example, an element is in a list if it is

the head of the list or
in the tail of the list

is in(X,[H|]) :- X = H.

is in(X,[|T]) :- is in(X,T).

?- is in(d,[a,b,c,d,e,f]).

true

PP 2018/19 Unit 8 – Prolog Structures and Lists 26/46

Lists

Lists and Recursion/2

Step-by-step execution of the goal on the previous slide

is in(X,[H|]) :- X = H.

is in(X,[|T]) :- is in(X,T).

?- is in(d,[a,b,c,d,e,f]).

true

(Recursive) call Rule 1 Rule 2
is in(d,[a,b,c,d,e,f]) X = d, H = a --> false X = d, T = [b,c,d,e,f]

is in(d,[b,c,d,e,f]) X = d, H = b --> false X = d, T = [c,d,e,f]

is in(d,[c,d,e,f]) X = d, H = c --> false X = d, T = [d,e,f]

is in(d,[d,e,f]) X = d, H = d --> true

PP 2018/19 Unit 8 – Prolog Structures and Lists 27/46

Lists

Lists and Recursion/3

Does the is in predicate cover all cases?

Having a closer look at the recursion, we observe that there are actually
two base cases for the is in predicate

Base case 1: element X is the head of the list (first predicate)
Base case 2: element X is not in the list, then the list is empty

However, the second base case need not to be implemented, as none of the
two predicates matches an empty list as second parameter

However, we could add the following clause for the second base case

is in(X,L) :- L = [], fail.

Predicate fail returns false

The termination of is in is guaranteed as in the recursive call the list
passed to the goal is shorter, hence

eventually X is encountered as first element of the list (base case 1),
or the list is empty (base case 2)

PP 2018/19 Unit 8 – Prolog Structures and Lists 28/46

Lists

Enumerating Elements and Generating Lists

The predicate is in can also be used to enumerate all elements of a list

?- is in(X,[1,2,a]).

X = 1;

X = 2;

X = a;

false

We can even use it to generate lists

?- is in(a,L).

L = [a| G5033893];

L = [G5033893, a| G5033898]

G5033893, ... are variables

PP 2018/19 Unit 8 – Prolog Structures and Lists 29/46

Lists

List Predicates – last/2

Finding the last element of a list

last(X,[X]).

last(X,[|T]) :- last(X,T).

?- last(X,[talk,of,the,town]).

X = town

PP 2018/19 Unit 8 – Prolog Structures and Lists 30/46

Lists

List Predicates – next to/2

Checking for two consecutive elements of a list

next to(X,Y,[X,Y|]).

next to(X,Y,[|Z]) :- next to(X,Y,Z).

?- next to(X,Y,[talk,of,the,town]).

X = talk,

Y = of ;

X = of,

Y = the ;

X = the,

Y = town

PP 2018/19 Unit 8 – Prolog Structures and Lists 31/46

Lists

List Predicates – append/3

append is a very useful built-in predicate that can be used in a flexible way
Appending two lists

append([],L,L).

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

?- append([i,like],[prolog],L).

L = [i,like,prolog]

Generating sublists

?- append(X,Y,[i,like,prolog]).

X = [], Y = [i,like,prolog] ? ;

X = [i], Y = [like,prolog] ? ;

X = [i,like], Y = [prolog] ? ;

X = [i,like,prolog], Y = [] ? ;

no

Computing the difference between lists

?- append([i],Y,[i,like,prolog]).

Y = [like,prolog]

PP 2018/19 Unit 8 – Prolog Structures and Lists 32/46

Lists

List Predicates – append/3

Prolog is very flexible with regard to the initialization of parameters

e.g., in append any of two parameters can be initialized

We can easily implement last, next to, and is in using append

last(E,List) :- append(,[E],List).

next to(X,Y,List) :- append(,[X,Y|],List).

is in(X,List) :- append(,[X|],List).

PP 2018/19 Unit 8 – Prolog Structures and Lists 33/46

Lists

Strings in Prolog/1

Strings in Prolog can be quite confusing if you come from another language

There are two “types” of strings

Strings enclosed in single quotes (’) are atoms

?- ’hello’ = S.

S = hello.

write(’hello’)

hello

true.

As this class of strings are atoms, they naturally cannot be manipulated

PP 2018/19 Unit 8 – Prolog Structures and Lists 34/46

Lists

Strings in Prolog/2

Strings (or terms) written in double quotes (”) are immediately converted
to a list of character codes (ASCII)

?- "hello" = L.

L = [104, 101, 108, 108, 111].

write("hello").

[104, 101, 108, 108, 111]

true.

As of SWI-Prolog v7, only back quoted text is converted,

e.g.,‘text‘ is represented as [116,101,120,116],

whereas text enclosed in double quotes is read as a sequence of characters

PP 2018/19 Unit 8 – Prolog Structures and Lists 35/46

Lists

Strings in Prolog/3

Sometimes, single-quoted strings need to be converted to character lists,
e.g., to print the first character of a string or to search for a substring.

This can be done by the name predicate.

?- name(’hello’, L).

L = [104, 101, 108, 108, 111].

SWI-Prolog provides a large number of built-in predicates for strings, e.g.,
concatenate strings, string length, conversion between terms and strings,
etc.

PP 2018/19 Unit 8 – Prolog Structures and Lists 36/46

Lists

Prefix Example

The following predicate verifies, whether a string S1 is a prefix of another
string S2.

prefix(S1, S2) :-

atom(S1),

atom(S2),

name(S1, L1),

name(S2, L2),

append(L1, , L2).

We can use it as follows:

?- prefix(’hello’, ’hello world’).

true.

?- prefix("hello", "hello world").

false.

