
Programming Paradigms Ruby Homework

Johann Gamper Radityo Eko Prasojo Thomas Tschager

1st Semester 2018/19

Object-oriented design patterns typically show relationships and interactions
between classes or objects, without specifying the final application classes or
objects that are involved. In particular, the Composite design pattern describes
how to treat a group of objects in the same way as a single object of this type.
You can find more information about the Composite pattern in the wiki page:
https://en.wikipedia.org/wiki/Composite_pattern.

We have already seen an example implementation of the Composite pattern
in the lecture for implementing a tree. In this exercise you are asked to im-
plement a file system data structure using the Composite design pattern. Your
file system consists of objects that are either folders or files and structured in
a tree-like hierarchy. A folder can contain one or many other folders and files,
while a file is always a leaf node of the file system tree, i.e. it cannot have
descendants in the file system. Files have a size that can be modified at any
time. The size of a folder is defined as the sum of the sizes of all files in this
folder and its subfolders.

You must implement at least the following classes:

1. An class FileSystemObject which models the objects (files or folders) of
your file system. The class must have

• a field name,

• a field size, which represents the size of the object,

• a field children, that is a list of Objects, and

• a method traverse, which prints out all objects using a recursive
breadth-first-search traverse the file system.

Furthermore, ensure that objects are printed using their name (hint: puts
obj uses obj.to s() to convert the object to a string).

2. A class FolderObject that inherits from FileSystemObject and represents
the folders of your file system. The class must have a method add that
is used to add a file or a folder (updating also the size of itself and its
ancestors), and a method removeAll that removes all files and folders
that it contains and again updates the size of itself and its ancestors.

1



3. A class FileObject that inherits from FileSystemObject and represents
the files of your file system. It cannot have children and must have a
parent folder. The size of a file can be modified after initialization using
a method setSize (again updating the parent folder’s size).

Finally, create a module that checks the names of your files and folders.
The names of files and folders must not include any of the following characters:
/ >< | : &. The module must contain a function isValid? to check the whether
a given object name is valid or not. Include the module to the mixins of the
FileSystemObject class. Modify the method traverse so that it additionally
prints a warning for each FileSystemObject with a name that is not valid.

Deadline: 06.11.2018, 23:55 (OLE)

2


