
Programming Paradigms
Unit 5 — Recursion

J. Gamper

Free University of Bozen-Bolzano
Faculty of Computer Science

IDSE

PP 2018/19 Unit 5 – Recursion 1/35

Outline

1 Recursion

2 Writing Recursive Functions

PP 2018/19 Unit 5 – Recursion 2/35

Recursion

Outline

1 Recursion

2 Writing Recursive Functions

PP 2018/19 Unit 5 – Recursion 3/35

Recursion

A Different Kind of Loop/1

The languages we are covering
next have a lack of iterative
constructs

That means, they have no
loops

That does not mean that they
are less expressive, they use
recursion, instead

PP 2018/19 Unit 5 – Recursion 4/35

Recursion

A Different Kind of Loop/2

It depends on the language how easy and efficient one or the other is

Some languages lack recursion: Fortran77, Assembler
Some languages allow recursion, but aren’t very efficient with it: C++, Java
Languages we cover next are optimized for recursion

PP 2018/19 Unit 5 – Recursion 5/35

Recursion

Basic Idea of Recursion

The basic idea of recursion is “Divide et Impera”, and is composed of three
elements:

Recursive case: Divide a problem P into subproblems with the same
structure, but smaller
Base case: At some point, the subproblem is small enough to solve it
Composition: Once the subproblems are solved, they can be composed to
solve P

Many problems can be expressed very elegantly and naturally with recursion

To iterate is human, to recurse divine (Anonymous)

n! = n ∗ (n − 1)!

PP 2018/19 Unit 5 – Recursion 6/35

Recursion

General Structure of a Recursive Solution/Program

solve(problem p)

if (p is simple)

Solve the problem p directly

else

Divide p into new sub-problems p1, p2, ...

r1 = solve(p1)
r2 = solve(p2)

...

Reassemble r1, r2, ... to solve p
end

end

PP 2018/19 Unit 5 – Recursion 7/35

Recursion

Example: The Handshake Problem

There are n people in a room, and each
person shakes hands once with every other
person.

What is the total number h(n) of
handshakes?

Recursive solutions seems very natural

2 persons: h(2) = 1
3 persons: h(3) = h(2) + 2

...
n persons: h(n) = h(n − 1) + (n − 1)

That is, the n-th person shakes n−1 hands in addition to the number of
handshakes of the previous n−1 people

Same as sum of 1 + 2 + · · ·+ (n − 1) = n·(n−1)
2

PP 2018/19 Unit 5 – Recursion 8/35

Recursion

Example: Binary Search

Binary search for an element v in a sorted array a
Compare v with the middle element of a
If not equal, apply binary search to half of a where v would be

a 2 5 7 8 10 12 15 25

min mid max

bsearch(a, i, j, v)

if (a[mid] = v)

return mid

else if (i ≥ j)

return not found

else if (v ≤ a[mid])

return bsearch(a, min, mid-1, v)

else

return bsearch(a, mid+1, max, v)

end

end

PP 2018/19 Unit 5 – Recursion 9/35

Recursion

Iterative Sum Example

Let’s convert a simple loop into recursion

We’re going to stay with Ruby for a while
longer and write a function that computes
a sum:

def sum(n)

total = 0

while(n != 0)

total += n

n -= 1

end

return total

end

PP 2018/19 Unit 5 – Recursion 10/35

Recursion

Explaining Recursion

The function from the previous slide in plain words:
1 You have n, set total to 0
2 If n is not 0 yet:

(a) Add n to total

(b) Decrement n by 1
(c) Repeat Step 2

3 Done, return total

Explaining Step 2 in recursive fashion:
2 If n is not 0 yet, repeat this same step with

(a) total + n as new value for total
(b) n-1 as new value for n

PP 2018/19 Unit 5 – Recursion 11/35

Recursion

Recursive Sum Example/1

How would this look like in Ruby?

def sum(n,total)

if n != 0

sum(n-1,total+n)

end

end

Something is still missing . . .

PP 2018/19 Unit 5 – Recursion 12/35

Recursion

Recursive Sum Example/1

How would this look like in Ruby?

def sum(n,total)

if n != 0

sum(n-1,total+n)

end

end

Something is still missing . . . when and how do we stop?

