
Programming Paradigms
Written Exam (6 CPs)

20.09.2017

First name Last name

Student number Signature

Instructions for Students

• Write your name and student number on the exam sheet and on every solution sheet
you hand in and also sign them.

• This is a closed book exam: the only resources allowed are blank paper and pens (do
not use pencils).

• Write neatly and clearly. The clarity of your explanations will affect your grade.

• The duration of the exam is 2 hours.

Good luck!

Do not write in this space

Exercise Marks Achieved
1 20
2 8
3 8
4 10
5 10
6 14
7 16
8 14

Total 100

1

Exercise 1 (20 marks)

a. (4 marks) Briefly describe the concept of abstract data types and the advantages
they introduced with respect to imperative/procedural programming.

b. (4 marks) What does the following Ruby-code print?

def like_map(array)

result = []

array.each do |element|

result << (yield element)

end

result

end

x = like_map([1, 2, 3]) do |number|

number * 2

end

print x

c. (4 marks) The box model of Prolog execution is a simple way to show the control
flow. Briefly sketch and describe the box model.

d. (4 marks) Consider the Haskell function plus x y = x + y. How is the function
call plus 20 4 evaluated? What is the name of this evaluation concept?

e. (4 marks) Briefly explain how in Erlang synchronous messaging between two pro-
cesses is achieved?

2

Exercise 2 (8 marks) Write a Ruby function prime numbers that has one input param-
eter n and returns an array containing the first n prime numbers (2 is the first prime
number). Your program should use at least one code block.

Exercise 3 (8 marks) Write a Ruby class Animal with a property

• kind: a string that holds the type of the animal

and the following instance methods:

• eat: takes a parameter food and prints a message that the animal is eating food

• sleep and wake: these two methods do not have any arguments; instead, they will
set an instance variable @state to the string "asleep" and "awake", respectively

Write a second Ruby class Person with the following characteristics:

• Inherits from Animal

• Automatically sets @kind to "person"

• Adds 3 new instance variables: age, gender, name

• Overrides the eat method so that a person cannot eat a "person"

Exercise 4 (10 marks) Write a Prolog program drop kth(K, L, R), which removes the
element at position K from the list L and returns the resulting list in R. For instance,
drop kth(3, [a,b,c,d,e], R) succeeds with R = [a,b,d,e].

Exercise 5 (10 marks) The following Prolog knowledge base describes a small social net-
work using the friend relation that represents a direct friendship between two persons.

friend(tom,tim).

friend(tom,alf).

friend(alf,ann).

friend(alf,joe).

friend(joe,sue).

friend(joe,tim).

friend(sue,ann).

Write a predicate friends dist(X,Y,D) which tells whether X and Y are connected by
friendship relations at a distance of D. For instance, friends dist(tom,Y,2) succeeds and
instantiates Y=ann and Y=joe.

3

Exercise 6 (14 marks) Write a Haskell module that exports a function split, which splits
a list at a given position. The list and the split position are given as input parameter;
the function returns a pair consisting of the two parts of the list. For instance, split

[1,2,3,4,5] 2 returns the two parts ([1,2], [3,4,5]).

Exercise 7 (16 marks) Write a Haskell module that exports a function diffAB which
takes as input a list and two elements a, b of the list and returns the difference between
the number of occurences of a and b in the list. For instance, diffAB [3,4,2,3,3] 3 4

returns 2.

Exercise 8 (14 marks) Write an Erlang module that exports a function loop for a process
that implements an accumulator for numbers and reacts as follows to messages: if a number
is received, it is added to the accumulator; if "reset" is received, the accumulator is reset
to zero; if "sum" is received, the value of the accumulator is printed out; if "exit" is
received, the process is stopped; for all other messages, an error message is shown. In all
cases, a corresponding message is printed.

