
Programming Paradigms
Written Exam (6 CPs)

31.01.2018

First name Last name

Student number Signature

Instructions for Students

• Write your name and student number on the exam sheet and on every solution sheet
you hand in and also sign them.

• This is a closed book exam: the only resources allowed are blank paper and pens (do
not use pencils).

• Write neatly and clearly. The clarity of your explanations will affect your grade.

• The duration of the exam is 2 hours.

Good luck!

Do not write in this space

Exercise Marks Achieved
1 20
2 12
3 8
4 10
5 16
6 14
7 10
8 10

Total 100

1

Exercise 1 (20 marks)

a. (4 marks) Briefly describe the main differences, advantages and disadvantages of
static typing and dynamic typing.

b. (4 marks) Briefly describe the concept of mixins in Ruby.

c. (4 marks) What is the following Prolog program doing?

foo :-

repeat,

read(X),

write(X),

nl,

X = ’quit’,

!.

d. (4 marks) What is the following Haskell list comprehension producing?
[(4-x,y) | (x,y) <- [(1,2), (2,3), (3,1)]]

e. (4 marks) The following figure shows a hierarchy of linked Erlang processes, also
called supervision tree. What happens if process I crashes?

A

B C

E F

D

G

I K

Hsupervisor

worker

2

Exercise 2 (12 marks) Write a Ruby function that implements counting sort for sort-
ing an array of numbers, which works as follows: Given an array A of positive integers
n1, ..., nk ∈ [0, k], create an array A′ of size k + 1. Each element of A is associated with an
index in A′. The algorithm counts then the number of occurrences of each element in A
and stores it in the corresponding cell in A′. Finally, with a scan of A′ the elements can
be retrieved in ascending (or descending) order.

For example, for the input array A = [6,5,1,7,8,1,2] we obtain A’ =

[0,2,1,0,0,1,1,1,1]. The element A′[0] represents that the number 0 occurs
zero times, A′[1] represents that the number 1 occurs two times, etc. Scanning A′ allows
to retrieve the sorted array [1,1,2,5,6,7,8].

Exercise 3 (8 marks) The following Ruby function computes dlog2 ne recursively:

def log(n)

return 0 if n == 1

if n.even?

n = n / 2

return log(n) + 1

else

n += 1

return log(n)

end

end

Rewrite this function into a tail-recursive function.

Exercise 4 (10 marks) Write a Prolog program pythagoras(A,B,C) using the “generate
and test” pattern, which for a given value C computes all possible integer values of A
and B for which the theorem of Pythagoras holds, i.e., A2 + B2 = C2. For instance,
pythagoras(A,B,5) returns A=3, B=4 and A=4, B=3, whereas pythagoras(A,B,6) fails.

Hint: You can use the predicate between(L,U,X), which generates all integers between L

and U, e.g., between(0,2,X) generates

X = 0 ;

X = 1 ;

X = 2.

3

Exercise 5 (16 marks) Write a program in Prolog that goes through a list of numbers
and selects numbers (starting from the beginning of the list) whose sum is smaller than a
given capacity. So as long as there is still enough capacity left, the program keeps selecting
numbers (skipping numbers that are too large). The program should return the result in a
list. For example, given the list [2,5,3,8,1,12] and the capacity 14, the program should
return the list [2,5,3,1] as this sums up to 11, which is less than 14 (when 8 and 12 are
reached, they are too large to be included). The order of the items in the result does not
matter.

Exercise 6 (14 marks) Write a function isbalanced in Haskell that checks whether a
string containing open and closed parentheses is balanced. A string of parentheses is
balanced when every open one has a corresponding closed one and at any point there are
not more closed ones than open ones. For example, the strings "", "(())" and "(())()"

are balanced, whereas the strings "()(()" and "())" are not balanced.