PP 2018/19 Unit 5 – Recursion 13/35

Recursion

Recursive Sum Example/2

When n has reached 0, we return total:

def sum(n,total)

if n != 0

sum(n-1,total+n)

else

total

end

end

This isn’t exactly the same as the iterative version

PP 2018/19 Unit 5 – Recursion 14/35

Recursion

Recursive Sum Example/3

To obtain the same signature as in the iterative version, we need a second
function that initializes total = 0

Be careful that this cannot be done in the recursive function!

def do sum(n)

sum(n,0)

end

def sum(n,total)

if n != 0

sum(n-1,total+n)

else

total

end

end

PP 2018/19 Unit 5 – Recursion 15/35

Recursion

Tail Recursion

A very important sub-class of recursive functions are tail recursive functions

This means, there is nothing left to do when the recursive call returns

The example on the previous slide is tail recursive

Why are these functions so important?

PP 2018/19 Unit 5 – Recursion 16/35

Recursion

Execution of Tail-Recursive Function

Recursive call n total n != 0

sum(3,0) 3 0 yes

sum(2,3) 2 3 yes

sum(1,5) 1 5 yes

sum(0,6) 0 6 no

→ 6

→ 6

→ 6

→ 6

def sum(n,total)

if n != 0

sum(n-1,total+n)

else

total

end

end

PP 2018/19 Unit 5 – Recursion 17/35

Recursion

Non-Tail Recursion

We implemented sum as a tail recursive function

It could have also been implemented in a non-tail recursive way:

def sum(n)

if n != 0

sum(n-1) + n

else

0

end

end

After returning from the recursive call we still have to add n

PP 2018/19 Unit 5 – Recursion 18/35

Recursion

Execution of Non-Tail-Recursive Function

Recursive call n n != 0

sum(3) 3 yes

sum(2) + 3 2 yes

sum(1) + 2 1 yes

sum(0) + 1 0 no

→֒ 0 + 1

→ 1

→֒ 1 + 2

→ 3

→֒ 3 + 3

→ 6

→ 6

def sum(n)

if n != 0

sum(n-1) + n

else

0

end

end

PP 2018/19 Unit 5 – Recursion 19/35

Recursion

Tail Recursion vs. Non-Tail Recursion/1

Non-tail recursive function calls put parameters on the stack

Every call grows the stack
On return, the parameters are needed to compute the result (together with
the partial result returned)

In tail recursive functions, the parameters from the call before are not
needed anymore

Instead, the result is directly handed to the parent
Hence, no parameters need to be put on the stack

Hence, the main difference is

Tail recursion composes the (partial) result before the recursive call
Non-tail recursion composes the (partial) result after the recursive call

Languages that use tail recursion optimization realize this and don’t grow
the stack

The languages we cover next are optimized in this way

So they are much more efficient when using tail recursion

PP 2018/19 Unit 5 – Recursion 20/35

Recursion

Tail Recursion vs. Non-Tail Recursion/2

So we always use tail recursion and everything is fine?

Unfortunately, it is not that simple:

Not every recursive function can be formulated in a tail recursive way
Non-tail recursive functions are usually easier to write: they store everything
on the stack
Tail recursive functions have to track information and collect partial results
in accumulator parameters, e.g. total in the sum function

If a recursive function “loops” forever, it has to be tail recursive for obvious
reasons

PP 2018/19 Unit 5 – Recursion 21/35

Writing Recursive Functions

Outline

1 Recursion

2 Writing Recursive Functions

PP 2018/19 Unit 5 – Recursion 22/35

Writing Recursive Functions

Writing Recursive Functions

If you have no experience with recursive functions, writing them may seem
difficult, but there are a few tricks

Let’s have a look at a concrete example: reversing an array

First of all, it helps to look at examples

[] -> []

[1] -> [1]

[1,2] -> [2,1]

[1,2,3] -> [3,2,1]

This will help you get a “feel” for the problem

You may even be able to recognize some pattern

PP 2018/19 Unit 5 – Recursion 23/35

Writing Recursive Functions

Base Cases

Next, try to figure out the base cases

These are the cases that don’t need a recursive call (e.g., empty list)

def rev(a)

if a.length == 0 or a.length == 1

return a

else

puts "not implemented yet"

end

end

You can already test this function by calling it with different parameters

rev([]) -> []

rev([1]) -> [1]

rev([’abc’]) -> ["abc"]

rev([1,2,3]) -> not implemented yet

rev([[1,2,3]]) -> [[1,2,3]]

PP 2018/19 Unit 5 – Recursion 24/35

Writing Recursive Functions

Recursive Cases/1

Now, you have to consider the recursive case, which is a bit more difficult

What do we have?