PP 2018/19 Unit 8 – Prolog Structures and Lists 37/46

Examples

Outline

1 Structures

2 Equality, Matching and Arithmetic

3 Lists

4 Examples

PP 2018/19 Unit 8 – Prolog Structures and Lists 38/46

Examples

The Towers of Hanoi/1

Goal: move a stack of n disks from one peg to another with the help of an
auxiliary peg, where

Only one disk can be moved at a time
A move can only take the upper disk of a stack
A larger disk can never be placed on top of a smaller disk

A B C

Legend: Somewhere in the surrounding of Hanoi, there is a monastery,
where the monks have to perform this task assigned to them by God when
the world was created with n = 64 golden disks. At the moment they
complete their task, the world will collapse.

The minimum number of moves to solve a Tower of Hanoi puzzle is 2n − 1

This is roughly 585 billion years for the monks, if they move the disks at a
rate of one move per second

PP 2018/19 Unit 8 – Prolog Structures and Lists 39/46

Examples

The Towers of Hanoi/2

Recursive solution

Termination: there are no disks on peg A

Move n − 1 disks from peg A to C (notice the recursive move!)
Move disk n from peg A to B

Move n − 1 disks from peg C to B

Predicate Move(N,A,B,C) moves n disks from peg A to peg B with the
help of C

hanoi(N) :- move(N,pegA,pegB,pegC).

move(1,A,B,) :- write([move,disc,from,A,to,B]), nl.

move(N,A,B,C) :-

N > 1,

M is N-1,

move(M,A,C,B),

move(1,A,B,),

move(M,C,B,A).

PP 2018/19 Unit 8 – Prolog Structures and Lists 40/46

Examples

Sudoku/1

Sudoku is a logic-based, combinatorial number-placement puzzle.

The objective is to fill a 9x9 grid with digits so that each column, each row,
and each of the nine 3x3 sub-grids (boxes) contains all of the digits from 1
to 9.

A partially completed grid is given, which has a unique solution.

PP 2018/19 Unit 8 – Prolog Structures and Lists 41/46

Examples

Sudoku/2

We make the problem easier and consider a
4x4 sudoku, where rows, columns and boxes
have to be filled with a permutation of the
numbers 1,. . . ,4

We can model the Sudoku problem in Prolog
using list permutations

Each row must be a permutation of [1,2,3,4]
Each column must be a permutation of
[1,2,3,4]
Each 2x2 box must be a permutation of
[1,2,3,4]

The Sudoku is represented by a list of lists

[[X11, X12, X13, X14],

[X21, X22, X23, X24],

[X31, X32, X33, X34],

[X41, X42, X43, X44]]

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

PP 2018/19 Unit 8 – Prolog Structures and Lists 42/46

Examples

Sudoku/3

sudoku([R1, R2, R3, R4]) :-

R1 = [X11,X12,X13,X14],

R2 = [X21,X22,X23,X24],

R3 = [X31,X32,X33,X34],

R4 = [X41,X42,X43,X44],

% rows

permutation([X11,X12,X13,X14],[1,2,3,4]),

permutation([X21,X22,X23,X24],[1,2,3,4]),

permutation([X31,X32,X33,X34],[1,2,3,4]),

permutation([X41,X42,X43,X44],[1,2,3,4]),

% cols

permutation([X11,X21,X31,X41],[1,2,3,4]),

permutation([X12,X22,X32,X42],[1,2,3,4]),

permutation([X13,X23,X33,X43],[1,2,3,4]),

permutation([X14,X24,X34,X44],[1,2,3,4]),

% boxes

permutation([X11,X12,X21,X22],[1,2,3,4]),

permutation([X13,X14,X23,X24],[1,2,3,4]),

permutation([X31,X32,X41,X42],[1,2,3,4]),

permutation([X33,X34,X43,X44],[1,2,3,4]).
PP 2018/19 Unit 8 – Prolog Structures and Lists 43/46

Examples

Binary Search Trees/1

Binary search trees can be represented in Prolog by a recursive structure
with three arguments bst(K,L,R), where

K is the key of the root
L is the left sub-tree
R is the right sub-tree

The empty (null) tree is usually represented as the constant nil.

Example tree with 6 nodes:
bst(6,

bst(4,

bst(2,nil,nil),

bst(5,nil,nil)),

bst(9,

bst(7, nil, nil),

nil)

)

6

4

2 5

9

7

PP 2018/19 Unit 8 – Prolog Structures and Lists 44/46

Examples

Binary Search Trees/2

A basic operation is bstmem(Tree,X), which succeeds if X is contained in
Tree

bstmem(bst(X, ,), X).

bstmem(bst(K,L,), X) :-

X < K,

bstmem(L, X).

bstmem(bst(K, ,R), X) :-

X > K,

bstmem(R, X)

Examples:

?- bstmem(nil, 3).

No

?- bstmem(bst(5,bst(8,nil,nil),nil),8).

Yes

PP 2018/19 Unit 8 – Prolog Structures and Lists 45/46

Examples

Binary Search Trees/3

Another basic operation is inorder(Tree, L) that succeeds if L contains
the keys in Tree in inorder

inorder(bst(K,L,R), List) :-

inorder(L, LL),

inorder(R, LR),

append(LL, [K|LR], List).

inorder(nil, []).

Examples:

?- inorder(bst(5,bst(4,nil,nil),bst(8,nil,nil)),L).

L = [4,5,8]

Modify the above predicate to a predicate

preorder(Tree,L) that succeeds if L contains the keys in Tree in preorder
postorder(Tree,L) that succeeds if L contains the keys in Tree in
postorder

PP 2018/19 Unit 8 – Prolog Structures and Lists 46/46

	Structures
	Equality, Matching and Arithmetic
	Lists
	Examples