Exercise 7 (10 marks) Look at the following recursive Haskell program:

mystery :: [a] -> Integer

mystery [] = 1

mystery (h:t) = 2 * (mystery t)

a. (4 marks) Briefly describe what the program does.

b. (6 marks) Transform the program into a tail-recursive one.

Exercise 8 (10 marks) Write a function loop for an Erlang process that receives messages
consisting of a single parameter and does the following:

• if the parameter is a number, it outputs to the console whether the number is positive,
negative, or zero;

• if the parameter is “bye”, the process terminates;

• otherwise, an error message is printed, e.g., “Unexpected message”.

Show also how to start the process. (Hint: you can use a function is number(N), which is
true if N is a number, and false otherwise)

4

Solution 1

a. Static typing:

• types and their constraints are checked before executing the program

• pro: less error-prone

• con: sometimes too restrictive

Dynamic typing:

• type checking is done during program execution

• pro: more flexible

• con: harder to debug

b. A mixin in Ruby is a combination of modules and classes. More specifically, a module
can be included in a class definition. By doing so, all methods of the module are
added and available to the class. Mixins have some similarity to the concept of
multiple inheritance.

c. This is a simple echo program. It reads from the standard input and shows the input
on the standard output. When the user input is “quit”, the program terminates.

d. [(3,2), (2,3), (1,1)]

e. This causes process G to terminate, which in turn terminates process K. Process D
traps the exit signal and restarts processes G, I, and K.

Solution 2

def counting_sort(myarray)

newarray = Array.new(myarray.max+1,0)

finalarray = Array.new

myarray.each do |x|

newarray[x] = newarray[x] + 1

end

for i in 0...(newarray.length)

newarray[i].times do

finalarray.push(i)

end

end

return finalarray

end

5

Solution 3

def log_tail_recursive(n)

return log_tr(n, 0)

end

def log_tr(n, r)

return r if n == 1

if n.even?

n = n / 2

return log_tr(n, r+1)

else

n += 1

return log_tr(n, r)

end

end

Solution 4

pythagoras(A, B, C) :-

between(1, C, A),

between(1, C, B),

X is C * C,

Y is A * A + B * B,

X = Y.

Solution 5

• Solution with accumulator

fit(L, C, R) :- fit_acc(L, C, [], R).

fit_acc([], C, L, L).

fit_acc([H|T], C, L, R) :-

H > C,

fit(T, C, L, R).

fit_acc([H|T], C, L, R) :-

H <= C,

N is C - H,

fit_acc(T, N, [H|L], R).

• Solution without accumulator

6

fit([], _, []).

fit([H|T], C, R) :-

H > C,

fit(T, C, R).

fit([H|T], C, [H|R]) :-

H =< C,

C1 is C - H,

fit(T, C1, R).

Solution 6

module IsBalanced (isbalanced) where

isbalanced :: [Char] -> Bool

isbalanced s = isbalan s 0

isbalan :: [Char] -> Int -> Bool

isbalan [] 0 = True

isbalan [] nonzero = False

isbalan (h:t) x =

if x < 0 then

False

else

if h == ’(’ then

isbalan t (x+1)

else

isbalan t (x-1)

Solution 7

a. The program computes the exponential function 2l, where l is the length of the array
that is passed as parameter.

b. Tail-recursive version: pass the length of the array seen so far as a second parameter;
when the list is empty, the second parameter contains the length of the list. Call the
function as expfun [...] 1

expfun :: [a] -> Integer -> Integer

expfun [] x = x

expfun (h:t) x = expfun t (x * 2)

7

Solution 8

-module(sign).

-export([loop/0]).

loop() ->

receive

N when is_number(N) ->

if

N < 0 -> io:format("Number is negative~n");

N > 0 -> io:format("Number is positive~n");

N == 0 -> io:format("Number is zero~n")

end,

loop();

"bye" ->

io:format("Bye~n");

_ ->

io:format("Unexpected message~n"),

loop()

end.

P = spawn(fun sign:loop/0).

8

