
Programming Paradigms
Written Exam (6 CPs)

21.09.2016

First name Last name

Student number Signature

Instructions for Students

• Write your name and student number on the exam sheet and on every solution sheet
you hand in and also sign them.

• This is a closed book exam: the only resources allowed are blank paper and pens (do
not use pencils).

• Write neatly and clearly. The clarity of your explanations will affect your grade.

• The duration of the exam is 2 hours.

Good luck!

Do not write in this space

Question Marks Achieved
1 24
2 8
3 8
4 16
5 8
6 12
7 14
8 10

Total 100

1

Exercise 1 (24 marks)

a. (4 marks) Briefly describe the main differences, advantages and disadvantages of
static typing and dynamic typing.

b. (4 marks) Briefly describe the concept of tail recursion, and why it is desirable to
write tail recursive functions.

c. (4 marks) Briefly describe the concept of mixins in Ruby.

d. (4 marks) The box model of Prolog execution is a simple way to show the control
flow. Briefly sketch and describe the box model.

e. (4 marks) Erlang supports higher-order functions. Briefly explain this concept and
give an example on how to use such functions.

f. (4 marks) What is the result of the following Haskell expression?
[(x,y) | x <- [1..4], y <- [1..4]]

Exercise 2 (8 marks) Write a Ruby function timeseries(a), which takes as argument
a time series (i.e., sequence of values) stored in an array and prints the minimum, the
maximum and the average over the time series data. For instance, with a = [1, 6, 7,

3, 3] the function prints out min = 1, max = 7, avg = 4.

Exercise 3 (8 marks) Extend the Ruby class Fixnum with a method square root times

that, if called for a number n and a code snippet, executes the code snippet d
√
ne times.

For example, 5.square root times{ puts ’hello world!’ } produces
hello world!

hello world!

hello world!

You are not allowed to use a built-in Ruby function to compute the square root of numbers.

Exercise 4 (16 marks) Write a Prolog program rmdup(X,Y) that removes all dupli-
cates in list X and returns in Y the duplicate-free list. For instance, given the list X =

[a,b,a,c,a,a,b], the duplicate-free list is Y = [c,a,b]. The order of the elements in Y

does not matter. Hint: Implement first a function member(E,L) to check whether E is a
member in L and use it in rmdup (that is, you have to implement the built-in predicate
member/2) yourself).

2

Exercise 5 (8 marks) A well-known strategy for writing Prolog programs is “generate
and test”. That means, that one part of the program generates potential solutions, while
another part of the program tests whether a potential solution is correct or not.

The predicate between(L,U,X) generates all integers between L and U. For example, calling
between(0,3,X) generates the following output:

X = 0 ;

X = 1 ;

X = 2 ;

X = 3.

Using the between(L,U,X) generator, write a Prolog rule square(S) that tests whether a
number S is the square of an integer (for example, square(4) would return true, square(3)
would return false).

Exercise 6 (12 marks) Write an Erlang server that computes the Euclidean distance be-
tween two points in the plane, i.e., when it receives two coordinates, it computes the
distance between the points and sends it back. The server process receives a tuple contain-
ing the ID of the process requesting the information and two coordinates. For example,
a request may look like this: {PID1, 3.5, 4.8, 2.0, 7.3}, where PID1 is the ID of the
requesting process, while x1 = 3.5, y1 = 4.8 are the coordinates of the first point and
x2 = 2.0, y2 = 7.3 are those of the second one. The Euclidean distance is computed as
follows:

√
(x1 − x2)2 + (y1 − y2)2. Assume that you have access to a function sqrt that

computes the square root of a number.

Show also how the server is started.

Exercise 7 (14 marks) Write a Haskell module that exports a function subseq that takes
as input a list x and a list y and returns true if x is a subsequence of y and false otherwise.
For instance, subseq [1,2,3] [3,4,1,2,3,5] returns true, whereas subseq [1,2,3]

[1,2] returns false.

Exercise 8 (10 marks) Write a Haskell module that exports a function noOfElem that
takes as input an element x and a list and returns the number of occurences of x in the
list. For instance, NoOfElem 1 [1,2,3,1] returns 2.

3

Solution 1

a. Static typing:

• types and their constraints are checked before executing a program

• pro: less error-prone

• con: sometimes too restrictive

Dynamic typing:

• type checking is done dring program execution

• pro: more flexible

• con: more difficult to debug

b. A function is tail-recursive if there is no operation after the recursive call, that is,
no operations are executed after the recursive call terminates. As a consequence, no
data need to be stored on the stack that is needed when the recursive call terminates.
Hence, different from non-tail-recursive function, for tail-recursive functions the stack
does not grow with each recursive call.

c. A mixin in Ruby is a combination of modules and classes. More specifically, a module
can be included in a class definition. By doing so, all methods of the module are
added and available to the class. Mixins have some similarity to the concept of
multiple inheritance.

d. The box model provides a simple way to show the control flow of a Prolog program.
A box represents the invocation of a single predicate. The box has four ports (with
associated events):

• CALL: The first call of a predicate; control enters into the box

• EXIT: The goal has been proven

• REDO: The system comes back to a goal, trying ot re-satisfy it, i.e., backtracking

• FAIL: The goal/predicate fails

Predicate

CALL

FAIL

EXIT

REDO

e. A higher-order function is a function that accepts another function as input or returns
a function in output. For example, the following expression increments the elements
of a list by 1 using an anonymous function:
lists:map(fun(X) -> X+1 end, [1,2,3,4]) returns [2,3,4,5]

4

f. [(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), ..., (4,4)]

Solution 2

def timeseries(a)

min = max = a[0]

sum = 0

a.each{ |v|

max = v if v > max

min = v if v < min

sum += v

}

puts "min = #{min}"

puts "max = #{max}"

puts "avg = #{sum/a.length}"

end

Solution 3

class Fixnum

def square_root_times

i = 0

while i * i < self

i += 1

yield

end

end

end

Solution 4

member(X, [X|_]).

member(X, [_|Xs]) :- member(X, Xs).

rmdup([], []).

rmdup([H|T], R):-

member(H, T),

!,

rmdup(T,R).

rmdup([H|T], [H|Rest]):-

rmdup(T, Rest).

5

Solution 5

square(S) :-

between(0, S, X),

S is X * X,

!.

Solution 6

-module(euclidserver).

-export([loop/0]).

loop() ->

receive

{PID,X1,Y1,X2,Y2} ->

XD = X1 - X2,

YD = Y1 - Y2,

PID ! sqrt(XD * XD + YD * YD),

loop()

end.

Pid = spawn(fun euclidserver:loop/0).

6

Solution 7

module Subseq (

subseq

) where

-- Verify whether x occurs at the beginning of y

sseq :: Eq a => [a] -> [a] -> Bool

sseq x [] = False

sseq [] y = True

sseq (x:xs) (y:ys) = if x == y then sseq xs ys else False

-- Verify whether x occurs somewhere in y

subseq :: Eq a => [a] -> [a] -> Bool

subseq x [] = False

subseq x y =

if sseq x y then

True

else

subseq x (tail y)

Solution 8

module NoOfElem (noOfElem) where

noOfElem :: Eq a => a -> [a] -> Int

noOfElem x [] = 0

noOfElem x (h:t) = (if h == x then 1 else 0) + noOfElem x t

7

