
Programming Paradigms
Unit 6 — Prolog Basics

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 6 – Prolog Basics 1/42

Outline

1 Basics of Prolog

2 Backtracking

3 Rules

PP 2018/19 Unit 6 – Prolog Basics 2/42

Basics of Prolog

Outline

1 Basics of Prolog

2 Backtracking

3 Rules

PP 2018/19 Unit 6 – Prolog Basics 3/42

Basics of Prolog

Logic Programming

Logic programming is a programming paradigm based on formal logic

Programming languages for logic programming are very different to those
encountered so far

They are declarative languages

Programmer defines “what” to do, program will figure out “how” to do it
In other words, you express the logic of a computation without describing its
control flow
In imperative and object-oriented languages, the programmer has to do both

A program written in a logic programming language is a set of sentences in
logical form, expressing facts and rules about some problem domain

PP 2018/19 Unit 6 – Prolog Basics 4/42

Basics of Prolog

Prolog

One of the most well-known logic programming languages is Prolog

Stands for PROgramming in LOGic
Developed by Alain Colmerauer and colleagues in Marseille in the early 1970s

Prolog is very useful in some problem areas

such as artificial intelligence, natural language processing, databases, . . .

But pretty useless in others

such as for instance graphics or numerical algorithms

Major logic programming language families include Prolog, Answer set
programming (ASP) and Datalog.

PP 2018/19 Unit 6 – Prolog Basics 5/42

Basics of Prolog

Hello World!

Start a Prolog interpreter, e.g., gprolog for GNU Prolog or swipl for SWI
Prolog

The Prolog Interpreter shows a prompt and is ready to accept programs

?-

Let’s have a look at a very simple program: Hello World!

?- write(’Hello World!’), nl.

This will output (may also say yes instead of true):

Hello World!

true

Although this works, it’s a very untypical example of a Prolog program

PP 2018/19 Unit 6 – Prolog Basics 6/42

Basics of Prolog

Language Basics: Data and Queries

Prolog has two parts

One to represent the data
Another to query the data

Data is represented in the form of facts and logical rules
Facts: a fact is a basic assertion about some world

Mary is a student
Students like books

Rules: a rule is an inference about facts in that world

A person likes books if she/he is a student

Query: a query is a question about that world

Does Mary like books?

PP 2018/19 Unit 6 – Prolog Basics 7/42

Basics of Prolog

Knowledge Base

Facts and rules go into a knowledge base

Prolog allows you to express the contents of a knowledge base
Usually a compiler turns this base into a form efficient for querying

Querying links together facts and rules to tell you something about the
world modeled in the knowledge base

PP 2018/19 Unit 6 – Prolog Basics 8/42

Basics of Prolog

Facts

Facts are basic assertions/statements about objects in the world

Consider the animation series “Wallace and Gromit”

Wallace is a good, eccentric cheese loving inventor
Gromit is a silent yet intelligent anthropomorphic dog
. . .

This is represented in a little Prolog knowledge base of five facts

likes(wallace, toast).

likes(wallace, cheese).

likes(gromit, cheese).

likes(gromit, cake).

likes(wendolene, sheep).

The facts can be read as the following assertions about the world
“Wallace likes toast”
“Wallace likes cheese”
. . .

PP 2018/19 Unit 6 – Prolog Basics 9/42

Basics of Prolog

Atoms

Atoms refer to individual things/objects

e.g., wallace, gromit, wendolene, toast, cheese, cake, and sheep in the
facts on the previous slide are atoms

Atoms always

begin with a lower-case character, e.g., wallace
or they have to be quoted, e.g., ’Wallace’

An atom is a fixed value, similar to a Ruby symbol

PP 2018/19 Unit 6 – Prolog Basics 10/42

Basics of Prolog

Predicates

Predicates represent relationships between objects in the world

In the facts on the previous example, likes is a predicate

e.g., likes(gromit, cheese)

The predicate likes has two parameters

The order of the parameters is important

PP 2018/19 Unit 6 – Prolog Basics 11/42

Basics of Prolog

Compiling/Loading the Knowledge Base

We write the facts in a file "wallace.pl" and load it into the interpreter

Checks for syntax errors
Compiles the knowledge base into form that is efficient for querying

?- [’wallace.pl’]

% wallace.pl compiled 0.00 sec, 8 clauses

true.

