
Programming Paradigms
Unit 7 — Debugging and the Box Model

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 7 – Debugging and the Box Model 1/11

The Box Model

The box model of Prolog execution provides a simple way to show the
control flow

A box represents the invocation of a single predicate

The box has four ports (with associated events)

CALL: The first call of a predicate; control enters into the box
EXIT: The goal has been proven
REDO: The system comes back to a goal, trying ot re-satisfy it, i.e.,
backtracking
FAIL: The goal/predicate fails

Predicate

CALL

FAIL

EXIT

REDO

PP 2018/19 Unit 7 – Debugging and the Box Model 2/11

Debugging

The box model is used to debug the execution of Prolog programs

Predicate trace/0 starts the exhaustive tracing mode

notrace/0 stops the tracing mode

The debugger then displays a line for every port and waits for a command

With Return or c (”creep”) one steps to the next port
The command a (abort) stops the execution of the query

Other debugger commands are available

Usually displayed when entering ? or h

PP 2018/19 Unit 7 – Debugging and the Box Model 3/11

The Box Model Example/1

Consider the following facts (e.g., emil is the father of jan)

father(jan,emil).

father(julia,emil).

father(emil,arno).

The goal trace/0 activates ”tracing”

?- trace, father(X,emil).

Call: father(16,emil) ?

Exit: father(jan,emil) ?

X = jan ? ;

Redo: father(jan,emil) ?

Exit: father(julia,emil) ?

X = julia.

father(X,emil)

CALL

FAIL

EXIT

REDO

PP 2018/19 Unit 7 – Debugging and the Box Model 4/11

Concatenation of Boxes

A conjunction of two predicates is represented by two connected boxes

The EXIT port of the first box is connected to the CALL port of the second
port
The FAIL port of the second box is connected to the REDO port of the first
port

Consider the following goal consisting of two predicates

?- father(X,emil), father(Y,emil).

father(X,emil) father(Y,emil)

CALL EXIT CALL EXIT

FAILREDO REDOFAIL

PP 2018/19 Unit 7 – Debugging and the Box Model 5/11

Nesting Boxes

Rules are represented by nexted boxes

The head of the rule is represented by an outer box
The body of the rule is represented by one or more inner boxes
Each port of the outer box is connected to the corresponding port of the
inner box

Consider the following rule

siblings(X,Y) :- father(X,Z),

father(Y,Z),

X \= Y.

siblings(X,Y)

father(X,Z) father(Y,Z) X \= Y

CALL CALL EXIT CALL EXIT CALL EXIT EXIT

FAILREDOFAILREDO REDOREDOFAILFAIL

PP 2018/19 Unit 7 – Debugging and the Box Model 6/11

The Box Model Example/2

?- trace, siblings(jan, Y).

(1) 0 CALL siblings(jan, Y) ?

(2) 1 CALL father(jan, Z) ?

(2) 1 EXIT father(jan, emil) ?

(3) 1 CALL father(Y, emil) ?

(3) 1 *EXIT father(jan, emil) ?

(4) 1 CALL jan \= jan ?

(4) 1 FAIL jan \= jan?

(3) 1 REDO father(Y, emil) ?

(3) 1 EXIT father(julia, emil) ?

(5) 1 CALL julia \= jan ?

(5) 1 EXIT julia \= jan ?

(1) 0 EXIT siblings(jan, julia) ?

X = julia ? ;

(1) 1 REDO: siblings(jan, julia) ?

(3) 2 REDO: father(julia, emil) ?

(3) 2 FAIL: father(Y, emil) ? c

(1) 1 FAIL: siblings(jan, Y) ? c

no

father(jan,emil).

father(julia,emil).

father(emil,arno).

siblings(X,Y) :- father(X,Z),

father(Y,Z),

X \= Y.

siblings(jan,Y)

father(jan,Z) father(Y,Z) jan \= Y

CALL CALL EXIT CALL EXIT CALL EXIT EXIT

FAILREDOFAILREDO REDOREDOFAILFAIL

PP 2018/19 Unit 7 – Debugging and the Box Model 7/11

Remarks about the Box Model

The exact form of the output depends on the Prolog system

The above output contains a box number in the first column and a nesting
depth (call stack depth) in the second column

The asterisc "*" before EXIT marks that there are possibly further
solutions (nondeterministic exit)

Otherwise, the box is already removed, and not visited during backtracking
(i.e., no REDO-FAIL will be shown)
Because of such optimizations, the debugger output might violate the pure
four-port model.

Tracing is switched on by the predicate trace/0 and switched off by the
predicate notrace/0.

Another useful debugging predicate is spy/1, which allows to specify
specific subgoals, for which the user wants to obtain detailed information of
the box model

PP 2018/19 Unit 7 – Debugging and the Box Model 8/11

Spy Points/1

Tracing is doing exhaustive debugging of all subgoals

Another useful debugging predicate is spy/1

Allows to inspect the execution for selected subgoals only

The following predicate sets a ”syp point” on the predicate father/2

?- spy(father/2).

If the debug predicate is now used, Prolog executes the program without
interruption until the first spypoint is reached

Then one can continue debugging as with trace or ”leap” to the next spy
point (usually with the command l)

nodebug stops the debugger, nospy removes the spy points

PP 2018/19 Unit 7 – Debugging and the Box Model 9/11

Spy Points/2

The debugger output for the query debug, siblings(jan,Y) after
setting a spy point for father/2

?- debug, siblings(jan,Y).

* Call: (8) father(jan, G3270) ? creep

* Exit: (8) father(jan, emil) ? creep

* Call: (8) father(G3159, emil) ? creep

* Exit: (8) father(jan, emil) ? creep

Call: (8) jan\=jan ? creep

Fail: (8) jan\=jan ? creep

* Redo: (8) father(G3159, emil) ? creep

* Exit: (8) father(julia, emil) ? creep

Call: (8) jan\=julia ? creep

Exit: (8) jan\=julia ? creep

Exit: (7) siblings(jan, julia) ? creep

Y = julia.

Notice that the CALL port of sibling is not shown!

PP 2018/19 Unit 7 – Debugging and the Box Model 10/11

Spy Points/3

The comand leap jumps to the next spy point

?- debug, siblings(jan,Y).

* Call: (8) father(jan, G1003) ? leap

* Exit: (8) father(jan, emil) ? leap

* Call: (8) father(G889, emil) ? leap

* Exit: (8) father(jan, emil) ? leap

* Exit: (8) father(julia, emil) ? leap

Y = julia.

PP 2018/19 Unit 7 – Debugging and the Box Model 11/11