We know there are at least two elements in the array (and possibly some
rest)
We have to add a recursive call to rev somewhere

Why not imagine you already have a working version?

Summing up, we have

first two elements: a[0] and a[1]

the rest: a.drop(2)
(drop(n) drops the first n elements, here 2)
a working function: old rev

PP 2018/19 Unit 5 – Recursion 25/35

Writing Recursive Functions

Recursive Cases/2

How do we put this together?

def rev(a)

if a.length == 0 or a.length == 1

return a

else

old rev(a.drop(2)).push(a[1]).push(a[0])

end

end

Basically, we reverse the rest of the array . . .

. . . and append the first two elements in reverse order

PP 2018/19 Unit 5 – Recursion 26/35

Writing Recursive Functions

Recursive Cases/3

This should work now

But if it works, then it is as good as old rev

So you can replace old rev with a recursive call rev and you’re done!

def rev(a)

if a.length == 0 or a.length == 1

return a

else

rev(a.drop(2)).push(a[1]).push(a[0])

end

end

Well, we’re not quite done yet . . .

We have to check that the recursion stops
We may be able to simplify the function

PP 2018/19 Unit 5 – Recursion 27/35

Writing Recursive Functions

Termination/1

Termination is crucial in recursive functions

For simple functions it may be easy to see it won’t get stuck in an endless
loop

For more complicated ones, you can check that its arguments are
monotonically decreasing/increasing

and will eventually reach one of your base cases

PP 2018/19 Unit 5 – Recursion 28/35

Writing Recursive Functions

Termination/2

The function rev terminates

We keep dropping items from the array, making it smaller and smaller
Eventually it will contain only one or no item, i.e., base case

However, checking the function sum we have overlooked a case

What happens if we call it with a negative number?

PP 2018/19 Unit 5 – Recursion 29/35

Writing Recursive Functions

Termination of the Sum Function

To make the sum function always terminate, we have to check for negative
numbers

Let’s change the condition to n > 0

def sum(n,total)

if n > 0

sum(n-1,total+n)

else

return total

end

end

Alternatively, we could check for negative numbers in the initialization
function do sum

def do sum(n)

return sum(n,0) if n > 0

0

end

PP 2018/19 Unit 5 – Recursion 30/35

Writing Recursive Functions

Simplification/1

If you have multiple base cases, check if you actually need all of them

If we can handle empty arrays, do we need arrays with one element as a
base case?

The case with one element can be rewritten into:
[1] -> rev([]).push(1)

So we only need the empty array as base case

PP 2018/19 Unit 5 – Recursion 31/35

Writing Recursive Functions

Simplification/2

The simplified function looks like this:

def rev(a)

return a if a == []

rev(a.drop(1)).push(a[0])

end

Was not that difficult, was it?

PP 2018/19 Unit 5 – Recursion 32/35

Writing Recursive Functions

Just One More Flaw/1

We now have a recursive function that reverses an array

However, it is not tail recursive

We append an element to the return value

Can you make it tail recursive?

PP 2018/19 Unit 5 – Recursion 33/35

Writing Recursive Functions

Just One More Flaw/2

We need a second parameter, which keeps the paritally reversed array
(partial result) when going down the recursive calls

def rev(a,b)

return b if a == []

rev(a.drop(1), [a[0]] + b)

end

PP 2018/19 Unit 5 – Recursion 34/35

Summary

Recursion is just a different kind of loop, but as expressive as loops

Some programming languages are haevily based on recursion, others do not
offer recursion at all

Three important steps in writing recursive programs

Base cases
Recursive cases
Termination

Often recursion allows you to write elegant code

With the right language, it is even efficient

Tail recursion is important to make recursive programs efficient

They essentialy don’t need to store any data on the stack

PP 2018/19 Unit 5 – Recursion 35/35

	Recursion
	Writing Recursive Functions