Now we are ready to ask some questions

The most basic ones are questions about facts

PP 2018/19 Unit 6 – Prolog Basics 12/42

Basics of Prolog

Queries

After compilation we can query the Prolog
knowledge base

Prolog tries to match a query to known
facts

?- likes(gromit,cheese).

true

?- likes(wallace,sheep).

false

Knowledge base

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

This confirms that gromit likes cheese, but wallace doesn’t like sheep

true means that Prolog is able to prove this statement given the actual
knowledge base
false means that Prolog cannot prove this statement given the actual
knowledge base

PP 2018/19 Unit 6 – Prolog Basics 13/42

Basics of Prolog

Variables and Instantiation/1

Variables make queries more exciting

Variables begin with an uppercase letter or
with an underscore ’ x’

We can ask Prolog to find values for variables

e.g., Who likes cheese?

?- likes(Who,cheese).

Knowledge base

likes(wallace, toast).
likes(wallace, cheese).
likes(gromit, cheese).
likes(gromit, cake).
likes(wendolene, sheep).

Who is an uninstantiated variable, i.e., it has no assigned value

Prolog searches the KB from the beginning, trying to find a matching fact

The first matching fact is likes(wallace,cheese), so Who is instantiated
with wallace

?- likes(Who,cheese).

Who = wallace

At this point Prolog outputs Who = wallace and asks what to do next

PP 2018/19 Unit 6 – Prolog Basics 14/42

Basics of Prolog

Variables and Instantiation/2

We can

stop searching by just hitting the return key
or continue searching by entering ";"

If we continue, Prolog

forgets the value wallace for the variable Who

and continues at the position it previously stopped (using a placemarker)

Continuing will output Who = gromit; then the query terminates as there
will be no further solutions

?- likes(Who,cheese).

Who = wallace ;

Who = gromit.

?-

PP 2018/19 Unit 6 – Prolog Basics 15/42

Basics of Prolog

Anonymous Variables

Sometimes we want to use a variable but don’t care about its value

We don’t want to use the variable anywhere else

e.g., is there anyone who likes cheese (but we don’t need to know who)

?- likes(,cheese).

true ?

yes

We use an underscore for the anonymous variable

Several occurrence of in the same clause do not need to be given
consistent interpretations

PP 2018/19 Unit 6 – Prolog Basics 16/42

Backtracking

Outline

1 Basics of Prolog

2 Backtracking

3 Rules

PP 2018/19 Unit 6 – Prolog Basics 17/42

Backtracking

Goals/1

By submitting a query, we ask Prolog to try to satisfy a goal

We can ask Prolog to satisfy the conjunction of two goals using the ”,”
operator (pronounced “and”)

?- likes(wallace,toast), likes(gromit,toast).

no

We can combine conjunctions with variables to make queries more
interesting

PP 2018/19 Unit 6 – Prolog Basics 18/42

Backtracking

Goals/2

Now that we found out that at least one of them does not like toast . . .

. . . is there something both of them like?

?- likes(wallace,What), likes(gromit,What).

What = cheese;

no

How does Prolog process this query (conceptually)?

It uses backtracking to try to satisfy the first goal and then the second goal

PP 2018/19 Unit 6 – Prolog Basics 19/42

Backtracking

Backtracking/1

Process the following query consisting of two goals

?- likes(wallace,What) , likes(gromit,What).

first goal second goal

likes(wallace,toast)

likes(wallace,cheese)

likes(gromit,cheese)

likes(gromit,cake)

likes(wendolene,sheep)

Attempt to satisfy the first goal

PP 2018/19 Unit 6 – Prolog Basics 20/42

Backtracking

Backtracking/2

?- likes(wallace,What) , likes(gromit,What).

likes(wallace,toast)

likes(wallace,cheese)

likes(gromit,cheese)

likes(gromit,cake)

likes(wendolene,sheep)

toast toast

The first goal succeeds, instantiating What = toast

Next, attempt to satisfy the second goal

PP 2018/19 Unit 6 – Prolog Basics 21/42

Backtracking

Backtracking/3

?- likes(wallace,What) , likes(gromit,What).