Moreover, show the following steps:

• Start the process

• Send a message to increment the accumulator by 10

• Show the value of the accumulator

• Stop the process

4

Solution 1

a. The procedural approach in imperative programming was taken further by introduc-
ing abstract data types (ADT). In ADTs, everything related to a type is encapsulated
in one bundle, most importantly data itself and operations on the data. This is also
known as information hiding and has several advantages: data can only be accessed
via a specified operations/interface; the actual representation/implementation is hid-
den and can easily be changed/replaced without affecting the rest of the program;
the code becomes more portable.

b. The result is [2, 4, 6]. The like map() method takes and array and a code block as
arguments. like map() iterates over each element of the array, yields the code block,
and appends the result to the result array. like map() behaves like the Array#map

method.

c. The box model provides a simple way to show the control flow of a Prolog program.
A box represents the invocation of a single predicate. The box has four ports (with
associated events):

• CALL: The first call of a predicate; control enters into the box

• EXIT: The goal has been proven

• REDO: The system comes back to a goal, trying ot re-satisfy it, i.e., backtracking

• FAIL: The goal/predicate fails

Predicate

CALL

FAIL

EXIT

REDO

d. The function is evaluated in two steps:

• The first input parameter is applied, i.e., plus 20, yielding a partially evaluated
function (\y -> 20 + y)

• The partially evaluated function is applied to the second argument, i.e.,
(\y -> 20 + y) 4, yielding 24

This is called curried functions.

e. At the receiver side:

• Each receive clause will have to match the process ID of the requesting sender
(in addition to the content of the message).

5

• Each receive clause has to send a response to the sender (instead of/in addition
to printing some result).

At the sender side:

• After sending a message, the sender has to wait for a response.

Solution 2

def prime_numbers(n)

res = []

num = 2

while res.length < n

isprime = true

2.upto(num-1) { |i|

isprime = false if num % i == 0

}

res.push(num) if isprime

num += 1

end

return res

end

Solution 3

class Animal

@kind

@state

def initialize(kind)

@kind = kind

end

def eat(food)

print "Animal eats: #{food}\n"

end

def sleep

@state = "asleep"

end

def wake

@state = "awake"

6

end

end

class Person < Animal

@age

@gender

@name

def initialize(age,gender,name)

super("person")

@age = age

@gender = gender

@name = name

end

def eat(food)

print "Animal eats: #{food}\n" if food != "person"

end

end

Solution 4

drop_kth(1, [_|Xs], Xs).

drop_kth(K, [X|Xs], [X|Ys]) :-

K > 1,

K1 is K - 1,

drop_kth(K1, Xs, Ys).

Solution 5

friends_dist(X, Y, 1) :- friend(X, Y).

friends_dist(X, Y, D) :-

friend(X, Z),

D1 is D - 1,

friends_dist(Z, Y, D1).

Solution 6

module List (

split

) where

7

split :: [a] -> Int -> ([a], [a])

split xs n

| n < 0 = ([], xs)

| n > length xs = (xs, [])

| otherwise = split2 ([], xs) n

split2 :: ([a], [a]) -> Int -> ([a], [a])

split2 (xs, ys) 0 = (xs, ys)

split2 (xs, (y:ys)) n = split2 (xs ++ [y], ys) (n - 1)

Solution 7

module diffAB (

diffAB

) where

diffAB :: Eq a => [a] -> a -> a -> Int

diffAB xs a b = diffAB2 xs a b 0

diffAB2 :: Eq a => [a] -> a -> a -> Int -> Int

diffAB2 [] a b n = n

diffAB2 (x:xs) a b n

| x == a = diffAB2 xs a b (n+1)

| x == b = diffAB2 xs a b (n-1)

| otherwise = diffAB2 xs a b n

Solution 8

-module(accumulator).

-export([loop/0]).

loop() -> loop(0).

loop(Sum) ->

receive

"sum" ->

io:format("Sum ~p~n", [Sum]),

loop(Sum);

"reset" ->

io:format("Reset to 0 ~n"),

loop(0);

"exit" ->

8

io:format("Exit~n");

N when is_number(N) ->

io:format("Increment by ~p~n", [N]),

loop(Sum + N);

_ ->

io:format("Invalid message~n"),

loop(Sum)

end.

Pid = spawn(fun accumulator:loop/0).

Pid ! 10.

Pid ! "sum".

Pid ! "exit".

9