likes(wallace,toast)

likes(wallace,cheese)

likes(gromit,cheese)

likes(gromit,cake)

likes(wendolene,sheep)
X

toast toast

The (fully instantiated) second goal likes(gromit,toast) fails

Next, backtracking starts: forget the instantiation What = toast and
attempt to re-satisfy the first goal

PP 2018/19 Unit 6 – Prolog Basics 22/42

Backtracking

Backtracking/4

?- likes(wallace,What) , likes(gromit,What).

likes(wallace,toast)

likes(wallace,cheese)

likes(gromit,cheese)

likes(gromit,cake)

likes(wendolene,sheep)

cheese cheese

The first goal succeeds again, instantiating What = cheese

Next attempt to satisfy the second goal

PP 2018/19 Unit 6 – Prolog Basics 23/42

Backtracking

Backtracking/5

?- likes(wallace,What) , likes(gromit,What).

likes(wallace,toast)

likes(wallace,cheese)

likes(gromit,cheese)

likes(gromit,cake)

likes(wendolene,sheep)

cheese cheese

The second goal succeeds

Prolog notifies you of success with What = cheese and waits for a reply

PP 2018/19 Unit 6 – Prolog Basics 24/42

Rules

Outline

1 Basics of Prolog

2 Backtracking

3 Rules

PP 2018/19 Unit 6 – Prolog Basics 25/42

Rules

Rules/1

Suppose we want to state that Wallace likes all people

Could be done by many facts

likes(wallace, gromit).

likes(wallace, tom).

...

. . . but this becomes tedious and long

Another way to state the same would be:
Wallace likes any object provided it is a person

This fact is in the form of a more compact rule

PP 2018/19 Unit 6 – Prolog Basics 26/42

Rules

Rules/2

A rule is a general statement about objects and their relationships

A rule for being a sister of someone in plain English could be:

X is a sister of Y if:

X is female and

X and Y have the same parents.

Important: a variable stands for the same object wherever it occurs in a rule

PP 2018/19 Unit 6 – Prolog Basics 27/42

Rules

Rules/3

Rules in Prolog consist of a head and a body connected by the symbol
":-" (pronounced if)

head :- body

The head is a predicate that describes what the rule is intended to define

The body is a conjunction of goals that must be satisfied for the head to
be true

In other words: to prove the head, the body needs to be proven

PP 2018/19 Unit 6 – Prolog Basics 28/42

Rules

Rules Example

If we want to express that Wallace is a friend of anyone who likes cheese,
we could formulate it like this:

friend(wallace,X) :- likes(X,cheese).

X is a variable and can match any object

PP 2018/19 Unit 6 – Prolog Basics 29/42

Rules

Matching Rules/1

Prolog tries to satisfy the goal by matching it with rules and/or facts in the
knowledge base

?- friend(wallace,X).

friend(wallace,X) :- likes(X,cheese).

likes(wallace,toast).

likes(wallace,cheese).

likes(gromit,cheese).

likes(gromit,cake).

likes(wendolene,sheep).

X

After matching the head of the rule, the body of the rule needs to be proven

PP 2018/19 Unit 6 – Prolog Basics 30/42

Rules

Matching Rules/2

Prove the body of the rule

?- likes(X,cheese).

friend(wallace,X) :- likes(X,cheese).

likes(wallace,toast).

likes(wallace,cheese).

likes(gromit,cheese).

likes(gromit,cake).

likes(wendolene,sheep).

wallace

The body of the rule is proven with X = wallace, so the head is proven,
too, i.e., Wallace is a friend of Wallace

Backtracking produces the second result, i.e., X = gromit.

PP 2018/19 Unit 6 – Prolog Basics 31/42

Rules

Rules Example Revisited

Running the query friend(wallace,X) will produce two results:

gromit is ok
wallace not really ok

We can exclude wallace by saying that X shouldn’t be wallace

friend(wallace,X) :-

likes(X,cheese),

\+(X=wallace).

\+ is the negation/logical not of a subgoal (not can also be used)

This only lists friends of wallace (those persons who like cheese)

PP 2018/19 Unit 6 – Prolog Basics 32/42

Rules

A Generalization of the Rule Example/1

A generalization of the rule on the previous slides would be: if X and Y like

the same thing Z, and X and Y are different, then X and Y are friends

This makes our knowledge base more interesting

likes(wallace, toast).

likes(wallace, cheese).

likes(gromit, cheese).

likes(gromit, cake).

likes(wendolene, sheep).

friend(X,Y) :-

likes(X,Z),

likes(Y,Z),

\+(X=Y).

PP 2018/19 Unit 6 – Prolog Basics 33/42

Rules

A Generalization of the Rule Example/2

Let’s try it out with constants in the query

?- friend(gromit,wallace).

yes

?- friend(wallace,gromit).

yes

?- friend(wallace,wallace).

no

?- friend(wallace,wendolene).

no

PP 2018/19 Unit 6 – Prolog Basics 34/42

Rules

A Generalization of the Rule Example/3

We can also use variables instead of atoms in the query.

Now let’s ask who is a friend of Wallace:

?- friend(wallace,Who).

Who = gromit ? ;

no

Or let’s find all pairs of friends:

?- friend(Who1,Who2).

Who1 = wallace

Who2 = gromit ? ;

Who1 = gromit

Who2 = wallace ? ;

no

PP 2018/19 Unit 6 – Prolog Basics 35/42

Rules

Queen Victoria’s Family/1

Just using facts, rules, and variables we can already do some interesting
things, e.g., model Queen Victoria’s family

We use the predicate parents(X,Y,Z) to represent the parents of X are Y

and Z

We also use male(X) and female(X) in the obvious way

male(albert).

male(edward).

female(alice).

female(victoria).

parents(edward, victoria, albert).

parents(alice, victoria, albert).

PP 2018/19 Unit 6 – Prolog Basics 36/42

Rules

Queen Victoria’s Family/2

Now we add a rule for sister: X is a sister of Y if X is female and they both

have the same parents

sister of(X, Y) :-

female(X),

parents(X, M, F),

parents(Y, M, F).

Now you can query:

?- sister of(alice, edward).

true

?- sister of(alice, X).

X = edward

PP 2018/19 Unit 6 – Prolog Basics 37/42

Rules

Map Coloring/1

A slightly more complex example

Assume we want to color a map, such that two regions with a common
border don’t have the same color

PP 2018/19 Unit 6 – Prolog Basics 38/42

Rules

Map Coloring/2

In order to simplify things, we’ll only look at regions 3, 4, 5, and 6 and use
the colors red, green, and blue

Now all we have to do is describe this to Prolog
We tell Prolog the different colors to use for pairs of neighoring regions
and the neighoring regions

border(red,green).

border(red,blue).

border(green,red).

border(green,blue).

border(blue,red).

border(blue,green).

coloring(L,TAA,V,FVG) :-

border(L,TAA),

border(L,V),

border(TAA,V),

border(V,FVG).

PP 2018/19 Unit 6 – Prolog Basics 39/42

Rules

Map Coloring/3

Querying coloring(L,TAA,V,FVG) will now provide all the answers:

?- coloring(L,TAA,V,FVG).

FVG = r

L = r

TAA = g

V = b ? ;

FVG = g

L = r

TAA = g

V = b ?

...

PP 2018/19 Unit 6 – Prolog Basics 40/42

Rules

Where’s the Program?

In Prolog you don’t have to write a program
You express the logic of a problem in facts and rules
And then let the computer do the work in figuring out a solution

Solving the map coloring problem with a language like Java or Ruby would
be (much) harder to do

Here is the Ruby code
def mapcoloring

colors = [:red, :green, :blue]

colors.each do |l|

colors.each do |taa|

colors.each do |v|

colors.each do |fvg|

if l != taa && l != v && taa != v && v != fvg then

puts "L = #{l}, TAA = #{taa}, V = #{v}, FVG = #{fvg}"
end

end

end

end

end

end

PP 2018/19 Unit 6 – Prolog Basics 41/42

Rules

Predicates Revisited

Predicates can be defined by a combination of facts and rules

We use also the term clause of a predicate to refer either to a fact or a rule
defining the predicate

PP 2018/19 Unit 6 – Prolog Basics 42/42

	Basics of Prolog
	Backtracking
	Rules

